Analysis of Micro-Contaminants in Solid Particles from Direct Injection Gasoline Vehicles
Abstract
:1. Introduction
Compound | Year | CO | HC | NMHC | NOx | PM (1) | PN (GDI) |
---|---|---|---|---|---|---|---|
Unit | g/km | #/km | |||||
Euro 5 | 2011 | 1.0 | 0.1 | 0.068 | 0.060 | 0.0050 | - |
Euro 6b | 2014 | 1.0 | 0.1 | 0.068 | 0.060 | 0.0045 | 6 × 1012 (2) |
Euro 6d | 2022 | 1.0 | 0.1 | 0.068 | 0.060 | 0.0045 | 6 × 1011 |
Euro 7 (3) | ? | 0.4 | ? | 0.025–0.045 | 0.020–0.030 | 0.0020 | 1 × 1011 |
Compound | TEF | Compound | TEF |
---|---|---|---|
Benzo[a]pyrene | 1 | Dibenzo[a,h]anthracene | 1 |
Naphthalene | 0.001 | Benzo[k]fluoranthene | 0.1 |
Acenaphthene | 0.001 | 5-nitroacenaphthene | 0.03 |
Fluorene | 0.001 | 2-nitrofluorene | 0.01 |
Pyrene | 0.001 | 1-Nitropyrene | 0.1 |
Chrysene | 0.01 | 6-Nitrochrysene | 10 |
2. Methods and Materials
2.1. Solid Particle Sampling
2.2. Gas Chromatography–Mass Spectrometry
Name | Molecular Formula | MW (g/mol) | No. of Rings | BP (1)(°C) | RT (min) | Quantitation Ion | Confirmation Ions (2) |
---|---|---|---|---|---|---|---|
Reference compound | |||||||
Benzo[a]pyrene-d12 | C20D12 | 264 | 5 | 495 | 30.55 | 264 | 209; 253 |
PAHs | |||||||
Naphthalene | C10H8 | 128 | 2 | 218 | 8.02 | 128 | 129; 127; 102 |
Acenaphthylene | C12H8 | 152 | 3 | 280 | 10.22 | 152 | 151; 150; 153 |
Acenaphthene | C12H10 | 154 | 3 | 279 | 10.53 | 153 | 154; 152; 151 |
Fluorene | C13H10 | 166 | 3 | 295 | 11.48 | 165 | 166; 163; 164 |
Phenanthrene | C14H10 | 178 | 3 | 340 | 13.91 | 178 | 176; 179; 177 |
Anthracene | C14H10 | 178 | 3 | 340 | 14.04 | 178 | 176; 179; 177 |
Fluoranthene | C16H10 | 202 | 4 | 375 | 18.06 | 202 | 200; 203; 201 |
Pyrene | C16H10 | 202 | 4 | 404 | 18.91 | 202 | 200; 203; 201 |
Benz[a]anthracene | C18H12 | 228 | 4 | 438 | 24.13 | 228 | 226; 229 |
Chrysene | C18H12 | 228 | 4 | 448 | 24.30 | 228 | 226; 229 |
Benzo[b]fluoranthene (3) | C20H12 | 252 | 5 | 480 | 28.75 | 252 | 250; 253 |
Benzo[a]pyrene | C20H12 | 252 | 5 | 495 | 29.98 | 252 | 250; 253 |
Indeno[1,2,3-c,d]pyrene | C22H12 | 276 | 6 | 536 | 34.07 | 276 | 274; 277; 275 |
Dibenz[a,h]anthracene | C22H14 | 278 | 5 | 524 | 34.22 | 278 | 276; 279 |
Benzo[g,h,i]perylene | C22H12 | 276 | 6 | 500 | 34.89 | 276 | 274; 277; 275 |
2-Bromonaphthalene | C10H7Br | 207 | 2 | 281 | 10.42 | 206 | 208; 207 |
Oxy-PAH | |||||||
1,4-Naphthoquinone | C10H6O2 | 158 | 2 | 212 | 9.88 | 158 | 130; 102; 159 |
Nitro-PAH | |||||||
6-Nitrochrysene | C18H11NO2 | 273 | 4 | 416 | 30.55 | 215 | 226; 243; 273 |
2.3. Anion Analysis by Ion Chromatography
2.4. Scanning Electron Microscopy
2.5. Microwave Plasma Atomic Emission Spectrometry
3. Results and Discussion
3.1. General Analysis of the Samples
3.2. GC-MS Measurements
3.3. Ion Chromatography
3.4. SEM/EDS Analysis
3.5. MP-AES Analysis
4. Conclusions
- In theory, the difference between the gearbox types should be visible among the vehicles studied, favoring the automatic gearbox, which should emit fewer particles and fewer organic compounds. The results show no such indication, which could be due to the considerable experience of the test driver and the use of the driver’s aid. For a decisive answer, this phenomenon should be further studied, preferably during standardized Real Driving Emissions tests.
