Digital Twins’ Applications for Building Energy Efficiency: A Review
Abstract
:1. Introduction
2. Methodology
2.1. Phase One: Search for Publications
2.2. Phase Two: Exclusion Criteria
2.3. Phase Three: Scientometric Analysis
2.4. Phase Four: Synthesis of the Results
3. Results
3.1. Study Characteristics
3.2. Keywords Co-Occurrence
3.3. Publications on Digital Twins for Energy Efficiency
3.3.1. Topic 1—Design Optimization
3.3.2. Topic 2—Occupants’ Comfort
3.3.3. Topic 3—Building Operation and Maintenance
3.3.4. Topic 4—Energy Consumption Simulation
4. Discussion
5. Conclusions and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Li, Y.; Kubicki, S.; Guerriero, A.; Rezgui, Y. Review of Building Energy Performance Certification Schemes towards Future Improvement. Renew. Sustain. Energy Rev. 2019, 113, 109244. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Bragança, L.; Mateus, R. Optimising Building Sustainability Assessment Using BIM. Autom. Constr. 2019, 102, 170–182. [Google Scholar] [CrossRef]
- Alavi, H.; Forcada, N.; Bortolini, R.; Edwards, D.J. Enhancing Occupants’ Comfort through BIM-Based Probabilistic Approach. Autom. Constr. 2021, 123, 103528. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Building Energy Performance Metrics—Analysis; International Energy Agency: Paris, France, 2015. [Google Scholar]
- European Union. EU Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. Off. J. Eur. Union 2018, 156, 75–91. [Google Scholar]
- Pacheco, R.; Ordóñez, J.; Martínez, G. Energy Efficient Design of Building: A Review. Renew. Sustain. Energy Rev. 2012, 16, 3559–3573. [Google Scholar] [CrossRef]
- Alavi, H.; Forcada, N. User-Centric BIM-Based Framework for HVAC Root-Cause Detection. Energies 2022, 15, 3674. [Google Scholar] [CrossRef]
- Cavka, H.B.; Staub-French, S.; Poirier, E.A. Developing Owner Information Requirements for BIM-Enabled Project Delivery and Asset Management. Autom. Constr. 2017, 83, 169–183. [Google Scholar] [CrossRef]
- Alavi, H.; Forcada, N.; Fan, S.-L.; San, W. BIM-based augmented reality for facility maintenance management. In Proceedings of the European Conference on Computing in Construction, Online, 26–28 July 2021; Volume 2, pp. 431–438. [Google Scholar]
- Agouzoul, A.; Tabaa, M.; Chegari, B.; Simeu, E.; Dandache, A.; Alami, K. Towards a Digital Twin Model for Building Energy Management: Case of Morocco. Procedia Comput. Sci. 2021, 184, 404–410. [Google Scholar] [CrossRef]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119287568. [Google Scholar]
- Becerik-Gerber, B.; Jazizadeh, F.; Li, N.; Calis, G. Application Areas and Data Requirements for BIM-Enabled Facilities Management. J. Constr. Eng. Manag. 2012, 138, 431–442. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for Existing Buildings—Literature Review and Future Needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- Arayici, Y.; Coates, P.; Koskela, L.; Kagioglou, M.; Usher, C.; O’Reilly, K. Technology Adoption in the BIM Implementation for Lean Architectural Practice. Autom. Constr. 2011, 20, 189–195. [Google Scholar] [CrossRef]
- Barnes, S.; Castro-Lacouture, D. BIM-enabled integrated optimization tool for leed decisions. In Proceedings of the ASCE International Workshop on Computing in Civil Engineering, Austin, TX, USA, 24–27 June 2009; Volume 346, pp. 258–268. [Google Scholar]
- Sacks, R.; Treckmann, M.; Rozenfeld, O. Visualization of Work Flow to Support Lean Construction. J. Constr. Eng. Manag. 2009, 135, 1307–1315. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, Y. Framework of Spatial Decision Support System for Large-Scale Public Building Evacuation. In Proceedings of the WRI Global Congress on Intelligent Systems (GCIS 2009), Xiamen, China, 19–21 May 2009; Volume 1, pp. 352–356. [Google Scholar]
- Mill, T.; Alt, A.; Liias, R. Combined 3D Building Surveying Techniques-Terrestrial Laser Scanning (TLS) and Total Station Surveying for BIM Data Management Purposes. J. Civ. Eng. Manag. 2013, 19, S23–S32. [Google Scholar] [CrossRef]
