Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production
Abstract
1. Introduction
2. Microwave Irradiation
2.1. Fundamentals of Microwave Irradiation
2.2. Mechanism of Microwave Irradiation
3. Catalysts Synthesis
4. Applications
4.1. Bio-Oil Production
4.2. Methanation
4.3. Methane Reforming
Process | Catalyst/ Absorbent | Textural Properties/ Composition | Yield | Remarks | Reference |
---|---|---|---|---|---|
Methane steam reforming | Ni/CeO2-Al2O3 on a SiC monolith | Average pore diameter: 4.6 µm Specific surface area: 10.0 m2/g SiC: 87.5 wt% Ni: 1.7 wt% Al2O3: 0.5 wt% CeO2: 10.8 wt% | Equilibrium in H2 yield and CH4 conversion @800 °C (GHSV: 3300 h−1) and 850 °C (GHSV: 5000 h−1) | Pressure: 1 bar S/C: 3 Energy efficiency: 55% @1300 W (Power of microwave) Energy consumption: 3.8 kW/Nm3H2 | [79] |
Methane steam reforming | Ni/CeO2-Al2O3 on a SiC monolith | Pore distribution with radius: 3 nm Thickness of catalytic layer: 200 µm | Equilibrium in H2 yield and CH4 conversion @750 °C (GHSV: 5000 h−1) | Pressure: 1 bar S/C: 3 Energy efficiency: 73% Power of microwave: 400 W Energy consumption: 2.5 kWh/Nm3H2 | [80] |
CO2 dry reforming of methane | Fe/SiC | Specific surface area: 32.118 m2/g (fresh) and 27.443 m2/g (after 50 h) Pore size: 5–8 nm and small amount of 0–2 nm micropores 1 C: 0.46; 22.16 1 O: 1.85; 35.29 1 Mg: 0; 2.88 1 Al: 3.36; 2.93 1 Si: 10.84; 33.87 1 Ca: 0.73; 0 1 Fe: 82.77; 0.22 | CH4 and CO2 conversions: 85% H2/CO ratio: ~1 | Specific microwave power: 72 W/g Durable stability for 50 h Carbon deposition: ~0.78 wt% | [45] |
Methane dry reforming | Fe-rich char from corn stalk | BET specific surface area: 150.46 m2/g (fresh) and 139.18 m2/g (during test) Total pore volume: 0.326 cm3/g (fresh) and 0.313 cm3/g (during test) Micropore volume: 0.309 cm3/g (fresh) and 0.269 cm3/g (during test) K: 0.956 wt% Fe: 7.126 wt% Ca: 0.443 wt% Mg: 1.523 wt% Al: 0.189 wt% Na: 0.367 wt% | CH4 conversion: 90.8% CO2 conversion: 95.2% | Fe2O3 addition of 10% Temperature: 800 °C Syngas content: 88.79% H2/CO ratio: 0.92 Durable stability for 160 min | [46] |
Methane dry reforming | Char from corn stalk | BET specific surface area: 30.86 m2/g (fresh) and 25.98 m2/g (during test) Total pore volume: 0.175 cm3/g (fresh) and 0.179 cm3/g (during test) Micropore volume: 0.137 cm3/g (fresh) and 0.116 cm3/g (during test) K: 0.740 wt% Fe: 0.052 wt% Ca: 0.505 wt% Mg: 1.606 wt% Al: 0.262 wt% Na: 0.030 wt% | CH4 conversion: ~57% CO2 conversion: ~80% | Temperature: 800 °C Syngas content: 88.79% H2/CO ratio: 0.87 Durable stability for 160 min | [46] |
Methane dry reforming | Ruthenium-doped SrTiO3 perovskite | SrTiO3 crystallite size: 29.8 nm Semi-quantitive weight percentage: 77.8 wt% BET specific surface area: 8 m2/g Total pore volume: 0.026 cm3/g | CH4 conversion: ~99.5% CO2 conversion: ~94% | 7 wt% of ruthenium doped H2/CO ratio: ~0.9 Temperature: ~940 °C CH4:CO2 vol.% feed ratio = 45:55 (maximized CH4 conversion) | [85] |
Dry reforming of methane | Ni/SiC | - | CH4 conversion: 80% CO2 conversion: 90% | Temperature: 800 °C Short-term stability test for 6 h | [76] |
Dry and bi-reforming of methane | Co-Mo/TiO2 | BET specific surface area: 36.4 cm2/g Uniform size distribution: 50–100 nm | CH4 conversion: 81% CO2 conversion: 86% | H2/CO ratio: 0.9 Durable stability for >50 h | [86] |
Dry and bi-reforming of methane | Cu-Mo/TiO2 | - | CH4 conversion: 76% CO2 conversion: 62% | H2/CO ratio: 0.8 Durable stability for >60 h | [86] |
Methane dry reforming | Wood-derived activated carbon | BET specific surface area: 937.99 m2/g Specific micropore surface: 353.65 m2/g Specific pore volume: 0.61 cm3/g Specific micropore volume: 0.20 cm3/g | CH4 conversion: ~80.0% CO2 conversion: ~60.0% | Microwave power: 560 W CH4/CO2/N2 = 1:1:3 Total gas flow of H2/CO ratio: 250 mL/min H2/CO ratio: 1.3 | [47] |
4.4. Sugar Conversion to 5-Hydroxymethylfurfural (5-HMF)
Process | Feedstock | Catalyst/ Absorbent | Yield | Remarks | Reference |
---|---|---|---|---|---|
Biphasic systems with aqueous and organic phase | Fructose | 1 Acidic deep eutectic solvents | HMF yield: 91.0% | Using [Ch]Cl:CA Microwave heating: 2 min Temperature: 120 °C Solid/liquid ratio: 0.05 | [51] |
Direct conversion using ionic liquids | Corn stalk, rice straw and pine wood | CrCl3·6H2O | HMF yield: 45–52% Furfural yield: 23–31% | Irradiation time: 2–6 min | [52] |
Direct conversion | Fructose | TiO2 nanoparticles | HMF yield: 3.4% (commercial TiO2), 25–54% | Microwave power: 300 W Temperature: 120–140 °C Time: 5–20 min | [89] |
Direct conversion | Glucose | TiO2 nanoparticles | HMF yield: 22.1–37.2% | Temperature: 120–140 °C Time: 2 or 5 min | [89] |
Direct conversion | Sucrose | TiO2 nanoparticles | HMF yield: 12.0–21.0% | Temperature: 120–140 °C Time: 5 or 10 min | [89] |
Direct conversion | Cellobiose | TiO2 nanoparticles | HMF yield: 14.5–18.7% | Temperature: 120 °C or 140 °C Time: 5 min | [89] |
Direct conversion | Maltose | TiO2 nanoparticles | HMF yield: 10.7–14.1% | Temperature: 120 °C or 140 °C Time: 5 min | [89] |
Direct conversion in water | Fructose | Sulfonated carbon microsphere catalysts | HMF yield: 88.3 mol% | Power: 60 W Temperature: 186 °C Time: 10 min Energy efficiency: 0.147 mmol/kJ | [90] |
Direct conversion in DMSO-water | Chitin | Polyoxometalates: H4[SiW12O40] | HMF yield: 23.1% | Solvent: 67% DMSO-water Temperature: 200 °C Time: 3 min | [91] |
Direct conversion in ionic liquids | Cellulose | ZrCl4 | HMF yield: 51.4% | Time: 3.5 min Power: 400 W Ionic liquid: [Bmim]Cl | [53] |