- The impact of engine displacement on studied PAH emissions was inconsistent. Considering emissions from group C vehicles, the cars with 1.4 L engines overall emit more micro-contaminants, while group D vehicles have the reverse tendency. In the case of anion analysis, the engine displacement also did not have a significant impact on emissions.
- The studied groups of vehicles show a significant difference in anion concentration. Small family cars have up to 7% anions, while SUVs have from 30 to 57%. The analysis shows mostly nitrites (from 10 to 142 μg/km), nitrates (24 to 124 μg/km), and sulfate (43 to 313 μg/km). The phosphates were detected only in groups A and B, strongly suggesting that they originate from engine oil.
- SEM/EDS analysis provided information on the physical and chemical properties of the solid particles, such as their diameter and their elemental composition. The most abundant elements are carbon and oxygen. For vehicles from 2017, carbon and oxygen reach around 65% and 17%, respectively; for newer cars, they reach 36% and 29%. C and O originate from the combustion of fuel and engine oil. The presence of other elements was related to the gasoline and engine oil additives (and impurities) and the abrasion of the engine.
- EDS can be performed together with an electron microscopic observation (point analysis or mapping procedure), but it is only a semi-quantitative analysis, delivering a result at the percentage level, which would be insufficient in this particular case.
- An MP-AES methodology was developed to provide preliminary information on the elemental composition of the particles. The analyzed metals were divided into three groups, depending on their signal intensity and possible interferences. Besides rare earth metals, which might be only random pollutants in some samples, other metals such as titanium or vanadium might interfere with the iron or nickel signal.
- The IC provides information only about water-soluble phosphates, while the EDS includes phosphorus in the organic matter as well.
- The GC-MS provides information only on the selected, most toxic compounds, inter alia PAHs and their derivatives, while EDS shows total carbon concentration in the specimen.
- The preliminary MP-AES study shows that this method can very quickly identify the mean concentrations of the elements, but not in the detailed way that SEM/EDS does. The method should be selected giving consideration to the aim of the study, to avoid unnecessary costs.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Abbreviations
BAT | Best Available Techniques |
CRM | Certified reference material |
DI | Direct injection |
DISI | Direct injection spark ignition |
EC | Elemental carbon |
EDS | Energy-dispersive spectroscopy |
GC-MS | Gas chromatography with mass spectroscopy |
GDI | Gasoline direct injection |
GPF | Gasoline particulate filter |
HCs | Hydrocarbons |
IC | Ion chromatography |
MCs | Micro-contaminants |
MP-AES | Microwave plasma atomic emission spectroscopy |
NMHC | Non-methane hydrocarbons |
OC | Organic carbon |
PAHs | Polycyclic aromatic hydrocarbons |
PFI | Port fuel injection |
PM | Particulate matter |
PMP | Particle Measurement Programme |
PN | Particle number |
REEs | Rare earth elements |
SD | Standard deviation |
SEM | Scanning electron microscopy |
SI | Spark ignition |
SIM | Single ion monitoring |
SUV | Sport utility vehicle |
TEF | Toxic equivalency factor |
TEQ | Toxic equivalent |
TWC | Three-way catalyst |
UNECE | United Nations Economic Commission for Europe |
UV | Ultraviolet |
WHO | World Health Organisation |
WLTC | Worldwide Harmonized Light-Duty Vehicle Test Cycle |
WLTP | Worldwide Harmonized Light-Duty Vehicle Test Procedure |
References
- Wards Intelligence. World Vehicles in Operation by Country 2013–2017; Informa Tech Automotive Group: Southfield, MI, USA, 2018. [Google Scholar]
- ACEA. The Automobile Industry Pocket Guide; European Automobile Manufacturers’ Association: Brussels, Belgium, 2021. [Google Scholar]
- Odysse-Mure. Sectoral Profile—Transport; Enerdata: Grenoble, France, 2018; Volume 1, pp. 1–8. [Google Scholar]
- World Health Organisation. Health Effects of Particulate Matter; WHO Regional Office for Europe: Copenhagen, Denmark, 2013. [Google Scholar]
- European Commission. Directive 2010/75/eu of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Off. J. Eur. Communities 2010, 2010, 1–103. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010L0075&from=EN (accessed on 10 December 2021).
- European Commission. Communication COM/2020/562: Stepping Up Europe’s 2030 Climate Ambition; European Comission Communication: Brussels, Belgium, 2020. [Google Scholar]
- Ministry of Environment of the Republic of Poland Regulation of the Minister of the Environment of 24 August 2012 on the Levels of Certain Substances in the Air; Dziennik Ustaw: Warsaw, Poland, 2012. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120001031 (accessed on 1 November 2021).