- Chen, W.; Chen, K.; Cheng, J.C.P.; Wang, Q.; Gan, V.J.L. BIM-Based Framework for Automatic Scheduling of Facility Maintenance Work Orders. Autom. Constr. 2018, 91, 15–30. [Google Scholar] [CrossRef]
- Alavi, S.H.; Forcada, N. BIM LOD for facility management tasks. In Proceedings of the European Conference for Computing in Construction, Chania, Greece, 10–12 July 2019; Volume 1, pp. 154–163. [Google Scholar]
- Weygant, R.S. BIM Content Development: Standards, Strategies, and Best Practices; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 9781118030479. [Google Scholar]
- Alavi, H.; Bortolini, R.; Forcada, N. BIM-Based Decision Support for Building Condition Assessment. Autom. Constr. 2022, 135, 104117. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Zhang, S.; Li, Y.; Yang, B.; Yuan, L. A Cloud Approach to Unified Lifecycle Data Management in Architecture, Engineering, Construction and Facilities Management: Integrating BIMs and SNS. Adv. Eng. Inform. 2013, 27, 173–188. [Google Scholar] [CrossRef]
- Dave, B.; Buda, A.; Nurminen, A.; Främling, K. A Framework for Integrating BIM and IoT through Open Standards. Autom. Constr. 2018, 95, 35–45. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Y.; Luo, X. Integration of BIM and GIS in Sustainable Built Environment: A Review and Bibliometric Analysis. Autom. Constr. 2019, 103, 41–52. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Singh, M.; Srivastava, R.; Fuenmayor, E.; Kuts, V.; Qiao, Y.; Murray, N.; Devine, D. Applications of Digital Twin across Industries: A Review. Appl. Sci. 2022, 2, 5727. [Google Scholar] [CrossRef]
- Opoku, D.-G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M.; Famakinwa, T.; Bamdad, K. Drivers for Digital Twin Adoption in the Construction Industry: A Systematic Literature Review. Buildings 2022, 12, 113. [Google Scholar] [CrossRef]
- Brosinsky, C.; Westermann, D.; Krebs, R. Recent and prospective developments in power system control centers: Adapting the digital twin technology for application in power system control centers. In Proceedings of the IEEE International Energy Conference (ENERGYCON 2018), Limassol, Cyprus, 3–7 June 2018; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Stark, R.; Kind, S.; Neumeyer, S. Innovations in Digital Modelling for next Generation Manufacturing System Design. CIRP Ann.-Manuf. Technol. 2017, 66, 169–172. [Google Scholar] [CrossRef]
- Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to Digital Twins: A Systematic Review of the Evolution of Intelligent Building Representations in the AEC-FM Industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [Google Scholar] [CrossRef]
- Teisserenc, B.; Sepasgozar, S. Adoption of Blockchain Technology through Digital Twins in the Construction Industry 4.0: A PESTELS Approach. Buildings 2021, 11, 670. [Google Scholar] [CrossRef]
- Marocco, M.; Garofolo, I. Integrating Disruptive Technologies with Facilities Management: A Literature Review and Future Research Directions. Autom. Constr. 2021, 131, 103917. [Google Scholar] [CrossRef]
- Casini, M. Extended Reality for Smart Building Operation and Maintenance: A Review. Energies 2022, 15, 3785. [Google Scholar] [CrossRef]
- Opoku, D.G.J.; Perera, S.; Osei-Kyei, R.; Rashidi, M. Digital Twin Application in the Construction Industry: A Literature Review. J. Build. Eng. 2021, 40, 102726. [Google Scholar] [CrossRef]
- Hosamo, H.H.; Imran, A.; Cardenas-Cartagena, J.; Svennevig, P.R.; Svidt, K.; Nielsen, H.K. A Review of the Digital Twin Technology in the AEC-FM Industry. Adv. Civ. Eng. 2022, 2022, 2185170. [Google Scholar] [CrossRef]
- Riedelsheimer, T.; Gogineni, S.; Stark, R. Methodology to Develop Digital Twins for Energy Efficient Customizable IoT-Products. Procedia CIRP 2021, 98, 258–263. [Google Scholar] [CrossRef]
- EN ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework—Amendment—European Standard. International Organization for Standardization: Geneva, Switzerland, 2020; Volume 1, p. 20.