Rapid catalytic conversion | Lignocellulosic Sunn hemp fibres | CuCl2 | HMF yield: 26.8% | Temperature: 160–200 °C Time: 46 min Ionic liquid: [Bmim]Cl | [92] |
Catalytic dehydration | Corn starch | AlCl3·6H2O | HMF yield: 59.8 wt% | Solvent used: DMSO/[Bmim]Cl Temperature: 150 °C Time: 20 min | [93] |
Direct conversion | Microcrystalline cellulose | Ionic liquid: [TMG]BF4 | HMF yield: 28.63% | Temperature: 132 °C Time: 48 min Catalyst loading: 0.44 mg/mg | [94] |
4.5. Ammonia Synthesis
5. Challenges and Future Prospect
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jafarinejad, S. 7—Solid-Waste Management in the Petroleum Industry. In Petroleum Waste Treatment and Pollution Control; Jafarinejad, S., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 269–345. [Google Scholar]
- Suttisawat, Y.; Horikoshi, S.; Sakai, H.; Abe, M. Hydrogen production from tetralin over microwave-accelerated Pt-supported activated carbon. Int. J. Hydrogen Energy 2010, 35, 6179–6183. [Google Scholar] [CrossRef]
- Tashima, S.; Sawada, T.; Saito, K.; Yamada, T. Microwave specific effect on catalytic enantioselective Conia-ene reaction. Chem. Lett. 2016, 45, 649–651. [Google Scholar] [CrossRef]
- Zhang, X.; Rajagopalan, K.; Lei, H.; Ruan, R.; Sharma, B.K. An overview of a novel concept in biomass pyrolysis: Microwave irradiation. Sustain. Energy Fuels 2017, 1, 1664–1699. [Google Scholar] [CrossRef]
- Martín, Á.; Navarrete, A. Microwave-assisted process intensification techniques. Curr. Opin. Green Sustain. Chem. 2018, 11, 70–75. [Google Scholar] [CrossRef]
- Meredith, R.J. Engineers’ Handbook of Industrial Microwave Heating; IET: London, UK, 1998. [Google Scholar]
- Zlotorzynski, A. The application of microwave radiation to analytical and environmental chemistry. Crit. Rev. Anal. Chem. 1995, 25, 43–76. [Google Scholar] [CrossRef]
- Cellencor. Microwave Components. 2022. Available online: https://www.cellencor.com/en/microwaves/microwave_components/ (accessed on 23 June 2022).
- Stefanidis, G.D.; Muñoz, A.N.; Sturm, G.S.J.; Stankiewicz, A. A helicopter view of microwave application to chemical processes: Reactions, separations, and equipment concepts. Rev. Chem. Eng. 2014, 30, 233–259. [Google Scholar] [CrossRef]
- Heddleson, R.A.; Doores, S. Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens—A review. J. Food Prot. 1994, 57, 1025–1037. [Google Scholar] [CrossRef]
- Loharkar, P.K.; Ingle, A.; Jhavar, S. Parametric review of microwave-based materials processing and its applications. J. Mater. Res. Technol. 2019, 8, 3306–3326. [Google Scholar] [CrossRef]
- Priecel, P.; Lopez-Sanchez, J.A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng. 2018, 7, 3–21. [Google Scholar] [CrossRef]
- Barba, A.A.; D’amore, M. Relevance of dielectric properties in microwave assisted processes. Microw. Mater. Charact. 2012, 6, 91–118. [Google Scholar]
- Sobhy, A.; Chaouki, J. Microwave-assisted biorefinery. Chem. Eng. Trans. 2010, 19, 25–30. [Google Scholar]
- Anwar, J.; Shafique, U.; Zaman, W.; Rehman, R.; Salman, M.; Dar, A.; Anzano, J.M.; Ashraf, U.; Asraf, S. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens. Arab. J. Chem. 2015, 8, 100–104. [Google Scholar] [CrossRef]
- Metaxas, A. Foundations of electroheat. A unified approach. In Fuel and Energy Abstracts; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Muley, P.D.; Wang, Y.; Hu, J.; Shekhawat, D. Microwave-assisted heterogeneous catalysis. In Catalysis; Spivey, J., Han, Y., Shekhawat, D., Eds.; The Royal Society of Chemistry: London, UK, 2021. [Google Scholar]
- Punnoose, M.S.; Bijimol, D.; Mathew, B. Microwave assisted green synthesis of gold nanoparticles for catalytic degradation of environmental pollutants. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100525. [Google Scholar]
- Bharti, A.; Cheruvally, G.; Muliankeezhu, S. Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application. Int. J. Hydrogen Energy 2017, 42, 11622–11631. [Google Scholar] [CrossRef]
- Burakova, E.A.; Dyachkova, T.P.; Rukhov, A.V.; Tugolukov, E.N.; Galunin, E.V.; Tkachev, A.G.; Basheer, A.A.; Ali, I. Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 2018, 253, 340–346. [Google Scholar] [CrossRef]
- Zheng, Q.; Cheng, X.; Li, H. Microwave Synthesis of High Activity FeSe2/C Catalyst toward Oxygen Reduction Reaction. Catalysts 2015, 5, 1079–1091. [Google Scholar] [CrossRef]
- Sreerenjini, C.; Balan, B.; Mani, G.; Mathew, S. Microwave-Assisted Synthesis: A New Tool in Green Technology, in Renewable Materials and Green Technology Products; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 55–74. [Google Scholar]
- Gaikwad, S.; Han, S. A microwave method for the rapid crystallization of UTSA-16 with improved performance for CO2 capture. Chem. Eng. J. 2019, 371, 813–820. [Google Scholar] [CrossRef]
- Etminan, A.; Sadrnezhaad, S.K. A two step Microwave-assisted coke resistant mesoporous Ni-Co catalyst for methane steam reforming. Fuel 2022, 317, 122411. [Google Scholar] [CrossRef]
- Ulloa, R.Z.; Santiago, M.G.H.; Rueda, V.L.V. The interaction of microwaves with materials of different properties. In Electromagnetic Fields and Waves; Yeap, K.H., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Iowa State University. Diamagnetic, Paramagnetic, and Ferromagnetic Materials. 2022. Available online: https://www.nde-ed.org/Physics/Magnetism/MagneticMatls.xhtml (accessed on 1 July 2022).