- Woodburn, J.; Bielaczyc, P.; Giechaskiel, B. Particulate Exhaust Emissions in the WLTP/RDE Era. SAE Tech. Pap. 2022, 1, 1021. [Google Scholar]
- European Parliament, and Council of the European Union. Regulation (EC) No 715/2007 of the European Parliament and of the Council. Off. J. Eur. Communities 2006, 2006, 1–54. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:139:0001:0054:en:PDF (accessed on 14 November 2021).
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Investigations into Particulate Emissions from Euro 5 Passenger Cars with DISI Engines Tested at Multiple Ambient Temperatures. SAE Tech. Pap. 2015, 24, 2517. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. Particulate matter emissions from vehicles featuring direct injection spark ignition engines. In Proceedings of the 35th FISITA World Automotive Congress, Maastricht, The Netherlands, 2–6 June 2014. [Google Scholar]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Particulate Emissions from European Vehicles Featuring Direct Injection Spark Ignition Engines Tested Under Laboratory Conditions. SAE Int. J. Fuels Lubr. 2014, 7, 580–590. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. Low Ambient Temperature Cold Start Emissions of Gaseous and Solid Pollutants from Euro 5 Vehicles featuring Direct and Indirect Injection Spark-Ignition Engines. SAE Int. J. Fuels Lubr. 2013, 6, 968–976. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Merkisz, J.; Pielecha, J.; Woodburn, J. RDE-Compliant PEMS Testing of a Gasoline Euro 6d-TEMP Passenger Car at Two Ambient Temperatures with a Focus on the Cold Start Effect. SAE Tech. Pap. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Pacura, W.; Szramowiat-Sala, K.; Berent, K.; Sławek, A.; Gołaś, J. The possibilities of GPF Surface modification in the aspect of micro-contaminants removal. Energy Rep. 2022, 8, 9261–9269. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J. Trends in Automotive Emission Legislation: Impact on LD Engine Development, Fuels, Lubricants and Test Methods: A Global View, with a Focus on WLTP and RDE Regulations. Emiss. Control Sci. Technol. 2019, 5, 86–98. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. The Impact of Fuel Ethanol Content on Particulate Emissions from Light-Duty Vehicles Featuring Spark Ignition Engines. SAE Int. J. Fuels Lubr. 2014, 7, 224–235. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Klimkiewicz, D.; Pajdowski, P.; Szczotka, A. An examination of the effect of ethanol–gasoline blends’ physicochemical properties on emissions from a light-duty spark ignition engine. Fuel Process. Technol. 2013, 107, 50–63. [Google Scholar] [CrossRef]
- Zervas, E.; Montagne, A.X.; Lahaye, J. C1−C5 Organic Acid Emissions from an SI Engine: Influence of Fuel and Air/Fuel Equivalence Ratio. Environ. Sci. Technol. 2001, 35, 2746–2751. [Google Scholar] [CrossRef]
- Bock, N.R.; Baum, M.M.; Moss, J.A.; Castonguay, A.; Jocic, S.; Northrop, W.F. Dicarboxylic acid emissions from a GDI engine equipped with a catalytic gasoline particulate filter. Fuel 2020, 275, 117940. [Google Scholar] [CrossRef]
- Rodriguez, F.; Dornoff, J. Beyond NOx: Emission of unregulated pollutants from a modern gasoline car. Int. Counc. Clean Transp. 2019, 5, 1–37. [Google Scholar]
- Zhang, Z.; Wen, M.; Cui, Y.; Ming, Z.; Wang, T.; Zhang, C.; Ampah, J.D.; Jin, C.; Huang, H.; Liu, H. Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes 2022, 10, 525. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhang, D.; Dong, F.; Liu, X.; Yang, Y.; Huang, H.; Wang, Y.; Wang, Q.; Zheng, Z. Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle. Energies 2019, 12, 1845. [Google Scholar] [CrossRef]
- Sharma, N.; Agarwal, A.K. Gasoline Direct Injection Engines and Particulate Emissions. In Air Pollution and Control; Sharma, N., Agarwal, A.K., Eastwood, P., Gupta, T., Singh, A.P., Eds.; Springer: Singapore, 2018; pp. 87–105. [Google Scholar] [CrossRef]
- Merkisz, J.; Pielecha, J. Nanoparticle Emissions from Combustion Engines; Springer: Poznań, Poland, 2015. [Google Scholar] [CrossRef]
- Bielaczyc, P. Global development of emissions reduction strategies from light duty vehicles. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012139. [Google Scholar] [CrossRef]
- European Commission. Down To Ten—Measuring Automotive Exhaust Particles Down to 10 Nanometres; Project No. 724085; Cordis: Luxembourg City, Luxembourg, 2020; Available online: https://cordis.europa.eu/project/id/724085/ (accessed on 8 December 2021).
