Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors
Abstract
:1. Introduction
- EEIQ—indicator of electric energy consumption per unit of volume of influent wastewater processed, expressed in kWh/m3,
- EEILrem—indicator of electric energy consumption per unit of removed load (L), expressed in kWh/kgLrem,
- EEIPE—indicator of electric energy consumption per year and per population equivalent (PE) served, expressed in kWh/PE·year.
- -
- Current efficiency (CE) is usually employed to express the denitrification performance of bioelectrochemical reactors:
- -
- Specific removal rate of denitrification (SD):
2. Materials and Methods
2.1. Rotating Electrobiological Disc Contactor (REBDC)—Stage 1
2.2. Sequencing Batch Biofilm Reactor (SBBR)—Stage 2
2.3. Analytical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foladori, P.; Vaccari, M.; Vitali, F. Energy audit in small wastewater treatment plants: Methodology, energy consumption indicators, and lessons learned. Water Sci. Technol. 2015, 72, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.M.; Filgueira, A.; Seijo, M.A.; Muñoz, M.E.; Muñoz, E. Energy audit model for a waste water treatment plant. In Proceedings of the 2009 International Conference on Clean Electrical Power, Capri, Italy, 9–11 June 2009; pp. 550–554. [Google Scholar]
- Singh, P.; Carliell-Marquet, C.; Kansal, A. Energy pattern analysis of a wastewater treatment plant. Appl. Water Sci. 2012, 2, 221–226. [Google Scholar] [CrossRef] [Green Version]
- NYSERDA—New York State Energy Research and Development Authority. Municipal Wastewater Treatment Plant Energy Evaluation Summary Report; New York State Energy Research and Development Authority: Albany, NY, USA, 2006.
- de Haas, D.; Dancey, M. Wastewater treatment energy efficiency. A review with current Australian perspectives. Water 2015, 11, 53–58. [Google Scholar]
- Panepinto, D.; Fiore, S.; Zappone, M.; Genon, G.; Meucci, L. Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Appl. Energy 2015, 161, 404–411. [Google Scholar] [CrossRef]
- Marner, S.T.; Schröter, D.; Jardin, N. Towards energy neutrality by optimising the activated sludge process of the WWTP Bochum-Ölbachtal. Water Sci. Technol. 2016, 73, 3057–3063. [Google Scholar] [CrossRef]
- Haslinger, J.; Lindtner, S.; Krampe, J. Operating costs and energy demand of wastewater treatment plants in Austria: Benchmarking results of the last 10 years. Water Sci. Technol. 2016, 74, 2620–2626. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable urban wastewater management: Use, demand reduction and recovery in the urban cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Svardal, K.; Kroiss, H. Energy requirements for wastewater treatment. Wat. Sci. Technol. 2011, 64, 1355–1361. [Google Scholar] [CrossRef]
- Zylka, R.; Karolinczak, B.; Dabrowski, W. Structure and indicators of electric energy consumption in dairy wastewater treatment plant. Sci. Total Environ. 2021, 782, 146599. [Google Scholar] [CrossRef]
- Zylka, R.; Dabrowski, W.; Malinowski, P.; Karolinczak, B. Modeling of Electric Energy Consumption during Dairy Wastewater Treatment Plant Operation. Energies 2020, 13, 3769. [Google Scholar] [CrossRef]
- Dabrowski, W.; Zylka, R.; Malinowski, P. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environ. Res. 2017, 153, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Svenskt Vattens—Swedish Water & Wastewater Association. Svenskt Vattens Undersökning VASS Reningsverk 2015—Nyckeltal Från Första Året. 2016. Available online: https://www.svensktvatten.se (accessed on 16 June 2022).