- Behrend, R.; Dorn, C.; Uhlig, V.; Krause, H. Investigations on container materials in high temperature microwave applications. Energy Procedia 2017, 120, 417–423. [Google Scholar] [CrossRef]
- Lee, J.; Kim, T. Application of microwave heating to recover metallic elements from industrial waste. In Advances in Induction and Microwave Heating of Mineral and Organic Materials; Grundas, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 303–312. [Google Scholar]
- Li, H.; Zhang, C.; Pang, C.; Li, X.; Gao, X. The advances in the special microwave effects of the heterogeneous catalytic reactions. Front. Chem. 2020, 8, 355. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhang, D.; Qin, Y.; Wang, M.; Han, Y.; Zhan, T.; Yang, B.; Li, S.; Lai, J.; et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018. [Google Scholar] [CrossRef] [PubMed]
- Shams, M.M.; Zamiri, B.; Fatoorehchi, H. Microwave-assisted Synthesis of Fuel Cell Catalyst. In Proceedings of the 14th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-14), Basel, Switzerland, 1–30 November 2010. [Google Scholar]
- Ojeda-Niño, O.H.; Gracia, F.; Daza, C. Role of Pr on Ni–Mg–Al Mixed Oxides Synthesized by Microwave-Assisted Self-Combustion for Dry Reforming of Methane. Ind. Eng. Chem. Res. 2019, 58, 7909–7921. [Google Scholar] [CrossRef]
- Kivrak, H.D. The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route. Turk. J. Chem. 2015, 39, 563–575. [Google Scholar] [CrossRef]
- Latif, N.I.S.A.; Ong, M.Y.; Nomanbhay, S. Hydrothermal liquefaction of Malaysia’s algal biomass for high-quality bio-oil production. Eng. Life Sci. 2019, 19, 246–269. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Jamwal, D.; Rana, D.; Katoch, A. Microwave synthesized nanocomposites for enhancing oral bioavailability of drugs. In Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Sawston, UK, 2018; pp. 619–632. [Google Scholar]
- Mohamed, B.A.; Kim, C.S.; Ellis, N.; Bi, X. Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour. Technol. 2016, 201, 121–132. [Google Scholar] [CrossRef]
- Chen, C.; Fan, D.; Zhao, J.; Qi, Q.; Huang, X.; Zeng, T.; Bi, Y. Study on microwave-assisted co-pyrolysis and bio-oil of Chlorella vulgaris with high-density polyethylene under activated carbon. Energy 2022, 247, 123508. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Kumar, T.H.; Reddy, B.R.; Yerraya, A.; Srinivas, B.A.; Sivakumar, P.; Prakash, S.R.; Rao, C.S.; Sridevi, V.; Desinghu, J. Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes. Renew. Energy 2022, 181, 990–999. [Google Scholar] [CrossRef]
- Chen, T.; Liu, R.; Scott, N.R. Characterization of energy carriers obtained from the pyrolysis of white ash, switchgrass and corn stover—Biochar, syngas and bio-oil. Fuel Process. Technol. 2016, 142, 124–134. [Google Scholar] [CrossRef]
- Aimdate, K.; Srifa, A.; Koo-amornpattana, W.; Sakdaronnarong, C.; Klysubun, W.; Kiatphuengporn, S.; Assabumrungrat, S.; Wongsakulphasatch, S.; Kaveevivitchai, W.; Sudoh, M.; et al. Natural Kaolin-Based Ni Catalysts for CO2 Methanation: On the Effect of Ce Enhancement and Microwave-Assisted Hydrothermal Synthesis. ACS Omega 2021, 6, 13779–13794. [Google Scholar] [CrossRef]
- Song, F.; Zhong, Q.; Yu, Y.; Shi, M.; Wu, Y.; Hu, J.; Song, Y. Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int. J. Hydrogen Energy 2017, 42, 4174–4183. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, F.; Ji, K.; Song, Y.; Li, Z. Slurry phase methanation of carbon monoxide over nanosized Ni–Al2O3 catalysts prepared by microwave-assisted solution combustion. Appl. Catal. A Gen. 2016, 510, 74–83. [Google Scholar] [CrossRef]
- Kim, A.; Sanchez, C.; Haye, B.; Boissière, C.; Sassoye, C.; Debecker, D.P. Mesoporous TiO2 Support Materials for Ru-Based CO2 Methanation Catalysts. ACS Appl. Nano Mater. 2019, 2, 3220–3230. [Google Scholar] [CrossRef]
- Bacariza, M.C.; Graça, I.; Bebiano, S.S.; Lopes, J.M.; Henriques, C. Micro- and mesoporous supports for CO2 methanation catalysts: A comparison between SBA-15, MCM-41 and USY zeolite. Chem. Eng. Sci. 2018, 175, 72–83. [Google Scholar] [CrossRef]
- Zhang, F.; Song, Z.; Zhu, J.; Liu, L.; Sun, J.; Zhao, X.; Mao, Y.; Wang, W. Process of CH4-CO2 reforming over Fe/SiC catalyst under microwave irradiation. Sci. Total Environ. 2018, 639, 1148–1155. [Google Scholar] [CrossRef]
- Li, L.; Yan, K.; Chen, J.; Feng, T.; Wang, F.; Wang, J.; Song, Z.; Ma, C. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide. Sci. Total Environ. 2019, 657, 1357–1367. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, S.; Li, L.; Meng, B.; Chen, J.; Yang, Z.; Yan, K.; Qin, X. Application of microwave heating for methane dry reforming catalyzed by activated carbon. Chem. Eng. Process. Process Intensif. 2019, 145, 107662. [Google Scholar] [CrossRef]
- Sharifvaghefi, S.; Shirani, B.; Eic, M.; Zheng, Y. Application of Microwave in Hydrogen Production from Methane Dry Reforming: Comparison Between the Conventional and Microwave-Assisted Catalytic Reforming on Improving the Energy Efficiency. Catalysts 2019, 9, 618. [Google Scholar] [CrossRef]
- Carapellucci, R.; Giordano, L. Steam, dry and autothermal methane reforming for hydrogen production: A thermodynamic equilibrium analysis. J. Power Sources 2020, 469, 228391. [Google Scholar] [CrossRef]
- Varsano, F.; Bellusci, M.; Barbera, A.L.; Petrecca, M.; Albino, M.; Sangregorio, C. Dry reforming of methane powered by magnetic induction. Int. J. Hydrogen Energy 2019, 44, 21037–21044. [Google Scholar] [CrossRef]
- Morais, E.S.; Freire, M.G.; Freire, C.S.R.; Silvestre, A.J.D. Improved Production of 5-Hydroxymethylfurfural in Acidic Deep Eutectic Solvents Using Microwave-Assisted Reactions. Int. J. Mol. Sci. 2022, 23, 1959. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, Z.K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour. Technol. 2010, 101, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, Z.; Zhao, Z.K. Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids. Chem. Eng. J. 2013, 215–216, 517–521. [Google Scholar] [CrossRef]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith, R.L. Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid-water mixtures. Bioresour. Technol. 2012, 109, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Mamo, W.; Chebude, Y.; Márquez-Álvarez, C.; Díaz, I.; Sastre, E. Comparison of glucose conversion to 5-HMF using different modified mordenites in ionic liquid and biphasic media. Catal. Sci. Technol. 2016, 6, 2766–2774. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, A.S.; Shaifali; Das, P. Lignocellulosic biomass and carbohydrates as feed-stock for scalable production of 5-hydroxymethylfurfural. Cellulose 2021, 28, 3967–3980. [Google Scholar] [CrossRef]