- Di Iorio, S.; Catapano, F.; Sementa, P.; Vaglieco, B.M.; Nicol, G.; Sgroi, M.F. Sub-23 nm Particle Emissions from Gasoline Direct Injection Vehicles and Engines: Sampling and Measure. SAE Tech. Pap. 2020, 03, 1–9. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Evaluation of a 10 nm Particle Number Portable Emissions Measurement System (PEMS). Sensors 2019, 19, 5531. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Riccobono, F.; Vlachos, T.; Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Fontaras, G.; Bonnel, P.; Weiss, M. Vehicle Emission Factors of Solid Nanoparticles in the Laboratory and on the Road Using Portable Emission Measurement Systems (PEMS). Front. Environ. Sci. 2015, 3, 1–17. [Google Scholar] [CrossRef]
- Tomašek, I.; Horwell, C.J.; Bisig, C.; Damby, D.E.; Comte, P.; Czerwinski, J.; Petri-Fink, A.; Clift, M.J.; Drasler, B.; Rothen-Rutishauser, B. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface. Environ. Pollut. 2018, 238, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Styszko, K.; Samek, L.; Szramowiat, K.; Korzeniewska, A.; Kubisty, K.; Rakoczy-Lelek, R.; Kistler, M.; Giebl, A.K. Oxidative potential of PM10 and PM2.5 collected at high air pollution site related to chemical composition: Krakow case study. Air Qual. Atmos. Health 2017, 10, 1123–1137. [Google Scholar] [CrossRef]
- Cochran, R.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products. Anal. Chim. Acta 2012, 740, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Bandowe, B.A.M.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—A review. Sci. Total Environ. 2017, 581, 237–257. [Google Scholar] [CrossRef]
- Raza, M.; Chen, L.; Leach, F.; Ding, S. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques. Energies 2018, 11, 1417. [Google Scholar] [CrossRef]
- Bielaczyc, P. Particulate Number (PN) & Gaseous Emissions in the EU Automotive Emissions Context. Expert Panel Discussion EU/China Emissions Regulations; SAE World Congress Experience: Detroit, MI, USA, 2019. [Google Scholar]
- Giechaskiel, B.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters. SAE Tech. Pap. 2020, 3, 1–22. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Joshi, A. World-wide trends in powertrain system development in light of emissions legislation, fuels, lubricants, and test methods. Combust. Engines 2021, 184, 57–71. [Google Scholar]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. Investigations into Exhaust Particulate Emissions from Multiple Vehicle Types Running on Two Chassis Dynamometer Driving Cycles. SAE Tech. Pap. 2017, 7, 1–6. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Clairotte, M.; Valverde, V.; Pavlovic, J.; Suarez-Bertoa, R.; Grigoratos, T.; Zardini, A.A.; Perujo, A.; Marotta, A. Post Euro 6/VI activities focusing on particle number. SAE World Congr. Exp. 2019, 1, 1–24. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B.; Martini, G.; Woodburn, J.; Bielaczyc, P.; Schreiber, D.; Huber, M.; Fittavolini, C.; Pellegrini, L.; Kirchner, U.; et al. Solid, sub-23nm particle number emission measurement inter-laboratory comparison exercise. JRC Tech. Rep. 2021, 12, 1–113, ISBN 978-92- 76-40950-2, JRC126191. [Google Scholar]
- Lähde, T.; Giechaskiel, B.; Martini, G.; Woodburn, J.; Bielaczyc, P.; Schreiber, D.; Huber, M.; Eggenschwiler, P.D.; Fittavolini, C.; Florio, S.; et al. Reproducibility of the 10-nm Solid Particle Number Methodology for Light-Duty Vehicles Exhaust Measurements. Atmosphere 2022, 13, 872. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Dhar, A.; Sharma, N.; Shukla, P.C. Engine Exhaust Particulates; Springer: Uttar Pradesh, India, 2019. [Google Scholar] [CrossRef]
- Fabiańska, M.; Kozielska, B.; Bielaczyc, P.; Woodburn, J.; Konieczyński, J. Geochemical markers and polycyclic aromatic hydrocarbons in solvent extracts from diesel engine particulate matter. Environ. Sci. Pollut. Res. 2016, 23, 6999–7011. [Google Scholar] [CrossRef] [PubMed]
- Fabiańska, M.J.; Kozielska, B.; Konieczyński, J.; Bielaczyc, P. Occurrence of organic phosphates in particulate matter of the vehicle exhausts and outdoor environment—A case study. Environ. Pollut. 2018, 244, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Baresel, C.; Harding, M.; Fång, J. Ultrafiltration/Granulated Active Carbon-Biofilter: Efficient Removal of a Broad Range of Micropollutants. Appl. Sci. 2019, 9, 710. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; De la Obra, I.; Gualda-Alonso, E.; Soriano-Molina, P.; López, J.C.; Pérez, J.S. Simultaneous Disinfection and Organic Microcontaminant Removal by UVC-LED-Driven Advanced Oxidation Processes. Water 2021, 13, 1507. [Google Scholar] [CrossRef]