- Buchert, T.; Ko, N.; Graf, R.; Vollmer, T.; Alkhayat, M.; Brandenburg, E.; Stark, R.; Klocke, F.; Leistner, P.; Schleifenbaum, J.H. Increasing Resource Efficiency with an Engineering Decision Support System for Comparison of Product Design Variants. J. Clean. Prod. 2019, 210, 1051–1062. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital Twin-Driven Product Design, Manufacturing and Service with Big Data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Jafari, M.A.; Zaidan, E.; Ghofrani, A.; Mahani, K.; Farzan, F. Improving Building Energy Footprint and Asset Performance Using Digital Twin Technology. IFAC-PapersOnLine 2020, 53, 386–391. [Google Scholar] [CrossRef]
- Kitchenham, B. Procedures for Performing Systematic Reviews; Keele University, Department of Computer Science: Keele, UK, 2004. [Google Scholar]
- Hosamo, H.H.; Svennevig, P.R.; Svidt, K.; Han, D.; Nielsen, H.K. A Digital Twin Predictive Maintenance Framework of Air Handling Units Based on Automatic Fault Detection and Diagnostics. Energy Build. 2022, 261, 111988. [Google Scholar] [CrossRef]
- Tariq, R.; Torres-Aguilar, C.E.; Xamán, J.; Zavala-Guillén, I.; Bassam, A.; Ricalde, L.J.; Carvente, O. Digital Twin Models for Optimization and Global Projection of Building-Integrated Solar Chimney. Build. Environ. 2022, 213, 108807. [Google Scholar] [CrossRef]
- Tariq, R.; Torres-Aguilar, C.E.; Sheikh, N.A.; Ahmad, T.; Xamán, J.; Bassam, A. Data Engineering for Digital Twining and Optimization of Naturally Ventilated Solar Façade with Phase Changing Material under Global Projection Scenarios. Renew. Energy 2022, 187, 1184–1203. [Google Scholar] [CrossRef]
- Massafra, A.; Predari, G.; Gulli, R. Towards digital twin driven cultural heritage management: A Hbim-based workflow for energy improvement of Modern buildings. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2022, 46, 149–157. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Wang, Q.; Wang, H. Digital-Twin-Based Evaluation of Nearly Zero-Energy Building for Existing Buildings Based on Scan-to-BIM. Adv. Civ. Eng. 2021, 2021, 6638897. [Google Scholar] [CrossRef]
- Trancossi, M.; Cannistraro, G.; Pascoa, J. Thermoelectric and Solar Heat Pump Use toward Self Sufficient Buildings: The Case of a Container House. Therm. Sci. Eng. Prog. 2020, 18, 100509. [Google Scholar] [CrossRef]
- Lydon, G.P.; Caranovic, S.; Hischier, I.; Schlueter, A. Coupled Simulation of Thermally Active Building Systems to Support a Digital Twin. Energy Build. 2019, 202, 109298. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Rungskunroch, P.; Welsh, J. A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings. Sustainability 2019, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Kaewunruen, S.; Sresakoolchai, J.; Kerinnonta, L. Potential Reconstruction Design of an Existing Townhouse in Washington DC for Approaching Net Zero Energy Building Goal. Sustainability 2019, 11, 6631. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Li, X.; Tang, S.; Xia, J.; Lv, Z. Deep Learning for Assessment of Environmental Satisfaction Using BIM Big Data in Energy Efficient Building Digital Twins. Sustain. Energy Technol. Assess. 2022, 50, 101897. [Google Scholar] [CrossRef]
