Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms
Abstract
:1. Introduction
- Prove the universal applicability of the ALSS technique in MPPT algorithms.
- Propose new metaheuristic MPPT algorithms by integrating the ALSS in existing MPPT algorithms.
- Reduce candidate solutions in metaheuristic algorithms.
2. MPPT Background
2.1. Partial Shading Effect in Photovoltaics
2.2. MPPT with Metaheuristic Algorithms
3. Metaheuristic Algorithms with Advanced Limited Search Strategy
3.1. Initialization of Metaheuristic Algorithms
3.2. ALSS Integration in Metaheuristic Algorithms
3.3. Metaheuristic Algorithm Update
4. Results and Discussion
4.1. Experimental Setup
4.2. Static PS Conditions
- Total number of power fluctuations generated by the algorithms during MPP tracking.
- Size of the power fluctuations.
- How fast an algorithm finally converges to the MPP once it has tracked the MPP the very first time.
- The convergence speed of the algorithms.
- The robustness of an algorithm against varying shading patterns.
4.2.1. SPS1
4.2.2. SPS2
4.2.3. SPS3
4.3. Dynamic PS conditions
4.3.1. Randomly Varying Dynamic Insolation
4.3.2. Increasing Dynamic Insolation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Subudhi, B.; Pradhan, R.A. Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems. IEEE Trans. Sustain. Energy 2013, 4, 89–98. [Google Scholar] [CrossRef]
- Elgendy, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications. IEEE Trans. Sustain. Energy 2012, 3, 21–33. [Google Scholar] [CrossRef]
- Elgendy, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm. IEEE Trans. Sustain. Energy 2013, 4, 108–117. [Google Scholar] [CrossRef]
- Nabulsi, A.A.; Dhaouadi, R. Efficiency Optimization of a DSP-Based Standalone PV System Using Fuzzy Logic and Dual-MPPT control. IEEE Trans. Ind. Inform. 2012, 8, 573–584. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Ran, H. A Maximum Power Point Tracking Algorithm Based on Gradient Descent Method. In Proceedings of the IEEE Power and Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–5. [Google Scholar]
- Guruambeth, R.; Ramabadran, R. Fuzzy logic controller for partial shaded photovoltaic array fed modular multilevel converter. IET Power Electron. 2016, 9, 1694–1702. [Google Scholar] [CrossRef]
- Elobaid, L.M.; Abdelsalam, A.K.; Zakzouk, E.E. Artificial neural network-based photovoltaic maximum power point tracking techniques: A survey. IET Renew. Power Gener. 2015, 9, 1043–1063. [Google Scholar] [CrossRef]
- Pervez, I.; Sarwar, A.; Alam, A.; Tariq, M.; Chakrabortty, R.K.; Ryan, M.J. An MPPT method using hybrid radial movement optimization with teaching-learning based optimization under fluctuating atmospheric conditions. J. Intell. Fuzzy Syst. 2022, 42, 807–816. [Google Scholar] [CrossRef]
- Deboucha, H.; Mekhilef, S.; Belaid, S.; Guichi, A. Modified deterministic Jaya (DM-Jaya)-based MPPT algorithm under partially shaded conditions for PV system. IET Renew. Power Gener. 2020, 13, 4625–4632. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Al-Saud, M.S.; Abokhalil, A.G.; Farh, H.M.H. Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading. Renew. Sustain. Energy Rev. 2020, 124, 109719. [Google Scholar] [CrossRef]
- Mohammed, K.K.; Buyamin, S.; Shams, I.; Mekhilef, S. Hybrid Global Maximum Power Tracking Method with Partial Shading Detection Technique for PV Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2021. [Google Scholar] [CrossRef]
- Joisher, M.; Singh, D.; Taheri, S.; Espinoza-Trejo, D.R.; Pouresmaeil, E.; Taheri, H. A Hybrid Evolutionary-Based MPPT for Photovoltaic Systems Under Partial Shading Conditions. IEEE Access 2020, 8, 38481–38492. [Google Scholar] [CrossRef]
- Shams, I.; Mekhilef, S.; Tey, K.S. Maximum Power Point Tracking Using Modified Butterfly Optimization Algorithm for Partial Shading, Uniform Shading, and Fast Varying Load Conditions. IEEE Trans. Power Electron. 2021, 36, 5569–5581. [Google Scholar] [CrossRef]
- Motamarri, R.; Bhookya, N. JAYA Algorithm Based on Lévy Flight for Global MPPT Under Partial Shading in Photovoltaic System. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4979–4991. [Google Scholar] [CrossRef]