- Peralta-Maraver, I.; Posselt, M.; Perkins, D.M.; Robertson, A.L. Mapping Micro-Pollutants and Their Impacts on the Size Structure of Streambed Communities. Water 2019, 11, 2610. [Google Scholar] [CrossRef]
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, L.; Huang, Q.; Zhang, W.; Duan, S.; Gao, H.; Wang, W. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs (NPAHs) emitted by gasoline vehicles: Characterization and health risk assessment. Sci. Total Environ. 2020, 727, 138631. [Google Scholar] [CrossRef]
- Lu, W.; Yang, L.; Chen, J.; Wang, X.; Li, H.; Zhu, Y.; Wen, L.; Xu, C.; Zhang, J.; Zhu, T.; et al. Identification of concentrations and sources of PM2.5-bound PAHs in North China during haze episodes in 2013. Air Qual. Atmos. Health 2015, 9, 823–833. [Google Scholar] [CrossRef]
- Kumar, A.V.; Kothiyal, N.C.; Kumari, S.; Mehra, R.; Parkash, A.; Sinha, R.R.; Tayagi, S.K.; Gaba, R. Determination of some carcinogenic PAHs with toxic equivalency factor along roadside soil within a fast developing northern city of India. J. Earth Syst. Sci. 2014, 123, 479–489. [Google Scholar] [CrossRef]
- Makhniashvili, I. Nitrowe pochodne wielopierścieniowych węglowodorów aromatycznych w środowisku. Bezpieczeństwo Pr. Nauka I Prakt. 2003, 3, 17–20. [Google Scholar]
- Borillo, G.C.; Tadano, Y.S.; Godoi, A.F.L.; Pauliquevis, T.; Sarmiento, H.; Rempel, D.; Yamamoto, C.I.; Marchi, M.R.R.; Potgieter-Vermaak, S.; Godoi, R.H.M. Polycyclic Aromatic Hydrocarbons (PAHs) and nitrated analogs associated to particulate matter emission from a Euro V-SCR engine fuelled with diesel/biodiesel blends. Sci. Total Environ. 2018, 644, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, Y.; Guan, C.; Cheung, C.S.; Huang, Z. Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environ. Sci. Pollut. Res. 2018, 25, 34131–34138. [Google Scholar] [CrossRef] [PubMed]
- McCaffery, C.; Durbin, T.D.; Johnson, K.C.; Karavalakis, G. The effect of ethanol and iso-butanol blends on polycyclic aromatic hydrocarbon (PAH) emissions from PFI and GDI vehicles. Atmos. Pollut. Res. 2020, 11, 2056–2067. [Google Scholar] [CrossRef]
- Alanen, J.; Saukko, E.; Lehtoranta, K.; Murtonen, T.; Timonen, H.; Hillamo, R.; Karjalainen, P.; Kuuluvainen, H.; Harra, J.; Keskinen, J.; et al. The formation and physical properties of the particle emissions from a natural gas engine. Fuel 2015, 162, 155–161. [Google Scholar] [CrossRef]
- Überall, A.; Otte, R.; Eilts, P.; Krahl, J. A literature research about particle emissions from engines with direct gasoline injection and the potential to reduce these emissions. Fuel 2015, 147, 203–207. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, X.; Cao, X.; Shen, X.; Shi, J.; Yao, Z. Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China. Sci. Total Environ. 2018, 645, 347–355. [Google Scholar] [CrossRef]
- Pacura, W.; Szramowiat-Sala, K.; Gołaś, J.; Bielaczyc, P. Advanced analysis of solid particles. Powertrains Fuels Lubr. Digit. Summit Pittsbg. 2020, 12, 682. Available online: https://saemobilus.sae.org/content/12682 (accessed on 25 September 2020).
- Szramowiat, K.; Woodburn, J.; Pacura, W.; Berent, K.; Bielaczyć, P.; Gołaś, J. Engine-generated solid particles—A case study. Combust. Engines 2018, 174, 33–39. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Klimkiewicz, D.; Woodburn, J.; Szczotka, A. Exhaust emission testing methods—BOSMAL’s legislative and development emission testing laboratories. Combust. Engines 2019, 178, 88–98. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2017/1151 of 1 June 2017. Off. J. Eur. Communities 2017, 2017, 1–643. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1151 (accessed on 5 December 2021).
- European Commission. Commission Regulation (EU) 2018/1832 of 5 November 2018. Off. J. Eur. Communities 2018, 2018, 1–314. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1832 (accessed on 5 December 2021).
- National Center for Biotechnology Information; PubChem. US National Institutes of Health: Bethesda, MD, USA, 2021. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 7 September 2021).