- Wróblewski, J.; Heidrich, Z. Energy consumption of wastewater treatment plants. Pt. I, Analysis and assessment of literature data. Gaz Woda Tech. Sanit. 2017, 8, 325–329. (In Polish) [Google Scholar]
- Chiavola, A.; Romano, R.; Bongirolami, S.; Giulioli, S. Optimization of energy consumption in the biological reactor of a wastewater treatment plant by means of Oxy Fuzzy and ORP control. Water Air Soil. Pollut. 2017, 228, 277. [Google Scholar] [CrossRef]
- Henze, M.; Harremoes, P.; La Cour Jansen, J.; Arvin, E. Wastewater Treatment Biological and Chemical Processes, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Capodaglio, A.G.; Hlavinek, P.; Raboni, M. Advances in wastewater nitrogen removal by biological processes: State of the art review. Rev. Ambiente Agua 2016, 11, 250–267. [Google Scholar] [CrossRef] [Green Version]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Rotating biological contactors: A review on main factors affecting performance. Rev. Environ. Sci. Biotechnol. 2008, 7, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Wang., Y.; Kuntke, P.; Saakes, M.; van der Weijden, R.D.; Buisman, C.J.; Lei, Y. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective. Water Res. 2022, 209, 117891. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liu, T.; Chen, N.; Tong, S.; Deng, Y.; Xue, L.; Hu, W.; Feng, C. Performance and mechanism of a novel woodchip embedded biofilm electrochemical reactor (WBER) for nitrate-contaminated wastewater treatment. Chemosphere 2021, 276, 130250. [Google Scholar] [CrossRef]
- Watanabe, T.; Motoyama, H.; Kuroda, M. Denitrification and neutralization treatment by direct feeding of an acidic wastewater containing copper ion and high-strength nitrate to a bio-electrochemical reactor process. Water Res. 2001, 35, 4102–4110. [Google Scholar] [CrossRef]
- Kłodowska, I.; Rodziewicz, J.; Janczukowicz, W.; Gotkowska-Płachta, A.; Cydzik-Kwiatkowska, A. Hydrogenotrophic denitrification process efficiency and the number of denitrifying bacteria (MPN) in the sequencing batch biofilm reactor (SBBR) with platinum and carbon anodes. J. Environ. Sci. Health Tox. Hazard. Subst. Environ. Eng. 2016, 51, 389–392. [Google Scholar] [CrossRef]
- Kłodowska, I.; Rodziewicz, J.; Janczukowicz, W.; Cydzik-Kwiatkowska, A.; Rusanowska, P. Influence of carbon source on the efficiency of nitrogen removal and denitrifying bacteria in biofilm from bioelectrochemical SBBRs. Water 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Krzemieniewski, M.; Rodziewicz, J. Nitrogen compounds removal in a rotating electrobiological contactor. Environ. Eng. Sci. 2005, 22, 816–822. [Google Scholar] [CrossRef]
- Rodziewicz, J.; Filipkowska, U.; Dziadkiewicz, E. Electrolytically-aided denitrification on a rotating biological contactor. Environ. Technol. 2011, 32, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Jóźwiak, T.; Struk–Sokołowska, J.; Bryszewski, K. The share of electrochemical reduction, hydrogenotrophic and heterotrophic denitrification in nitrogen removal in rotating electrobiological contactor (REBC) treating wastewater from soilless cultivation systems. Sci. Total Environ. 2019, 683, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Bryszewski, K. Electric power consumption and current efficiency of electrochemical and electrobiological rotating disk contactors removing nutrients from wastewater generated in soil-less plant cultivation systems. Water 2020, 12, 213. [Google Scholar] [CrossRef] [Green Version]
- Bryszewski, K.Ł.; Rodziewicz, J.; Mielcarek, A.; Janczukowicz, W.; Jóźwiakowski, K. Investigation on the improved electrochemical and bio-electrochemical treatment processes of soilless cultivation drainage (SCD). Sci. Total Environ. 2021, 783, 146846. [Google Scholar] [CrossRef]
- Mielcarek, A.; Rodziewicz, J.; Janczukowicz, W.; Dobrowolski, A. Analysis of wastewater generated in greenhouse soilless tomato cultivation in central Europe. Water 2019, 11, 2538. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ye, W.; Wu, G.; Li, R.; Guan, Y.; Zhang, W.; Wang, J.; Shan, Y.; Hubacek, K. Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019. Sci. Data 2022, 9, 317. Available online: www.nature.com/scientificdata (accessed on 2 August 2022). [CrossRef]
