Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Comparison between Partially Filled and Fully Filled Notches Structures
3.2. ARC Techniques
3.3. Proposed Process Flow
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreani, L.C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: Toward the efficiency limits. Adv. Phys. 2019, X4, 1548305. [Google Scholar] [CrossRef]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. 2022. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 21 September 2022).
- International Energy Agency. Renewables 2019, Market Analysis and Forecast from 2019 to 2024. IEA Reports. 2019. Available online: https://www.iea.org/reports/renewables-2019 (accessed on 21 September 2022).
- Park, J.E.; Han, C.-S.; Choi, W.S.; Lim, D. Effect of Various Wafer Surface Etching Processes on c-Si Solar Cell Characteristics. Energies 2021, 14, 4106. [Google Scholar] [CrossRef]
- UNIST. EPFL Claim 25.6% Efficiency World Record for Perovskite Solar Cell. PVMag. 2021. Available online: https://www.pv-magazine.com/2021/04/06/unist-epfl-claim-25-6-efficiency-world-record-for-perovskite-solar-cell/ (accessed on 21 September 2022).
- Ma, R.; Yan, C.; Yu, J.; Liu, T.; Liu, H.; Li, Y.; Chen, J.; Luo, Z.; Tang, B.; Lu, X.; et al. High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Lett. 2022, 7, 2547–2556. [Google Scholar] [CrossRef]
- Zhan, L.; Yin, S.; Li, Y.; Li, S.; Chen, T.; Sun, R.; Min, J.; Zhou, G.; Zhu, H.; Chen, Y.; et al. Multi-Phase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables High-Efficiency Thick-Film and Large-Area Organic Photovoltaics. Adv. Mater. 2022, 2206269. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Fong, P.W.K.; Yu, J.; Liu, H.; Yin, J.; Huang, J.; Lu, X.; Yan, H.; Li, G. In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy Environ. Sci. 2022, 15, 2479. [Google Scholar] [CrossRef]
- Jiang, X.; Chotard, P.; Luo, K.; Eckmann, F.; Tu, S.; Reus, M.A.; Yin, S.; Reitenbach, J.; Weindl, C.L.; Schwartzkopf, M.; et al. Revealing Donor–Acceptor Interaction on the Printed Active Layer Morphology and the Formation Kinetics for Nonfullerene Organic Solar Cells at Ambient Conditions. Adv. Energy Mater. 2022, 12, 2103977. [Google Scholar] [CrossRef]
- Luo, Z.; Ma, R.; Yu, J.; Liu, H.; Liu, T.; Ni, F.; Hu, J.; Zou, Y.; Zeng, A.; Su, C.J.; et al. Heteroheptacene-based acceptors with thieno [3, 2-b] pyrrole yield high-performance polymer solar cells. Natl. Sci. Rev. 2022, 9, nwac076. [Google Scholar] [CrossRef]
- Chigondo, F. From metallurgical-grade to solar-grade silicon: An overview. Silicon 2018, 10, 789–798. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency Over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Paviet-Salomon, B.; Gall, S.; Monna, R.; Manuel, S.; Slaoui, A. Analysis of laser-doped phosphorus emitters. Energy Procedia 2011, 8, 214–219. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, H.; Sun, L.; Yang, J.; Wu, S.; Lu, Z. Bifacial p-Type PERC Solar Cell with Efficiency over 22% Using Laser Doped Selective Emitter. Energies 2020, 13, 1388. [Google Scholar] [CrossRef]
- Hollemann, C.; Haase, F.; Rienäcker, M.; Barnscheidt, V.; Krügener, J.; Folchert, N.; Brendel, R.; Richter, S.; Großer, S.; Sauter, E.; et al. Separating the two polarities of the POLO contacts of an 26.1%-efficient IBC solar cell. Sci. Rep. 2020, 10, 658. [Google Scholar] [CrossRef]
- Okil, M.; Salem, M.S.; Abdolkader, T.M.; Shaker, A. From Crystalline to Low-cost Silicon-based Solar Cells: A Review. Silicon 2021, 14, 1895–1911. [Google Scholar] [CrossRef]
- Sun, H.; Deng, K.; Xiong, J.; Li, L. Graded bandgap perovskite with intrinsic n–p homojunction expands photon harvesting range and enables all transport layer-free perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903347. [Google Scholar] [CrossRef]
- Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E.; Dou, S.; Wang, T.; Wang, W.; Li, M. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 2019, 4, 150–159. [Google Scholar] [CrossRef]
- Salem, M.S.; Shaker, A.; Zekry, A.; Abouelatta, M.; Alanazi, A.; Alshammari, M.T.; Gontand, C. Analysis of hybrid hetero-homo junction lead-free perovskite solar cells by SCAPS simulator. Energies 2021, 14, 5741. [Google Scholar] [CrossRef]
- Sengar, B.S.; Garg, V.; Kumar, A.; Dwivedi, P. Numerical simulation: Design of high-efficiency planar pn homojunction perovskite solar cells. IEEE Trans. Electron Devices 2021, 68, 2360–2364. [Google Scholar] [CrossRef]