- Martínez, I.; Zalba, B.; Trillo-Lado, R.; Blanco, T.; Cambra, D.; Casas, R. Internet of Things (Iot) as Sustainable Development Goals (Sdg) Enabling Technology towards Smart Readiness Indicators (Sri) for University Buildings. Sustainability 2021, 13, 7647. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Tang, T.L.E.; Spanos, C.J. Hybrid approach for digital twins in the built environment. In Proceedings of the e-Energy 2021—12th ACM International Conference on Future Energy Systems, Torino, Italy, 28 June–2 July 2021; pp. 450–457. [Google Scholar]
- Zaballos, A.; Briones, A.; Massa, A.; Centelles, P.; Caballero, V. A Smart Campus’ Digital Twin for Sustainable Comfort Monitoring. Sustainability 2020, 12, 9196. [Google Scholar] [CrossRef]
- Bayer, M.; Karnutsch, M.; Grobbauer, M.; Gnigler, M.; Leeb, M. Simulation model for minimal invasive refurbishment approaches through prefabricated multifunctional radiant heating façade elements. In Proceedings of the Building Simulation Conference, Rome, Italy, 2–4 September 2019; Volume 3, pp. 1770–1777. [Google Scholar]
- Clausen, A.; Arendt, K.; Johansen, A.; Sangogboye, F.C.; Kjærgaard, M.B.; Veje, C.T.; Jørgensen, B.N. A Digital Twin Framework for Improving Energy Efficiency and Occupant Comfort in Public and Commercial Buildings. Energy Inform. 2021, 4, 40. [Google Scholar] [CrossRef]
- Zakharov, A.; Romazanov, A.; Shirokikh, A.; Zakharova, I. Intellectual data analysis system of building temperature mode monitoring. In Proceedings of the International Russian Automation Conference, (RusAutoCon 2019), Sochi, Russia, 8–14 September 2019. [Google Scholar]
- Vering, C.; Mehrfeld, P.; Nürenberg, M.; Coakley, D.; Lauster, M.; Müller, D. Unlocking potentials of building energy systems’ operational efficiency: Application of digital twin design for hvac systems. In Proceedings of the Building Simulation Conference, Rome, Italy, 2–4 September 2019; Volume 2, pp. 1304–1310. [Google Scholar]
- Tan, Y.; Chen, P.; Shou, W.; Sadick, A.-M. Digital Twin-Driven Approach to Improving Energy Efficiency of Indoor Lighting Based on Computer Vision and Dynamic BIM. Energy Build. 2022, 270, 112271. [Google Scholar] [CrossRef]
- Blume, C.; Blume, S.; Thiede, S.; Herrmann, C. Data-Driven Digital Twins for Technical Building Services Operation in Factories: A Cooling Tower Case Study. J. Manuf. Mater. Process. 2020, 4, 97. [Google Scholar] [CrossRef]
- Mengual Torres, S.G.; May Tzuc, O.; Aguilar-Castro, K.M.; Castillo Téllez, M.; Ovando Sierra, J.; Cruz-y Cruz, A.d.R.; Barrera-Lao, F.J. Analysis of Energy and Environmental Indicators for Sustainable Operation of Mexican Hotels in Tropical Climate Aided by Artificial Intelligence. Buildings 2022, 12, 1155. [Google Scholar] [CrossRef]
- Ni, Z.; Eriksson, P.; Liu, Y.; Karlsson, M.; Gong, S. Improving energy efficiency while preserving historic buildings with digital twins and artificial intelligence. IOP Conf. Ser. Earth Environ. Sci. 2021, 863, 12041. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-Physical Systems Improving Building Energy Management: Digital Twin and Artificial Intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. The potential of digital twin model integrated with artificial intelligence systems. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I and CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar] [CrossRef]
- Francisco, A.; Mohammadi, N.; Taylor, J.E. Smart City Digital Twin-Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking. J. Manag. Eng. 2020, 36, 04019045. [Google Scholar] [CrossRef]