- Zhou, M.; Fu, W.; Gu, H.; Lei, L. Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochim. Acta 2007, 52, 6052–6059. [Google Scholar] [CrossRef]
- Rodziewicz, J. Removal of Nitrogen and Phosphorus Compounds from Wastewater Originating from Soil-Less Cultivation of Plants in a Rotating Electrobiological Contactor; Disserations and Monographs Series, 202; UWM Publishing House: Olsztyn, Poland, 2017. (In Polish) [Google Scholar]
- Hooshmandfar, A.; Ayati, B.; Khodadadi Darban, A. Optimization of material and energy consumption for removal of Acid Red 14 by simultaneous electrocoagulation and electroflotation. Water Sci. Technol. 2016, 73, 192–202. [Google Scholar] [CrossRef]
- Longo, S.; d’Antoni, B.M.; Bongards, M.; Chaparro, A.; Cronrath, A.; Fatone, F.; Lema, J.M.; Mauricio-Iglesias, M.; Soares, A.; Hospido, A. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Appl. Energy 2016, 179, 1251–1268. [Google Scholar] [CrossRef] [Green Version]
- Butler, E.; Hung, Y.-T.; Yeh, R.Y.-L.; Al Ahmad, M.S. Electrocoagulation in Wastewater Treatment. Water 2011, 3, 495–525. [Google Scholar] [CrossRef]
- Gerek, E.E.; Yilmaz, S.; Koparal, S.; Gerek, O.N. Combined energy and removal efficiency of electrochemical wastewater treatment for leather industry. J. Water Process. Eng. 2019, 30, 100382. [Google Scholar] [CrossRef]
- Fernandes, A.; Spranger, P.; Fonseca, A.D.; Pacheco, M.J.; Ciriaco, L.; Lopes, A. Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Appl. Catal. B 2014, 144, 514–520. [Google Scholar] [CrossRef]
- Karabulut, B.Y.; Atasoy, A.D.; Can, O.T.; Yesilnacar, M.I. Electrocoagulation for nitrate removal in groundwater of intensive agricultural region: A case study of Harran plain, Turkey. Environ. Earth Sci. 2021, 80, 190. [Google Scholar] [CrossRef]
- Rodziewicz, J.; Janczukowicz, W.; Mielcarek, A.; Filipkowska, U.; Kłodowska, I.; Ostrowska, K.; Duchniewicz, S. Anaerobic rotating disc batch reactor (ARDBR) nutrient removal process enhanced by volatile fatty acid addition. Environ. Technol. 2015, 36, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Kabdaşli, I.; Arslan-Alaton, I.; Ölmez-Hanci, T.; Tünay, O. Electrocoagulation applications for industrial wastewaters: A critical review. Environ. Technol. Rev. 2012, 1, 2–45. [Google Scholar] [CrossRef]
- Lee, K.C.; Rittmann, B.E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res. 2002, 36, 2040–2052. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.P.; Zhang, Z.N.; Lei, X.H.; Chen, R.Z.; Yang, Y.N.; Sugiura, N. Simultaneous reduction of nitrate and oxidation by-products using electrochemical method. J. Hazard. Mater. 2009, 171, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Feng, C.; Chen, N.; Deng, Y.; Hu, W.; Xue, L. Development of a novel palm fiber biofilm electrode reactor (PBER) for nitrate-contaminated wastewater treatment: Performance and mechanism. Environ. Sci. Water Res. Technol. 2020, 6, 839–850. [Google Scholar] [CrossRef]
- Pous, N.; Koch, C.; Vila-Rovira, A.; Balaguer, M.D.; Colprim, J.; Muhlenberg, J.; Muller, S.; Harnisch, F.; Piug, S. Monitoring and engineering reactor microbiomes of denitrifying bioelectrochemical systems. RSC Adv. 2015, 5, 68326–68333. [Google Scholar] [CrossRef]
- Sakakibara, Y.; Nakayama, T. A novel multi-electrode system for electrolytic and biological water treatments: Electric charge transfer and application to electric charge transfer and application to denitrification. Water Res. 2001, 35, 768–778. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, B.; Feng, C.; Zhao, Y.; Chen, N.; Hao, C.; Pu, J.; Zhao, L. Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater. Bioresour. Technol. 2013, 148, 121–127. [Google Scholar] [CrossRef]
- Prosnansky, M.; Sakakibara, Y.; Kuroda, M. High-rate denitrification and SS rejection by biofilm electrode reactor (BER) combined with microfiltration. Water Res. 2002, 36, 4801–4810. [Google Scholar] [CrossRef]