Source | Characteristic Elements/Compounds | |
---|---|---|
Brakes pads and discs | Fe, Mg, S, Cl | |
Tires | Al, Si, Cu, Pb | |
Engine | Gasoline | Hydrocarbons, carbon oxide, PM, PN |
Engine oil | Steranes, hopanes, K, Mo | |
Engine block | Metal particles |
Group | WLTC Tests in a Group | Inertia (kg) | Gearbox | Engine Displacement (cc) | Power (kW) | GPF | Fuel (1) | Emission Standard |
---|---|---|---|---|---|---|---|---|
2017 Small Family Car | ||||||||
A | 36 | 1260 | M | 1200 | 90 | No | E5 | Euro 6b |
B | 29 | 1440 | M | 1400 | 80 | Yes | ||
2019 Crossover SUV | ||||||||
C_1 | 3 | 1460 | A | 1000 | 80 | Yes | E10 | Euro 6d-TEMP |
C_2 | 9 | 1420 | M | 1000 | 80 | |||
C_3 | 2 | 1470 | A | 1400 | 100 | |||
C_4 | 2 | 1460 | M | 1400 | 100 | |||
D_1 | 4 | 1450 | A | 1000 | 80 | |||
D_2 | 2 | 1440 | M | 1000 | 80 | |||
D_3 | 1 | 1490 | A | 1400 | 100 | |||
D_4 | 2 | 1470 | M | 1400 | 100 | |||
D_5 | 2 | 1490 | M | 1400 | 95 |
Anion | Formula | RT (min) | Origin |
---|---|---|---|
Fluorides | F− | 3.021 | Additives, impurities |
Formate | COOH− | 3.447 | - |
Chlorides | Cl− | 4.209 | Additives, impurities |
Nitrites | NO2− | 4.999 | Nitrogen in the combustion air |
Bromides | Br− | 5.912 | - |
Nitrates | NO3− | 6.691 | Nitrogen in the combustion air |
Phosphates | PO43− | 8.747 | Engine oil |
Sulfates | SO42– | 10.003 | Sulfur in the gasoline |
PM | PN × 1011 | PAHs in PM | Anions in PM | Advanced Analysis | ||
---|---|---|---|---|---|---|
Group | (mg/km) | (#/km) | (%) | (%) | SEM/EDS | MP-AES |
A | 4.010 | 92.0 | n/a | 7.00 | + | + |
B | 2.235 | 30.2 | 0.58 | 5.70 | + | + |
C_1 | 1.260 | 6.3 | 0.37 | 48.10 | + | |
C_2 | 1.161 | 4.2 | 0.36 | 45.70 | ||
C_3 | 1.260 | 12.2 | 0.43 | 31.00 | ||
C_4 | 1.436 | 14.3 | 0.36 | 30.50 | ||
D_1 | 1.267 | 6.4 | 0.37 | 34.70 | + | |
D_2 | 0.835 | 5.8 | 0.77 | 46.20 | ||
D_3 | 1.009 | 8.7 | 0.51 | 36.70 | ||
D_4 | 0.813 | 8.9 | 0.40 | 57.50 | ||
D_5 | 1.244 | 0.9 | 0.55 | 37.10 | + |
Group | B | C_1 | C_2 | C_3 | C_4 | D_1 | D_2 | D_3 | D_4 | D_5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
PM * | (µg/km) | 2202 | 1096 | 1215 | 1354 | 1334 | 1355 | 835 | 1189 | 1100 | 1244 |
PAHs | |||||||||||
Acenaphthene | (µg/km) | nd | nd | nd | nd | nd | nd | 0.29 | 0.12 | nd | nd |
Fluorene | nd | nd | 0.23 | nd | nd | 0.24 | 0.45 | 0.54 | nd | nd | |
Anthracene | 1.56 | 0.35 | 0.17 | 0.28 | 0.27 | 0.31 | 0.31 | 0.14 | 0.14 | nd | |
Fluoranthene | 2.18 | 0.55 | 0.54 | 0.53 | 0.49 | 0.57 | 0.67 | 0.63 | 0.53 | 0.55 | |
Pyrene | 1.67 | 0.56 | 0.45 | 0.43 | 0.37 | 0.51 | 0.43 | 0.41 | 0.47 | 0.50 | |
Benz[a]anthracene | nd | 0.94 | 0.91 | 0.94 | 0.91 | 0.92 | 0.95 | 0.94 | 0.89 | 0.93 | |
Chrysene | 1.65 | 0.75 | 0.70 | 0.89 | 0.45 | 0.69 | 0.64 | 0.53 | 0.59 | 0.65 | |
Benzo[b]fluoranthene(2) | 1.59 | nd | 0.97 | 0.91 | 1.05 | 0.99 | 0.98 | 0.98 | 0.94 | 0.95 | |