- Araia, A.; Wang, Y.; Robinson, B.; Jiang, C.; Brown, S.; Wildfire, C.; Shekhawat, D.; Hu, J. Microwave-assisted ammonia synthesis over Cs-Ru/CeO2 catalyst at ambient pressure: Effects of metal loading and support particle size. Catal. Commun. 2022, 170, 106491. [Google Scholar] [CrossRef]
- Wildfire, C.; Abdelsayed, V.; Shekhawat, D.; Dagle, R.A.; Davidson, S.D.; Hu, J. Microwave-assisted ammonia synthesis over Ru/MgO catalysts at ambient pressure. Catal. Today 2021, 365, 103–110. [Google Scholar] [CrossRef]
- Wang, Y.; Wildfire, C.; Khan, T.S.; Shekhawat, D.; Hu, J.; Tavadze, P.; Quiñones-Fernández, R.; Moreno, S. Effects of support and promoter on Ru catalyst activity in microwave-assisted ammonia synthesis. Chem. Eng. J. 2021, 425, 130546. [Google Scholar] [CrossRef]
- Gao, W.; Feng, S.; Yan, H.; Wang, Q.; Xie, H.; Jiang, L.; Zhang, W.; Guan, Y.; Wu, H.; Cao, H.; et al. In situ formed Co from a Co-Mg-O solid solution synergizing with LiH for efficient ammonia synthesis. Chem. Commun. 2021, 57, 8576–8579. [Google Scholar] [CrossRef]
- Petrunin, D.A.; Borisov, V.A.; Iost, K.N.; Temerev, V.L.; Trenikhin, M.V.; Gulyaeva, T.I.; Shlyapin, D.A.; Tsyrulnikov, P.G. Comparison of the activity of Ru-K/Sibunit catalysts in ammonia synthesis and decomposition. AIP Conf. Proc. 2019, 2141, 20024. [Google Scholar]
- Su, G.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Lam, S.S.; Huang, Y. Microwave-assisted pyrolysis technology for bioenergy recovery: Mechanism, performance, and prospect. Fuel 2022, 326, 124983. [Google Scholar] [CrossRef]
- Van de Beld, B.; Holle, E.; Florijn, J. The use of pyrolysis oil and pyrolysis oil derived fuels in diesel engines for CHP applications. Appl. Energy 2013, 102, 190–197. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Huang, J.; Tang, N.; Dang, Z.; Shi, Y.; Zhaohe, M. Microwave-assisted catalytic pyrolysis of cellulose for phenol-rich bio-oil production. J. Energy Inst. 2019, 92, 1997–2003. [Google Scholar] [CrossRef]
- Fodah, A.E.M.; Ghosal, M.K.; Behera, D. Bio-oil and biochar from microwave-assisted catalytic pyrolysis of corn stover using sodium carbonate catalyst. J. Energy Inst. 2021, 94, 242–251. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, J.; Lu, J.; Zhou, N.; Li, H.; Cui, X.; Zhang, Q.; Liu, Y.; Ruan, R.; Wang, Y. Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil. Sci. Total Environ. 2022, 827, 154186. [Google Scholar] [CrossRef]
- Dai, L.; Zeng, Z.; Tian, X.; Jiang, L.; Yu, Z.; Wu, Q.; Wang, Y.; Liu, Y.; Ruan, R. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst. J. Anal. Appl. Pyrolysis 2019, 143, 104691. [Google Scholar] [CrossRef]
- Su, Z.; Jin, K.; Wu, J.; Huang, P.; Liu, L.; Xiao, Z.; Peng, H.; Fan, L.; Zhou, W. Phosphorus doped biochar as a deoxygenation and denitrogenation catalyst for ex-situ upgrading of vapors from microwave-assisted co-pyrolysis of microalgae and waste cooking oil. J. Anal. Appl. Pyrolysis 2022, 164, 105538. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, T.; Qi, Q.; Qiu, H.; Zhao, J.; Fan, D. Microwave catalytic pyrolysis production and characterization of Chlorella vulgaris under different compound additives. J. Energy Inst. 2022, 100, 160–169. [Google Scholar] [CrossRef]
- Bu, Q.; Cao, M.; Wang, M.; Vasudevan, S.V.; Mao, H. Enhancement of bio-oil quality over self-derived bio-char catalyst via microwave catalytic pyrolysis of peanut shell. J. Anal. Appl. Pyrolysis 2022, 164, 105534. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Ren, S.; Wang, L.; Zhang, Q.; Tang, J.; Ruan, R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2012, 108, 274–279. [Google Scholar] [CrossRef]
- Hui-Peng, L.; Jian, S.; Hua, Z.; Li, Z.; Yu-tai, Q. Effects of Phenols on the Stability of FCC Diesel Fuel. Pet. Sci. Technol. 2009, 27, 486–497. [Google Scholar] [CrossRef]
- Hamid, M.Y.S.; Firmansyah, M.L.; Triwahyono, S.; Jalil, A.A.; Mukti, R.R.; Febriyanti, E.; Suendo, V.; Setiabudi, H.D.; Mohamed, M.; Nabgan, W. Oxygen vacancy-rich mesoporous silica KCC-1 for CO2 methanation. Appl. Catal. A Gen. 2017, 532, 86–94. [Google Scholar] [CrossRef]
- Paviotti, M.A.; Hoyos, L.A.S.; Busilacchio, V.; Faroldi, B.M.; Cornaglia, L.M. Ni mesostructured catalysts obtained from rice husk ashes by microwave-assisted synthesis for CO2 methanation. J. CO2 Util. 2020, 42, 101328. [Google Scholar] [CrossRef]
- Siakavelas, G.I.; Charisiou, N.D.; AlKhoori, A.; AlKhoori, S.; Sebastian, V.; Hinder, S.J.; Baker, M.A.; Yentekakis, I.V.; Polychronopoulou, K.; Goula, M.A. Highly selective and stable Ni/La-M (M = Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation. J. CO2 Util. 2021, 51, 101618. [Google Scholar] [CrossRef]
- De Dios García, I.; Stankiewicz, A.; Nigar, H. Syngas production via microwave-assisted dry reforming of methane. Catal. Today 2021, 362, 72–80. [Google Scholar] [CrossRef]
- Parsapur, R.K.; Chatterjee, S.; Huang, K.-W. The Insignificant Role of Dry Reforming of Methane in CO2 Emission Relief. ACS Energy Lett. 2020, 5, 2881–2885. [Google Scholar] [CrossRef]
- Wattanathana, W.; Nootsuwan, N.; Veranitisagul, C.; Koonsaeng, N.; Laosiripojana, N.; Laobuthee, A. Simple cerium-triethanolamine complex: Synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming. J. Mol. Struct. 2015, 1089, 9–15. [Google Scholar] [CrossRef]
- Meloni, E.; Martino, M.; Ricca, A.; Palma, V. Ultracompact methane steam reforming reactor based on microwaves susceptible structured catalysts for distributed hydrogen production. Int. J. Hydrogen Energy 2021, 46, 13729–13747. [Google Scholar] [CrossRef]