- HosseiniHaghighi, S.; de Uribarri, P.M.Á.; Padsala, R.; Eicker, U. Characterizing and Structuring Urban GIS Data for Housing Stock Energy Modelling and Retrofitting. Energy Build. 2022, 256, 111706. [Google Scholar] [CrossRef]
- Bass, B.; New, J.; Copeland, W. Potential Energy, Demand, Emissions, and Cost Savings Distributions for Buildings in a Utility’s Service Area. Energies 2021, 14, 132. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Nezhad, M.M.; Orsini, G.; Piras, G. Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy. Energies 2022, 15, 1817. [Google Scholar] [CrossRef]
- Pignatta, G.; Alibrandi, U. Risk-Informed Digital Twin (RDT) for the Decarbonization of the Built Environment: The Australian Residential Context. Environ. Sci. Proc. 2021, 12, 10. [Google Scholar] [CrossRef]
Order | No. of Cites | Authors | Title | Year | Source Title |
---|---|---|---|---|---|
1 | 67 | Francisco A., Mohammadi N., Taylor J.E. | Smart City Digital Twin-Enabled Energy Management: Toward Real-Time Urban Building Energy Benchmarking | 2020 | Journal of Management in Engineering |
2 | 53 | Kaewunruen S., Rungskunroch P., Welsh J. | A digital-twin evaluation of Net Zero Energy Building for existing buildings | 2019 | Sustainability |
3 | 32 | Lydon G.P., Caranovic S., Hischier I., Schlueter A. | Coupled simulation of thermally active building systems to support a digital twin | 2019 | Energy and Buildings |
4 | 30 | Deng M., Menassa C.C., Kamat V.R. | From BIM to digital twins: A systematic review of the evolution of intelligent building representations in the AEC-FM industry | 2021 | Journal of Information Technology in Construction |
5 | 19 | Zaballos A., Briones A., Massa A., Centelles P., Caballero V. | A smart campus’ digital twin for sustainable comfort monitoring | 2020 | Sustainability |
6 | 13 | Agostinelli S., Cumo F., Guidi G., Tomazzoli C. | Cyber-physical systems improving building energy management: digital twin and artificial intelligence | 2021 | Energies |
7 | 11 | Blume C., Blume S., Thiede S., Herrmann C. | Data-driven digital twin for technical building services operation in factories: A cooling tower case study | 2020 | Journal of Manufacturing and Materials Processing |
8 | 10 | Kaewunruen S., Sresakoolchai J., Kerinnonta L. | Potential reconstruction design of an existing townhouse in Washington DC for approaching net zero energy building goal | 2019 | Sustainability |
9 | 9 | Teisserenc B., Sepasgozar S. | Adoption of blockchain technology through digital twin in the construction industry 4.0: A PESTELS approach | 2021 | Building |
10 | 6 | Trancossi M., Cannistraro G., Pascoa J. | Thermoelectric and solar heat pump use toward self-sufficient building: The case of a container house | 2020 | Thermal Science and Engineering Progress |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bortolini, R.; Rodrigues, R.; Alavi, H.; Vecchia, L.F.D.; Forcada, N. Digital Twins’ Applications for Building Energy Efficiency: A Review. Energies 2022, 15, 7002. https://doi.org/10.3390/en15197002
Bortolini R, Rodrigues R, Alavi H, Vecchia LFD, Forcada N. Digital Twins’ Applications for Building Energy Efficiency: A Review. Energies. 2022; 15(19):7002. https://doi.org/10.3390/en15197002
Chicago/Turabian StyleBortolini, Rafaela, Raul Rodrigues, Hamidreza Alavi, Luisa Felix Dalla Vecchia, and Núria Forcada. 2022. "Digital Twins’ Applications for Building Energy Efficiency: A Review" Energies 15, no. 19: 7002. https://doi.org/10.3390/en15197002