- Shaker, A.; Salem, M.S.; Jayan, K.D. Analysis and design of pn homojunction Sb2Se3 solar cells by numerical simulation. Sol. Energy 2022, 242, 276–286. [Google Scholar] [CrossRef]
- Zekry, A.; Shaker, A.; Salem, M. Solar cells and arrays: Principles, analysis, and design. In Advances in Renewable Energies and Power Technologies, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, pp. 3–56. [Google Scholar]
- Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J. TCAD Simulation of Silicon Pillar Array Solar Cells. J. Semicond. Disp. Technol. 2017, 16, 65–69. [Google Scholar]
- Zhang, Y.; Liu, H. Nanowires for High-Efficiency, Low-Cost Solar Photovoltaics. Crystals 2019, 9, 87. [Google Scholar] [CrossRef]
- Yang, T.C.; Lee, B.S.; Yen, T.J. Minimizing reflection losses from metallic electrodes and enhancing photovoltaic performance using the Si-micrograting solar cell with vertical sidewall electrodes. Appl. Phys. Lett. 2012, 101, 103902. [Google Scholar]
- Zhang, Y.; Fan, Z.; Zhang, W.; Ma, Q.; Jiang, Z.; Ma, D. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles. AIP Adv. 2018, 8, 055309. [Google Scholar] [CrossRef]
- Salem, M.S.; Alzahrani, A.J.; Ramadan, R.A.; Alanazi, A.; Shaker, A.; Abouelatta, M.; Zekry, A. Physically based analytical model of heavily doped silicon wafers based proposed solar cell microstructure. IEEE Access 2020, 8, 138898–138906. [Google Scholar] [CrossRef]
- Basyoni, M.S.; Zekry, A.; Shaker, A. Investigation of base high doping impact on the npn solar cell microstructure performance using physically based analytical model. IEEE Access 2021, 9, 16958–16966. [Google Scholar] [CrossRef]
- Salem, M.S.; Zekry, A.; Shaker, A.; Abouelatta, M. Design and simulation of proposed low cost solar cell structures based on heavily doped silicon wafers. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016. [Google Scholar] [CrossRef]
- Salem, M.S.; Zekry, A.; Abouelatta, M.; Alshammari, M.T.; Alanazi, A.; Al-Dhlan, K.A.; Shaker, A. Influence of base doping level on the npn microstructure solar cell performance: A TCAD study. Opt. Mater. 2021, 121, 111501. [Google Scholar] [CrossRef]
- Salem, M.S.; Zekry, A.; Shaker, A.; Abouelatta, M.; Abdolkader, T.M. Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers. Semicond. Sci. Technol. 2019, 34, 035012. [Google Scholar] [CrossRef]
- Sahouane, N.; Zerga, A. Optimization of Antireflection Multilayer for Industrial Crystalline Silicon Solar Cells. Energy Procedia 2014, 44, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.J.; Zhu, H.M.; Liu, Z.M.; Tu, J.L. Multilayer antireflection coatings design for SiO2-passivated silicon solar cells. Mater. Und Werkst. 2022, 53, 80–88. [Google Scholar] [CrossRef]
- Swatowska, B.; Stapinski, T.; Drabczyk, K.; Panek, P. The role of antirefective coatings in silicon solar cells—the influence on their electrical parameters. Opt. Appl. 2011, 41, 487–492. [Google Scholar]
- Wright, D.N.; Marstein, E.S.; Holt, A. Double Layer Anti-reflective Coatings for Silicon Solar Cells. In Proceedings of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1237–1240. [Google Scholar]
- Lennie, A.; Abdullah, H.; Shila, Z.M.; Hannan, M.A. Modeling and Simulation of SiO2/Si3N4 as Anti-reflecting Coating for Silicon Solar cell by using Silvaco Software. World Appl. Sci. J. 2010, 11, 786–790. [Google Scholar]
- Moradi, M.; Rajabi, Z. Efciency enhancement of Si solar cells by using nanostructured single and double layer anti-refective coatings. J. Nanostruct. 2013, 3, 365–369. [Google Scholar]
- Jacak, W. Quantum Nano-Plasmonics; Cambridge UP: Cambridge, UK, 2020. [Google Scholar]
- Abdelraouf, O.A.; Shaker, A.; Allam, N.K. Front dielectric and back plasmonic wire grating for efficient light trapping in perovskite solar cells. Opt. Mater. 2018, 86, 311–317. [Google Scholar] [CrossRef]
- Kumawat, U.K.; Kumar, K.; Mishra, S.; Dhawan, A. Plasmonic-enhanced microcrystalline silicon solar cells. JOSA B 2020, 37, 495–504. [Google Scholar] [CrossRef]
- Cortés-Juan, F.; Chaverri Ramos, C.; Connolly, J.P.; David, C.; García de Abajo, F.J.; Hurtado, J.; Mihailetchi, V.D.; Ponce-Alcántara, S.; Sánchez, G. Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. J. Renew. Sustain. Energy 2013, 5, 033116. [Google Scholar] [CrossRef]
- Pala, R.A.; White, J.; Barnard, E.; Liu, J.; Brongersma, M.L. Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv. Mater. 2009, 21, 3504–3509. [Google Scholar] [CrossRef]
- Athena User’s Manual. Silvaco Inc.: Santa Clara, CA, USA; Available online: https://silvaco.com/products/tcad/process_simulation/athena/athena.html (accessed on 1 September 2022).