- Meloni, E.; Martino, M.; Palma, V. Microwave assisted steam reforming in a high efficiency catalytic reactor. Renew. Energy 2022, 197, 893–901. [Google Scholar] [CrossRef]
- Dedov, A.G.; Loktev, A.S.; Mukhin, I.E.; Karavaev, A.A.; Tyumenova, S.I.; Baranchikov, A.E.; Ivanov, V.K.; Maslakov, K.I.; Bykov, M.A.; Moiseev, I.I. Synthesis Gas Production by Partial Oxidation of Methane and Dry Reforming of Methane in the Presence of Novel Ni-Co/MFI Catalysts. Pet. Chem. 2018, 58, 203–213. [Google Scholar] [CrossRef]
- Li, L.; Yang, Z.; Chen, J.; Qin, X.; Jiag, X.; Wang, F.; Song, Z.; Ma, C. Performance of bio-char and energy analysis on CH4 combined reforming by CO2 and H2O into syngas production with assistance of microwave. Fuel 2018, 215, 655–664. [Google Scholar] [CrossRef]
- Zamri, A.A.; Ong, M.Y.; Nomanbhay, S.; Show, P.L. Microwave plasma technology for sustainable energy production and the electromagnetic interaction within the plasma system: A review. Environ. Res. 2021, 197, 111204. [Google Scholar] [CrossRef]
- Fidalgo, B.; Arenillas, A.; Menéndez, J.A. Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4. Fuel 2010, 89, 4002–4007. [Google Scholar] [CrossRef]
- Gangurde, L.S.; Sturm, G.S.J.; Valero-Romero, M.J.; Mallada, R.; Santamaria, J.; Stankiewicz, A.I.; Stefanidis, G.D. Synthesis, characterization, and application of ruthenium-doped SrTiO3 perovskite catalysts for microwave-assisted methane dry reforming. Chem. Eng. Process. Process Intensif. 2018, 127, 178–190. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Pham, G.H.; Tade, M.; Phan, C.; Vagnoni, R.; Liu, S. Microwave-Assisted Dry and Bi-reforming of Methane over M-Mo/TiO2 (M = Co, Cu) Bimetallic Catalysts. Energy Fuels 2020, 34, 7284–7294. [Google Scholar] [CrossRef]
- Sharma, R.; Selim, A.; Devi, B.; Arumugam, S.M.; Sartaliya, S.; Elumalai, S.; Jayamurugan, G. Realizing direct conversion of glucose to furfurals with tunable selectivity utilizing a carbon dot catalyst with dual acids controlled by a biphasic medium. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Rasid, N.S.A.; Zainol, M.M.; Amin, N.A.S. 14—Pretreatment of agroindustry waste by ozonolysis for synthesis of biorefinery products. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Kumar, R.P., Gnansounou, E., Raman, J.K., Baskar, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 303–336. [Google Scholar]
- Dutta, S.; De, S.; Patra, A.K.; Sasidharan, M.; Bhaumik, A.; Saha, B. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles. Appl. Catal. A Gen. 2011, 409–410, 133–139. [Google Scholar] [CrossRef]
- Kong, X.; Vasudevan, S.V.; Cao, M.; Cai, J.; Mao, H.; Bu, Q. Microwave-Assisted Efficient Fructose-HMF Conversion in Water over Sulfonated Carbon Microsphere Catalyst. ACS Sustain. Chem. Eng. 2021, 9, 15344–15356. [Google Scholar] [CrossRef]
- Islam, M.S.; Nakamura, M.; Rabin, N.N.; Rahman, M.A.; Fukuda, M.; Sekine, Y.; Beltramini, J.N.; Kim, Y.; Hayami, S. Microwave-assisted catalytic conversion of chitin to 5-hydroxymethylfurfural using polyoxometalate as catalyst. RSC Adv. 2022, 12, 406–412. [Google Scholar] [CrossRef]
- Paul, S.K.; Chakraborty, S. Microwave-assisted ionic liquid-mediated rapid catalytic conversion of non-edible lignocellulosic Sunn hemp fibres to biofuels. Bioresour. Technol. 2018, 253, 85–93. [Google Scholar] [CrossRef]
- Goswami, R.S.; Dumont, M.-J.; Raghavan, V. Microwave Assisted Synthesis of 5-Hydroxymethylfurfural from Starch in AlCl3·6H2O/DMSO/[BMIM]Cl System. Ind. Eng. Chem. Res. 2016, 55, 4473–4481. [Google Scholar] [CrossRef]
- Qu, Y.; Wei, Q.; Li, H.; Oleskowicz-Popiel, P.; Huang, C.; Xu, J. Microwave-assisted conversion of microcrystalline cellulose to 5-hydroxymethylfurfural catalyzed by ionic liquids. Bioresour. Technol. 2014, 162, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Bassett, M.T. The Facts about Ammonia. 2005. Available online: https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm#:~:text=How%20is%20ammonia%20used%3F,pesticides%2C%20dyes%20and%20other%20chemicals (accessed on 3 September 2022).
- Thomas, G.; Parks, G. Potential Roles of Ammonia in a Hydrogen Economy; U.S. Department of Energy: Washington, DC, USA, 2006; p. 23.
- Wildfire, C.; Abdelsayed, V.; Shekhawat, D.; Spencer, M.J. Ambient pressure synthesis of ammonia using a microwave reactor. Catal. Commun. 2018, 115, 64–67. [Google Scholar] [CrossRef]
- Wang, Y.; Khan, T.S.; Wildfire, C.; Shekhawat, D.; Hu, J. Microwave-enhanced catalytic ammonia synthesis under moderate pressure and temperature. Catal. Commun. 2021, 159, 106344. [Google Scholar] [CrossRef]
- Bai, X.; Tiwari, S.; Robinson, B.; Killmer, C.; Li, L.; Hu, J. Microwave catalytic synthesis of ammonia from methane and nitrogen. Catal. Sci. Technol. 2018, 8, 6302–6305. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X. Microwave-assisted catalytic biomass pyrolysis: Effects of catalyst mixtures. Appl. Catal. B Environ. 2019, 253, 226–234. [Google Scholar] [CrossRef]
Categories | Interaction with Microwave | Material Characteristics | Type of Materials | Penetration |
---|---|---|---|---|
Reflector or Opaque | Conductor | Steel, aluminum, copper, silver | None as microwave are reflected and no energy transfer. | |
Absorber 1 | Lossy insulator | Water, charcoal, silicon carbide | Partial to total as the microwave are absorbed and exchange of electromagnetic energy takes place. | |
Transparent | Low loss insulator | Polytetrafluoroethylene (PTFE), alumina-based ceramics, corundum, fused quartz, Teflon, glass 2, alumina 2, silica 2, magnesium oxide 2 | Total where the transmittance of microwave occurs without energy transfer. |
Microwave-Assisted Heating | Conventional Heating |
---|---|
Rapid and uniform heating | Slow heating |
Shorter preparation time | Longer preparation time |
Lower thermal inertia | Higher thermal inertia |
Heat transferred through in-core volumetric heating at molecular level | Heat transferred by conduction, convection or radiation |
Application | Feed | Experimental Conditions | Method | Findings | Reference |
---|---|---|---|---|---|