Indeno[1,2,3-c,d]pyrene | 0.73 | nd | nd | nd | nd | nd | 0.52 | 0.52 | nd | 1.04 | |
Dibenz[a,h]anthracene | 0.88 | nd | nd | 1.01 | 1.02 | 0.51 | 0.50 | 0.99 | nd | 0.99 | |
Benzo[g,h,i]perylene | 1.18 | nd | nd | 0.46 | nd | nd | 0.46 | nd | 0.46 | 0.94 | |
2-Bromonaphthalene | 1.33 | 0.89 | 0.41 | 0.35 | 0.27 | 0.31 | 0.26 | 0.24 | 0.35 | 0.35 | |
Sum of PAHs | (µg/km) | 12.77 | 4.04 | 4.38 | 5.80 | 4.83 | 5.05 | 6.46 | 6.04 | 4.37 | 6.90 |
Share in PM | (%) | 0.58 | 0.37 | 0.36 | 0.43 | 0.36 | 0.37 | 0.77 | 0.51 | 0.40 | 0.55 |
ID | PM | F− | Cl− | NO2− | NO3− | PO43− | SO42– | Sum | Share in PM |
---|---|---|---|---|---|---|---|---|---|
Unit | (μg/km) | (%) | |||||||
A | 4010 | 42.0 | 46.6 | 22.7 | 60.6 | 7.7 | 77.6 | 257.0 | 7.0 |
SD | 1257 | 33.7 | 28.8 | 19.5 | 41.9 | 10.9 | 59.5 | 96.1 | 3.1 |
B | 2235 | 21.4 | 21.5 | 9.8 | 24.6 | 8.4 | 43.4 | 129.0 | 5.7 |
SD | 309 | 18.4 | 17.3 | 12.0 | 15.5 | 9.5 | 24.0 | 63.3 | 2.8 |
C_1 | 1260 | 40.9 | 11.9 | 141.3 | 94.6 | nd | 313.4 | 602.1 | 48.1 |
SD | 240 | 12.9 | 8.4 | 3.6 | 2.7 | 114.5 | 92.7 | 1.8 | |
C_2 | 1161 | 39.5 | 9.4 | 134.9 | 96.8 | nd | 151.5 | 432.1 | 45.7 |
SD | 537 | 7.0 | 7.5 | 12.8 | 37.7 | 158.9 | 172.9 | 24.5 | |
C_3 | 1260 | 24.0 | 2.2 | 112.7 | 123.8 | nd | 128.3 | 391.1 | 31.0 |
SD | 3 | 5.8 | 2.2 | 7.1 | 22.8 | 80.2 | 118.1 | 9.3 | |
C_4 | 1436 | 18.6 | 1.3 | 121.8 | 100.6 | nd | 95.7 | 338.0 | 30.5 |
SD | 669 | 8.6 | 1.3 | 11.0 | 8.3 | 22.2 | 9.5 | 14.8 | |
D_1 | 1267 | 71.7 | 15.0 | 141.8 | 106.6 | nd | 100.3 | 435.3 | 34.7 |
SD | 127 | 10.1 | 10.9 | 24.3 | 15.6 | 37.7 | 26.0 | 3.7 | |
D_2 | 835 | 43.8 | 0.6 | 124.3 | 95.1 | nd | 65.7 | 329.5 | 46.2 |
SD | 316 | 6.4 | 0.6 | 17.1 | 0.8 | 26.6 | 3.3 | 17.9 | |
D_3 | 1009 | 35.4 | nd | 134.3 | 85.1 | nd | 115.5 | 370.3 | 36.7 |
SD | n/a | ||||||||
D_4 | 813 | 30.5 | 4.4 | 122.4 | 89.1 | nd | 220.8 | 467.2 | 57.5 |
SD | 35 | 5.1 | 4.4 | 3.2 | 4.4 | 12.8 | 19.7 | 0.0 | |
D_5 | 1244 | 40.8 | 17.3 | 125.5 | 118.6 | nd | 158.2 | 460.4 | 37.1 |
SD | 139 | 1.3 | 7.4 | 5.4 | 3.1 | 62.4 | 47.9 | 0.3 |
A 44 Points | B 48 Points | D_5 15 Points | |||||||
---|---|---|---|---|---|---|---|---|---|
Fiber | Mean | SD | Fiber | Mean | SD | Fiber | Mean | SD | |
Mass % | Mass % | Mass % | |||||||
C | 53.74 | 62.53 | 9.80 | 49.55 | 67.07 | 9.12 | 23.69 | 36.14 | 10.22 |
O | 25.08 | 17.50 | 5.33 | 25.90 | 16.30 | 5.84 | 41.12 | 29.00 | 5.80 |
F | 7.92 | 7.76 | 1.38 | 11.89 | 7.38 | 1.64 | 17.98 | 15.18 | 3.97 |
Na | 1.07 | 1.02 | 0.29 | 1.63 | 1.06 | 0.37 | 1.83 | 2.11 | 0.75 |
Al | 3.74 | 2.26 | 1.74 | 1.03 | 0.66 | 0.43 | 11.74 | 2.26 | 1.24 |
Mg | nd | 0.20 | 0.27 | nd | 0.15 | 0.09 | 1.66 | 0.20 | 0.10 |
Si | 7.04 | 4.72 | 1.65 | 8.15 | 4.43 | 1.73 | nd | 7.16 | 3.25 |
P | nd | 0.37 | 0.26 | nd | 0.54 | 0.49 | nd | nd | nd |
S | nd | 1.17 | 1.83 | 0.52 | 0.16 | 0.10 | nd | 0.43 | 0.34 |
K | 0.34 | 0.34 | 0.18 | nd | 0.30 | 0.12 | 0.36 | 0.57 | 0.32 |