- Atlas User’s Manual. Silvaco Inc.: Santa Clara, CA, USA. Available online: https://silvaco.com/products/tcad/device_simulation/atlas/atlas.html (accessed on 1 September 2022).
- Zekry, A. The dependence of diffusion length, lifetime and emitter Gummel-number on temperature and doping. Arch. Für Elektrotechnik 1992, 75, 147–154. [Google Scholar] [CrossRef]
- del Alamo, J.A.; Swanson, R.M. Modelling of minority-carrier transport in heavily doped silicon emitters. Solid. State. Electron. 1987, 30, 1127–1136. [Google Scholar] [CrossRef]
- Zekry, A.; Shaker, A.; Ossaimee, M.; Salem, M.S.; Abouelatta, M.A. comprehensive semi-analytical model of the polysilicon emitter contact in bipolar transistors. J. Comput. Electron. 2018, 17, 246–255. [Google Scholar] [CrossRef]
- Zekry, Z.; Eldallal, G. Effect of MS contact on the electrical behaviour of solar cells. Solid-State Electron. 1988, 31, 91–97. [Google Scholar] [CrossRef]
- Green, M.A. Solar cell fill factors: General graph and empirical expressions. Solid-State Electron. 1981, 24, 788–789. [Google Scholar] [CrossRef]
- Gamal, N.; Sedky, S.H.; Shaker, A.; Fedawy, M. Design of lead-free perovskite solar cell using Zn1-xMgxO as ETL: SCAPS device simulation. Optik 2021, 242, 167306. [Google Scholar] [CrossRef]
- Minemoto, T.; Mizuta, T.; Takakura, H.; Hamakawa, Y. Antireflective Coating fabricated by chemical deposition of (ZnO) for spherical (Si) solar cells. J. Sol. Energy Mater. Sol. Cells 2007, 91, 191–194. [Google Scholar] [CrossRef]
- Naser, N.M.; Mustafa, B.T. Single layer anti-reflective (AR) coating silicon solar cells using simulation program. ZANCO J. Pure Appl. Sci. 2017, 28, 39–43. [Google Scholar]
- Chee, K.W.; Tang, Z.; Lü, H.; Huang, F. Anti-reflective structures for photovoltaics: Numerical and experimental design. Energy Rep. 2018, 4, 266–273. [Google Scholar] [CrossRef]
- Ghoneim, M.T.; Hussain, M.M. Highly manufacturable deep (sub-millimeter) etching enabled high aspect ratio complex geometry lego-like silicon electronics. Small 2017, 13, 1601801. [Google Scholar] [CrossRef] [Green Version]
Structure | Jsc (mA/cm2) | Voc (V) | FF (%) | PCE (%) |
---|---|---|---|---|
Conventional | 40.70 | 0.580 | 80.30 | 14.50 |
Open notches | 41.70 | 0.582 | 82.30 | 15.30 |
Structure | Jo1 (A/cm2) | n1 | Jo2 (A/cm2) | n2 | Rs (mΩcm2) |
---|---|---|---|---|---|
Conventional | 3.99 × 10−8 | 1.847 | 6.02 × 10−13 | 0.909 | 6.81 |
Open notches | 1.24 × 10−9 | 1.713 | 7.03 × 10−12 | 1.002 | 6.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, M.S.; Zekry, A.; Shaker, A.; Abouelatta, M.; Almurayziq, T.S.; Alshammari, M.T.; El-Banna, M.M. Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC. Energies 2022, 15, 7179. https://doi.org/10.3390/en15197179
Salem MS, Zekry A, Shaker A, Abouelatta M, Almurayziq TS, Alshammari MT, El-Banna MM. Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC. Energies. 2022; 15(19):7179. https://doi.org/10.3390/en15197179
Chicago/Turabian StyleSalem, Marwa S., Abdelhalim Zekry, Ahmed Shaker, Mohamed Abouelatta, Tariq S. Almurayziq, Mohammad T. Alshammari, and Mohamed M. El-Banna. 2022. "Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC" Energies 15, no. 19: 7179. https://doi.org/10.3390/en15197179
APA StyleSalem, M. S., Zekry, A., Shaker, A., Abouelatta, M., Almurayziq, T. S., Alshammari, M. T., & El-Banna, M. M. (2022). Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC. Energies, 15(19), 7179. https://doi.org/10.3390/en15197179