Bio-oil | Switchgrass | Power: 750 W Temperature: 400 °C Catalyst: 10 wt% K3PO4 + 10 wt% Bentonite | Microwave-assisted catalytic pyrolysis | Reduced water content in bio-oil with increased BET surface area of biochar using microwave-assisted pyrolysis. Average heating rate: 141 °C/min Heating time: 2.83 min BET surface area: 76.29 m2/g Micropore area: 44.56 m2/g Pore volume: 0.0332 cm3/g | [36] |
Chlorella vulgaris and high-density polyethylene (HDPE) | Feedstock mixing ratio: 1:1 Absorbent addition: 40% activated carbon (AC) Power: 800 W | Microwave-assisted co-pyrolysis | The promotion of CO, H2O or CO2 was observed with the addition of AC. Oxygen/Nitrogen-containing compounds: 28.79%/20.8% Hydrocarbons content: 48.88% Alcohols: 14.6% | [37] | |
Algae | Feed-to-susceptor ratio: 1:1 Power: 450 W Catalyst: ZSM-5 Temperature: 600 °C | Microwave-assisted co-pyrolysis | Pyrolysis char used a susceptor and pyrolysis of algae was rich in phenolic derivatives. Hydrocarbons obtained were ranging from C6 to C30. Bio-oil yield: 45 wt% Gas yield: 35 wt% Biochar yield: 20 wt% | [38] | |
Switchgrass | Temperature: 400 °C Catalyst: 10 wt% K3PO4 + 10 wt% Bentonite | Conventional pyrolysis | Longer heating time to reach desired temperature with poor biochar properties. Average heating rate: 14 °C/min Heating time: 28.81 min BET surface area: 0.33 m2/g Micropore area: 2.01 m2/g Pore volume: 0.0068 cm3/g | [36] | |
Switchgrass | Temperature: 300 °C to 500 °C Heating rate: 10 °C/min Feed amount: 1 kg | Conventional pyrolysis | Bio-oil yield: ~28 wt% to ~32 wt% Gas yield: ~176 L to ~271 L Biochar yield: ~30 wt% to ~40 wt% | [39] | |
White ash | Temperature: 300 °C to 500 °C Heating rate: 10 °C/min Feed amount: 1 kg | Conventional pyrolysis | Bio-oil yield: ~38 wt% to ~43 wt% Gas yield: ~154 L to ~225 L Biochar yield: ~28 wt% to ~39 wt% | [39] | |
Methanation | CO2, H2, He | Temperature: 300 °C Molar ratio of CO2/H2/He: 1/4/5 Ni: 30 wt% Ce: 20 wt% | Microwave-assisted hydrothermal synthesis | Addition of Ce enhanced the catalyst activities and microwave promoted Ni dispersion on support. CH4 selectivity: 98.0% CO2 conversion: 52.9% | [40] |
CO2, H2, N2 | Temperature: 325 °C Ratio of CO2/H2/N2: 1/4/4 Flowrate: 70 mL/min Ni: 20 wt% | Microwave-assisted synthesis | Low temperature of H2 pretreatment allows more Ni active sites. CH4 selectivity was well-maintained from 200 °C to 400 °C. CH4 selectivity: 99.3% CO2 conversion: 91.6% | [41] | |
CO, H2, N2 | Temperature: 300 °C Pressure: 1 MPa Ratio of CO/H2/N2: 1/1/3 Heating rate: 3 °C/min | Microwave-assisted solution combustion | Catalyst with large specific surface area and small Ni particles was obtained. CH4 selectivity: 96.2% CO2 conversion: 95.7% | [42] | |
CO2, H2, N2 | Temperature: 350 °C Ratio of CO2/H2/N2: 1/4/4 Flowrate: 70 mL/min Ni: 20 wt% | Impregnation | Low temperature of H2 pretreatment allows more Ni active sites. CH4 selectivity was well-maintained from 200 °C to 400 °C. CH4 selectivity: ~99% CO2 conversion: 84.3% | [41] | |
CO2, H2, He | Temperature: 50–200 °C Ratio of CO2/H2: 1/4 Catalyst amount: 200 mg Flowrate: 20 mL/min | Sol-gel, aerosol, impregnation | Low methanation production at 350 °C but maximum was achieved after annealing at 450 °C. CH4 selectivity: 100% @200 °C CH4 yield: 2.05 µmolCH4/gcat/s | [43] | |
CO2, H2, N2 | Temperature: 250–450 °C Molar ratio of H2/CO2/N2: 36/9/10 Catalyst amount: 0.1744 g Flowrate: 250 mL/min | Impregnation | Catalyst synthesized through impregnation has poorer performance due to the Ni0 size. CH4 selectivity: ~94% @450 °C CO2 conversion: 70.0% @450 °C | [44] | |
Methane reforming | CH4, CO2 | Specific power: 90 W/g Ratio of CH4/CO2/Ar: 1/1/2 Space velocity: 200 h−1 | Microwave dry reforming | Insignificant changes and negligible carbon deposition on catalyst after 50 h stability test. CH4 conversion: > 95% CO2 conversion: > 95% H2/CO ratio: ~1 | [45] |
CH4, CO2 | Temperature: 800 °C Molar ratio of CO2/CH4: 0.5, 1, 1.5, 2 N2 flowrate: 60 mL/min Volumetric hourly space velocity: 2.4 L/(g.h) | Microwave dry reforming | 10% of Fe2O3 addition led to maximum performance of dry reforming reaction with good catalyst stability. CH4 conversion: 90.8% CO2 conversion: 95.2% H2/CO ratio: 0.92 | [46] | |
CH4, CO2 | Power: 560 W Ratio of CH4/CO2/N2: 1/1/3 Gas flowrate: 250 mL/min | Microwave dry reforming | Decreasing CH4/CO2 ratio and increasing microwave power improve CH4 and CO2 conversions. CH4 conversion: ~80% CO2 conversion: ~60% H2/CO ratio: 1.3 | [47] | |
CH4, CO2 | Temperature: 800 °C GHSV: 33,000 mL/gcat.h Catalyst amount: 0.9 g | Conventional dry methane reforming | Energy efficiency using this method was lower by 10% compared to microwave heating reactors. CH4 conversion: ~65% CO2 conversion: ~70% H2/CO ratio: 0.85 | [48] | |
CH4, CO2 | Temperature: 800 °C Pressure: 1 atm | Dry methane reforming | The reaction can be improved by altering pressure and ratio of oxidant/methane. CH4 conversion: 85% CO2 conversion: 90% | [49] | |
CH4, CO2 | Temperature: 950 °C Gas hourly space velocity: 8570 h−1 Sample mass: 300 mg | Dry reforming of methane (magnetic induction) | Magnetic catalyst used to improve CH4 dry reforming. CH4 conversion: 70% CO2 conversion: 80% H2 yield: 75% CO yield: 85% | [50] | |
Sugar conversion | Fructose | Using [Ch]Cl:CA Microwave heating: 2 min Temperature: 120 °C Solid/liquid ratio: 0.05 | Biphasic systems with aqueous and organic phase assisted with microwave | The purity of 5-HMF remained after the repetition of 3 cycles process, reusing acidic deep eutectic solvents. HMF yield: 91.0% | [51] |
Corn stalk, rice straw and pine wood | Irradiation time: 2–6 min | Direct conversion using ionic liquids assisted with microwave | The yield of products obtained within 3 min of processing time, very efficient process. HMF yield: 45–52% | [52] | |
Cellulose | Time: 3.5 min Power: 400 W Ionic liquid: [Bmim]Cl | Direct conversion in ionic liquids assisted with microwave | Microwave was proven to have synergetic effects on the cellulose conversion. HMF yield: 51.4% | [53] | |
Glucose | Time: 10 min Temperature: 200 °C Medium: 50:50 w/w% 1-hexyl-3-methyl imidazolium chloride-water mixture | Direct conversion in ionic liquids-water mixture | Synergistic effect was observed through the addition of protic solvents. HMF yield: 53% | [54] | |