- Cid, C.M.A.; Jasper, J.T.; Hoffmann, M.R. Phosphate recovery from human waste via the formation of hydroxyapatite during electrochemical wastewater treatment. ACS Sustain. Chem. Eng. 2018, 6, 3135–3142. [Google Scholar] [CrossRef]
- Sabia, G.; Petta, L.; Avolio, F.; Caporossi, E. Energy saving in wastewater treatment plants: A methodology based on common key performance indicators for the evaluation of plant energy performance, classification and benchmarking. Energy Convers. Manag. 2020, 220, 113067. [Google Scholar] [CrossRef]
- Waqas, S.; Bila, M.R. A Review on Rotating Biological Contactors. Indones. J. Sci. 2019, 4, 241–256. [Google Scholar] [CrossRef]
- Hassard, F.; Biddle, J.; Cartmell, E.; Jefferson, B.; Tyrrel, S.; Stephenson, T. Rotating biological contactors for wastewater treatment—A review. Process Saf. Environ. 2015, 94, 285–306. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tong, S.; Chen, N.; Liu, Y.; Feng, C.; Hu, Q. Effect of electro-stimulation on activity of heterotrophic denitrifying bacteria and denitrification performance. Bioresour. Technol. 2015, 196, 123–125. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Mielcarek, A.; Janczukowicz, W.; Rodziewicz, J.; Majkowska-Gadomska, J. Chojnowska, M. Hydrogel chitosan sorbent application for nutrient removal from soilless plant cultivation wastewater. Environ. Sci. Pollut. Res. 2018, 25, 18484–18497. [Google Scholar] [CrossRef]
- Saxena, P.; Bassi, A. Removal of nutrients from hydroponic greenhouse effluent by alkali precipitation and algae cultivation method. J. Chem. Technol. Biotechnol. 2013, 88, 858–863. [Google Scholar] [CrossRef]
- Guerrini, A.; Romano, G.; Indipendenza, A. Energy efficiency drivers in wastewater treatment plants: A double bootstrap DEA analysis. Sustainability 2017, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Zhou, W.; Min, M.; Ma, X.; Ma, Y.; Chen, P.; Zheng, H.; Doan, Y.T.T.; Liu, H.; Chen, C.; et al. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresour. Technol. 2016, 201, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Regulation of the Minister of Climate and Environment of 15 December 2021 on the Greenhouse Gas Emission Index for Electricity in 2022. Dz. U. (J. Laws). 2021; p. 2348. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210002348 (accessed on 2 August 2022). (In Polish)
Parameter | REBDC | SBBR |
---|---|---|
Number of discs | 8 | 5 |
The diameter of a single disc [cm] | 22 | 12 |
Disc thickness [mm] | 3.0 | 2.0 |
The distance between the discs [cm] | 1.0 | 1.5 |
The total surface of the disc [m2] | 0.56 | 0.113 |
Submergence [%] | 40 | 100 |
The volume of flow chamber [L] | 2.0 | 2.0 |
Rotational speed [rpm] | 10 | 14 |
Parameters | Value Mean | Value Minimum | Value Maximum | Standard Deviation |
---|---|---|---|---|
COD [mg O2/L] COD [mg O2/L] * | 45 260 | 37 218 | 57 318 | 6 40 |
Total nitrogen [mg N/L] | 486 | 469 | 504 | 12 |
Nitrate [mg N/L] | 471 | 457 | 490 | 15 |
Ammonia nitrogen [mg N/L] | 18 | 17 | 21 | 2 |
Nitrite [mg N/L] | 0.092 | 0.014 | 0.244 | 0.011 |
Total phosphorus [mg P/L] | 77.5 | 62 | 89 | 7.5 |
pH | 6.19 | 5.85 | 6.40 | 0.11 |
Electrolytic conductivity [mS/cm] | 6.0 | 5.7 | 6.3 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodziewicz, J.; Mielcarek, A.; Bryszewski, K.; Janczukowicz, W.; Kłobukowska, K. Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors. Energies 2022, 15, 7251. https://doi.org/10.3390/en15197251
Rodziewicz J, Mielcarek A, Bryszewski K, Janczukowicz W, Kłobukowska K. Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors. Energies. 2022; 15(19):7251. https://doi.org/10.3390/en15197251
Chicago/Turabian StyleRodziewicz, Joanna, Artur Mielcarek, Kamil Bryszewski, Wojciech Janczukowicz, and Karolina Kłobukowska. 2022. "Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors" Energies 15, no. 19: 7251. https://doi.org/10.3390/en15197251
APA StyleRodziewicz, J., Mielcarek, A., Bryszewski, K., Janczukowicz, W., & Kłobukowska, K. (2022). Energy Consumption for Nutrient Removal from High-Nitrate and High-Phosphorus Wastewater in Aerobic and Anaerobic Bioelectrochemical Reactors. Energies, 15(19), 7251. https://doi.org/10.3390/en15197251