Ca | 0.23 | 0.53 | 1.03 | 0.36 | 0.45 | 0.59 | 0.39 | 1.75 | 2.56 |
Cr | nd | 0.36 | 0.22 | nd | 5.13 | 0.00 | nd | 3.62 | 0.00 |
Fe | nd | 1.64 | 2.70 | nd | 2.86 | 2.54 | nd | 9.47 | 3.64 |
Ni | nd | 1.09 | 0.85 | nd | 1.09 | 0.56 | nd | 1.75 | 0.00 |
Cu | nd | 0.61 | 0.39 | nd | 1.18 | 2.20 | nd | 0.78 | 0.49 |
Zn | 0.56 | 0.30 | 0.15 | 0.61 | 0.38 | 0.37 | 0.78 | 0.55 | 0.34 |
Ba | 0.29 | 1.23 | 2.05 | 0.36 | 0.20 | 0.12 | 0.45 | 0.47 | 0.37 |
Cl | nd | 0.09 | 0.04 | nd | 0.07 | 0.00 | nd | 0.23 | 0.13 |
Ti | nd | 1.78 | 0.99 | nd | 0.26 | 0.05 | nd | nd | nd |
Zr | nd | nd | nd | nd | 0.08 | 0.02 | nd | nd | nd |
Sb | nd | 0.09 | 0.03 | nd | nd | nd | nd | nd | nd |
Mn | nd | 0.08 | 0.00 | nd | nd | nd | nd | 0.34 | 0.00 |
Co | nd | 0.13 | 0.00 | nd | nd | nd | nd | nd | nd |
Nb | nd | nd | nd | nd | nd | nd | nd | 0.49 | 0.00 |
Bi | nd | nd | nd | nd | nd | nd | nd | 1.06 | 0.41 |
Element | Wavelength (nm) | Intensity | Detected in | Possible Interferences |
---|---|---|---|---|
Group I | ||||
Na | 568.820 589.592 | 516.8 81,616.0 | All studied groups | REEs - |
Mg | 518.360 | 19,330.3 | REEs | |
Al | 394.401 396.152 | 117,785.1 259,034.3 | REEs - | |
K | 769.897 | 56,824.4 | - | |
Ca | 616.217 | 12,565.2 | REEs | |
Group II | ||||
Cr | 425.433 | 273,540.4 | All studied groups | - |
Fe | 371.993 | 16,875.6 | Ti, REEs | |
Zn | 213.857 | 37,285.1 | - | |
Ba | 614.171 | 651,323.8 | - | |
Group III | ||||
Ti | 334.941 | 141,419.6 | A; B | REEs |
Mn | 403.307 | 183,876.2 | A; D_1 | Mn, REEs |
Cu | 324.754 | 477,458.5 | All studied groups | - |
Bi | 306.772 | 32,659.3 | D_1 | Ti, V, REEs |
Co | 340.512 | 35,116.9 | A | Pd, Zr, REEs |
Ni | 305.082 | 28,111.5 | All studied groups | V |
Group IV | ||||
Be | 265.062 | 22,793.5 | Not detected | REEs |
Ag | 328.068 | 461,835.6 | - | |
Cd | 508.582 | 1582.8 | Sc, Y | |
Pb | 363.957 | 5504.8 | REEs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacura, W.; Szramowiat-Sala, K.; Macherzyński, M.; Gołaś, J.; Bielaczyc, P. Analysis of Micro-Contaminants in Solid Particles from Direct Injection Gasoline Vehicles. Energies 2022, 15, 5732. https://doi.org/10.3390/en15155732
Pacura W, Szramowiat-Sala K, Macherzyński M, Gołaś J, Bielaczyc P. Analysis of Micro-Contaminants in Solid Particles from Direct Injection Gasoline Vehicles. Energies. 2022; 15(15):5732. https://doi.org/10.3390/en15155732
Chicago/Turabian StylePacura, Wiktor, Katarzyna Szramowiat-Sala, Mariusz Macherzyński, Janusz Gołaś, and Piotr Bielaczyc. 2022. "Analysis of Micro-Contaminants in Solid Particles from Direct Injection Gasoline Vehicles" Energies 15, no. 15: 5732. https://doi.org/10.3390/en15155732
APA StylePacura, W., Szramowiat-Sala, K., Macherzyński, M., Gołaś, J., & Bielaczyc, P. (2022). Analysis of Micro-Contaminants in Solid Particles from Direct Injection Gasoline Vehicles. Energies, 15(15), 5732. https://doi.org/10.3390/en15155732