Glucose | Temperature: 100 °C Catalyst amount: 0.5 g Time: 6 h | Direct conversion in ionic liquids | The catalyst porosity has to be optimized according to the medium used for maximum production. HMF yield: 64% | [55] | |
Fructose | Medium: 3:1 of methylisobutylketone: 2-butanol Feed amount: 1 g Time: 6 h | Direct conversion in solvents | Good yield obtained using similar experimental condition for waste potato biomass too. HMF yield: 50 wt% | [56] | |
Ammonia synthesis | H2, N2 | Temperature: 260 °C Ambient pressure Catalyst amount: 1.2 g | Microwave-assisted catalytic synthesis | Low temperature and pressure required for this method are energy-saving compared to Haber-Bosch process. NH3 production rate: 1313 µmolNH3/gcat.h | [57] |
H2, N2 | Temperature: 320 °C Pressure: 0.65 MPa H2/N2 ratio: 1 Time: 11 min | Microwave-assisted catalytic synthesis | Quick catalyst recovery compared to Haber-Bosch technology. NH3 production rate: 0.04 g/gcat.h | [58] | |
H2, N2 | Temperature: ~260 °C Pressure: 0.1 MPa | Microwave-assisted catalytic synthesis | Ce-promoted catalyst enhances production and microwave activates stable molecules. NH3 production rate: 1.18 mmol/h.gcat | [59] | |
H2, N2 | Temperature: 300 °C Pressure: 10 bar | Catalytic synthesis | Efficient synthesis rate obtained through Co-Mg-O solid solution supported LiH catalyst, with Co nanoparticles. NH3 production rate: 19 mmol/g/h | [60] | |
H2, N2 | Temperature: 350 °C Pressure: 7 atm Molar ratio of H2/N2: 1/1 | Catalytic synthesis | The ammonia synthesis rate altered according to the composition of catalyst. NH3 production rate: 0.397 mmol/gcat.h | [61] |
Process | Feedstock | Catalyst/ Absorbent | Properties/Composition | Yield | Remarks | Reference |
---|---|---|---|---|---|---|
Catalytic pyrolysis | Switchgrass | 30 wt% clinoptilolite | pH: 4.19 Water content: 21.77 wt% Viscosity (40 °C): 6.11 cP | 36.2 wt% | BET surface area (biochar): 76.3 m2/g | [36] |
Catalytic pyrolysis | Cellulose | Fe/Modified HZSM-5 | Phenols: 6.23% Oxiranes: 5.45% HCs: 0% Esters: 5.21% Ketones: 12.79% CAs: 25.50% Furans: 23.06% SCs: 21.76% | 54.85 wt% | Biochar yield: 14.46 wt% Biogas yield: 23.78 wt% Coke yield: 6.91 wt% | [64] |
Catalytic pyrolysis | Cellulose | Fe-Ni/Modified HZSM-5 | Phenols: 20.86% Oxiranes: 14.15% HCs: 3.96% Esters: 0.73% Ketones: 11.94% CAs: 26.96% Furans: 21.40% SCs: 0% | 51.86 wt% | Biochar yield: 14.46 wt% Biogas yield: 26.33 wt% Coke yield: 7.35 wt% | [64] |
Catalytic pyrolysis | Corn stover | 10–30% Na2CO3 | Water content: 53.09–61.49% pH: 3.92–4.62 Dynamic viscosity: 3.31–4.05 mPa.s (for 500 and 700 W) Phenols: 33.26% Furans: 14.11% Acids: 4.77% Guaiacols: 7.05% | 41 wt% | Microwave: 700 W for compositions and yield. | [65] |
Catalytic pyrolysis | Waste cooking oil | CaO from crab shell | Total aromatics relative content: 54.89% Cycloalkenes relative content > 4.07% | 67 wt% | Biogas yield: 30 wt% CH4 and H2 formation being promoted. | [66] |
Catalytic pyrolysis | Torrefied corn cob | Fe modified biochar (from rice husk) | Phenol: 0.455–0.704 mg/mL bio-oil (~0.16–0.24 mg/g biomass) Cresol: 0.09–0.239 mg/mL bio-oil (~0.03–0.08 mg/g biomass) | ~33–35 wt% | The yield varies according to Fe amount | [67] |
Co-pyrolysis | Microalgae and HDPE | Activated carbon | HCs: 48.88% Alcohols: 14.6% Amines: 7.16% Acids/esters: 5.74% Ketones: 0.42% Nitriles: 6.02% Phenols: 0% Others: 17.18% | - | 31.02% of C7-C12, 22.3% of C16, 18.4% of > C18 hydrocarbons were obtained. | [37] |
Co-pyrolysis | Microalgae and waste cooking oil | Phosphorus-doped biochar | C5-C16 aliphatics: 30.58% C16+ aliphatics: 2.62% Mono-aromatics: 52.35% Poly-aromatics: 6% Nitriles: 3.38% Alcohols: 5.17% | 47.63% | No n-heterocyclics, amides, esters, phenols in bio-oil, but these components presented in the bio-oil produced using biochar. | [68] |
Catalytic pyrolysis | Microalgae | Fe2O3 with graphite | Phenol: 3% Ketone: 23% Aromatic compounds: 3% Esters: 9% Acids: 14% Nitrogen-cont. compound: 23% Alcohol: 8% | 24.9% | Optimal ratio for Fe2O3 with graphite is 3:7 | [69] |
Catalytic pyrolysis | Microalgae | ZMS-5 with graphite | Phenol: 4% Ketone: 14.5% Aromatic compounds: 10% Esters: 5% Acids: 14% Nitrogen-cont. compound: 11.5% Alcohol: 3% | 23.8% | Optimal ratio for Fe2O3 with graphite is 5:5 | [69] |
Catalytic pyrolysis | Peanut shells | Mixture of peanut shells and activated carbon | Other HCs: 18.85% Aromatic HCs: 15.08% Alcohols: 12.14% Phenols: 51.19% Ketones: 10.73% | 25.97% | Ratio of catalysts to peanut shells: 12.5% Biochar: 34.5% Syngas: 39.53% | [70] |
Catalytic co-pyrolysis | Mixture of waste polyethylene and algae | ZSM-5 catalyst | Aliphatic HC: 27% Cyclic aliphatic HC: 10% Aliphatic oxygenates: 22% Monoaromatic HC: 27% Polyaromatic HC: 8.6% Phenolics: 5% | 40 wt% | Char surface area: 125 m2/g | [38] |
Catalytic co-pyrolysis | Mixture of waste polypropylene and algae | ZSM-5 catalyst | Aliphatic HC: 30% Cyclic aliphatic HC: 13% Aliphatic oxygenates: 44% Monoaromatic HC: 5.8% Polyaromatic HC: 2.7% Phenolics: 5% | 45 wt% | Char surface area: 121 m2/g | [38] |
Catalytic co-pyrolysis | Mixture of waste expanded polystyrene | ZSM-5 catalyst | Aliphatic HC: 32% Cyclic aliphatic HC: 12% Aliphatic oxygenates: 43% Monoaromatic HC: 5.1% Polyaromatic HC: 0.8% Phenolics: 7% | 65 wt% | Char surface area: 118 m2/g | [38] |
Catalyst Synthesized | Process | Textural Properties/ Composition | Yield | Remarks | Reference |
---|---|---|---|---|---|
Ni/Al2O3 | Microwave | O: 40.50 wt% Al: 39.93 wt% Ni: 19.57 wt% Ni particle size: 10 nm Ni reduction degree: 90.4% Ni dispersion: 25.3% | CO2 conversion: 91.6% CH4 selectivity: 99.3% | Temperature: 325 °C Durable stability for 72 h Reduced by H2 at 450 °C Surfactant: Polyvinyl pyrrolidone (PVP) | [41] |
Ni-Ce/metakaolin | Hydrothermal | Ni: 26.57 wt% NiO crystallite size: 24 nm BET surface area: 31.18 m2/g Pore volume: 0.1532 cm3/g Average pore size: 19.65 nm | CO2 conversion: 52.9% CH4 selectivity: 98% CH4 yield: 51.9% | Temperature: 300 °C Ce-promoted in catalyst synthesizing Durable stability for 48 h | [40] |
Mesoporous silica KCC-1 | Microemulsion coupled with hydrothermal | BET surface area: 773 m2/g Total pore volume: 1.2195 cm3/g Pore distribution: 4–6 nm and 20–25 nm Particle size: 200–400 nm Basic sites concentration: 586 | CO2 conversion: 48.7% CH4 selectivity: 98% CH4 yield: 38.9% | Temperature: 449.85 °C Durable stability for 90 h | [73] |
Ni/mesocellular silica foam | One-pot for mesocellular silica foam; incipient wetness impregnation for Ni | Surface area of support: 913 m2/g Pore volume of support: 0.98 cm3/g Ni particle size: 4.5 nm Si/O: 0.56 Ni/Si: 0.014 Ni: 5 wt% | CO2 conversion: 62–77% CH4 selectivity: 94–97% | Synthesized from rice husk ashes Cyclohexane as swelling agent Temperature: 350 °C Durable stability for 20 h | [74] |
Ni/La-Sm-CeO2 | Sol-gel | Ni particle size: 12.3 nm Ni dispersion: 7.9% Pore volume: 0.08 cm3/g CeO2 crystalline size: 7.2 nm BET surface area: 40.3 m2/g Ni: 12.1% Ce: 14.4% O: 61.8% C: 7.0% Na: 0.9% La: 1.0% Sm: 2.8% | CO2 conversion: 53% CO selectivity: 5% @500 °C (0 at 300 °C) CH4 selectivity: 100% CH4 yield: 59.9–61.6% | Temperature: 300 °C Durable stability for 20 h | [75] |
Ni/La-Pr-CeO2 | Sol-gel | Ni particle size: 10.1 nm Ni dispersion: 9.6% Pore volume: 0.09 cm3/g CeO2 crystalline size: 8.0 nm BET surface area: 45.8 m2/g Ni: 11.3% Ce: 13.6% O: 61.7% C: 7.6% Na: 1.4% La: 1.0% Pr: 3.4% | CO2 conversion: 55% CO selectivity: 2.5% @500 °C (0 at 300 °C) CH4 selectivity: 100% CH4 yield: 62.0–63.4% | Temperature: 300 °C Durable stability For 20 h | [75] |
Ni/La-Mg-CeO2 | Sol-gel | Ni particle size: 9.1 nm Ni dispersion: 10.7% Pore volume: 0.07 cm3/g CeO2 crystalline size: 7.5 nm BET surface area: 38.8 m2/g Ni: 14.3% Ce: 13.4% O: 62.5% C: 6.4% Na: 0.2% La: 1.1% Mg: 2.1% | CO2 conversion: 49% CO selectivity: 4.5% @500 °C (0 at 300 °C) CH4 selectivity: 100% CH4 yield: 58.2–61.8% | Temperature: 300 °C Durable stability for 20 h | [75] |
Ni-Al2O3 | Combustion with urea (fuel) | BET surface area: 186.1 m2/g Average pore diameter: 3.6 nm Dispersion: 5.2% Maximum Ni surface area: 34.6 m2/g | CO conversion: 95.7% CH4 selectivity: 96.2% | Temperature: 300 °C Lifetime test: 200 h | [42] |
Catalyst Synthesized | Process | Textural Properties/ Composition | Yield | Remarks | Reference |
---|---|---|---|---|---|
Pt/CeO2 | Wetness impregnation | BET specific surface area: 39.58 m2/g Average particle size: 21 nm Carbon formation: 1.75 mmol/g | CH4 conversion: 71.4% | 10% of Pt was doped Durable stability for 6 h | [78] |
NiCo-MgAl2O4 | Two-step combustion | BET specific surface area: 35 m2/g (fresh) and 33.5 m2/g (used) Mean pore diameter: 28.45 nm (fresh) and 24.60 nm (used) Total pore volume: 0.26 cm3/g (fresh) and 0.21 cm3/g (used) Metal crystallite size: 19 nm (fresh) and 22 nm (used) Ni dispersion: 5.30% Lattice strain: 0.19 Mg: 20.87 wt% Al: 53.65 wt% Ni: 18.9 wt% Co: 7.08 wt% | CH4 conversion: 99.3% | Temperature: 750 °C Microwave power: 800 W CH4:H2O feed ratio = 1:1.12 Low carbon deposition (0.09% weight loss) after 15 h 0.0035 mg lamentous carbon deposited | [24] |
Ni-MgAl2O3 | Two-step combustion | BET specific surface area: 41.69 m2/g (fresh) and 36.2 m2/g (used) Mean pore diameter: 23.11 nm (fresh) and 21.08 nm (used) Total pore volume: 0.24 cm3/g (fresh) and 0.191 cm3/g (used) Metal crystallite size: 29 nm (fresh) and 32 nm (used) Ni dispersion: 3.50% Lattice strain: 0.77 Mg: 20.84 wt% Al: 59.96 wt% Ni: 19.19 wt% | CH4 conversion: 97.4% | Temperature: 750 °C Microwave power: 800 W 0.0059 mg lamentous carbon deposited | [24] |
Ni-Co/MFI zeolite | Hydrothermal | BET specific surface area: 380 m2/g Specific micropore surface: 379 m2/g Total pore volume: 0.194 cm3/g | CH4 conversion: 97.0% CO2 conversion: 99.0% H2 yield: 98.0% CO yield: 94.0% | Temperature: 950 °C | [81] |
* Biochar | Pyrolysis | BET specific surface area: 39 m2/g Microporous specific surface area: 26.18 m2/g Total pore volume: 0.129 cm3/g Micropore volume: 0.021 cm3/g Average pore size: 1.322 nm K: 1.351 wt% Fe: 0.234 wt% Ca: 1.237 wt% Mg: 3.107 wt% Al: 0.244 wt% Na: 0.431 wt% | CH4 conversion: ~100% CO2 conversion: ~100% | Temperature: 800 °C Energy efficiency: 49.2% | [82] |
Process | Catalyst | Yield | Remarks | Reference |
---|---|---|---|---|
Catalytic synthesis | Cs promoted Ru/CeO2 | NH3 production rate: 1.18 mmol/h.gcat | Temperature: ~260 °C Pressure: 0.1 MPa | [59] |
Synthesis using non-plasma microwave system | Fe/Al2O3 | NH3 production rate: 128 µmol/g/h | Power: 300 W Temperature: 300 °C Ambient pressure 20 wt% of Fe is used | [97] |
Synthesis using fixed microwave frequency | Ru/MgO | NH3 production rate: 0.25 gamm/gcat/day | Temperature: 320 °C Time: 11 min Microwave frequency: 2.45 GHz Ambient pressure 10 wt% of Ru is used | [58] |
Catalytic synthesis | Cs-Ru/CeO2 | NH3 production rate: 1313 µmolNH3/gcat.h | Temperature: 260 °C Ambient pressure 2 wt% of Cs and 4 wt% of Ru are used | [57] |
Catalytic synthesis | Cs-Ru/CeO2 | NH3 production rate: 0.04 g/gcat.h | Temperature: 320 °C Pressure: 0.65 MPa H2/N2 ratio: 1 Stable for 6 cycles of startup-shutdown operation | [98] |
Catalytic synthesis | Fe promoted Co/γAl2O3 | NH3 production rate: 53.9 g−1 s−1 Total NH3 production: 441.5 mol | Temperature: 600 °C Pressure: 1 atm 0.5 wt% of Fe is used as promoter | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chia, S.R.; Nomanbhay, S.; Milano, J.; Chew, K.W.; Tan, C.-H.; Khoo, K.S. Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production. Energies 2022, 15, 7984. https://doi.org/10.3390/en15217984
Chia SR, Nomanbhay S, Milano J, Chew KW, Tan C-H, Khoo KS. Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production. Energies. 2022; 15(21):7984. https://doi.org/10.3390/en15217984
Chicago/Turabian StyleChia, Shir Reen, Saifuddin Nomanbhay, Jassinnee Milano, Kit Wayne Chew, Chung-Hong Tan, and Kuan Shiong Khoo. 2022. "Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production" Energies 15, no. 21: 7984. https://doi.org/10.3390/en15217984
APA StyleChia, S. R., Nomanbhay, S., Milano, J., Chew, K. W., Tan, C.-H., & Khoo, K. S. (2022). Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production. Energies, 15(21), 7984. https://doi.org/10.3390/en15217984