- Pervez, I.; Pervez, A.; Tariq, M.; Sarwar, A.; Chakrabortty, R.K.; Ryan, M.J. Rapid and Robust Adaptive Jaya (Ajaya) based Maximum Power Point Tracking of a PV-based Generation System. IEEE Access 2020, 9, 48679–48703. [Google Scholar] [CrossRef]
- Pervez, I.; Shams, I.; Mekhilef, S.; Sarwar, A.; Tariq, M.; Alamri, B. Most Valuable Player Algorithm Based Maximum Power Point Tracking for a Partially Shaded PV Generation System. IEEE Trans. Sustain. Energy 2021, 12, 1876–1890. [Google Scholar] [CrossRef]
- Bounabi, M.; Kaced, K.; Ait-Cheikh, M.; Larbes, C.; Dahmanem, Z.; Ramzan, N. Modelling and performance analysis of different multilevel inverter topologies using PSO-MPPT technique for grid connected photovoltaic systems. AIP J. Renew. Sustain. Energy 2018, 10, 043507. [Google Scholar] [CrossRef] [Green Version]
- Prasanth Ram, J.; Rajasekar, N. A Novel Flower Pollination Based Global Maximum Power Point Method for Solar Maximum Power Point Tracking. IEEE Trans. Power Electron. 2017, 32, 8486–8499. [Google Scholar] [CrossRef]
- Alshareef, M.; Lin, Z.; Ma, M.; Cao, W. Accelerated Particle Swarm Optimization for Photovoltaic Maximum Power Point Tracking under Partial Shading Conditions. Energies 2019, 12, 623. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-P.; Huang, M.-Y.; Ye, C.-E. A Fusion Firefly Algorithm with Simplified Propagation for Photovoltaic MPPT Under Partial Shading Conditions. IEEE Trans. Sustain. Energy 2020, 11, 2641–2652. [Google Scholar] [CrossRef]
- Pillai, D.S.; Ram, J.P.; Ghias, A.M.; Mahmud, M.A.; Rajasekar, N. An Accurate, Shade Detection-Based Hybrid Maximum Power Point Tracking Approach for PV Systems. IEEE Trans. Power Electron. 2019, 35, 6594–6608. [Google Scholar] [CrossRef]
- Ji, B.; Hata, K.; Imura, T.; Hori, Y.; Honda, S.; Shimada, S.; Kawasaki, O. A Novel Particle Jump Particle Swarm Optimization Method for PV MPPT Control under Partial Shading Conditions. IEEJ J. Ind. Appl. 2020, 9, 435–443. [Google Scholar] [CrossRef]
- Shams, I.; Mekhilef, S.; Tey, K.S. Improved Social Ski Driver-Based MPPT for Partial Shading Conditions Hybridized with Constant Voltage Method for Fast Response to Load Variations. IEEE Trans. Sustain. Energy 2021, 12, 2255–2267. [Google Scholar] [CrossRef]
- Jamaludin, M.N.I.; Tajuddin, M.F.N.; Ahmed, J.; Azmi, A.; Azmi, S.A.; Ghazali, N.H.; Babu, T.S.; Alhelou, H.H. An Effective Salp Swarm Based MPPT for Photovoltaic Systems Under Dynamic and Partial Shading Conditions. IEEE Access 2021, 9, 34570–34589. [Google Scholar] [CrossRef]
- Pervez, I.; Antoniadis, C.; Massoud, Y. A Novel Approach to the Maximum Peak Power Tracking under Partial Shading conditions. Proceedings of International Symposium on Circuits and Systems, Austin, TX, USA, 28 May–1 June 2022. [Google Scholar]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Rapid MPPT for Uniformly and Partial Shaded PV System by Using JayaDE Algorithm in Highly Fluctuating Atmospheric Conditions. IEEE Trans. Ind. Inform. 2017, 13, 2406–2416. [Google Scholar] [CrossRef]
- Pervez, I.; Antoniadis, C.; Massoud, Y. A Reduced Search Space Exploration Metaheuristic Algorithm for MPPT. IEEE Access 2022, 10, 26090–26100. [Google Scholar] [CrossRef]
- Bollipo, R.B.; Mikkili, S.; Bonthagorla, P.K. Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE J. Power Energy Syst. 2021, 7, 9–33. [Google Scholar]
- Dadkhah, J.; Niroomand, M. Optimization Methods of MPPT Parameters for PV Systems: Review, Classification, and Comparison. J. Mod. Power Syst. Clean Energy 2021, 9, 225–236. [Google Scholar] [CrossRef]
- Hanzaei, S.H.; Gorji, S.A.; Ektesabi, M. A Scheme-Based Review of MPPT Techniques with Respect to Input Variables Including Solar Irradiance and PV Arrays’ Temperature. IEEE Access 2020, 8, 182229–182239. [Google Scholar] [CrossRef]
- Rao, R.V. Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [Google Scholar]
Shading Patterns | Module 1 | Module 2 | Module 3 | Module 4 |
---|---|---|---|---|
SPS1 | 0% | 1% | 11% | 21% |
SPS2 | 0% | 30% | 45% | 75% |
SPS3 | 0% | 15% | 65% | 90% |
Algorithms | Shading Patterns | ||||||||
---|---|---|---|---|---|---|---|---|---|
SPS1 | SPS2 | SPS3 | |||||||
Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | |
JayaLF | 38.7 | 38.87 | 1.06 | 39.71 | 39.78 | 1 | 74.71 | 74.86 | 0.76 |
JLFALSS | 38.852 | 0.36 | 39.43 | 0.46 | 74.74 | 0.456 | |||
RMOTLBO | 38.26 | 0.96 | 39.73 | 0.96 | 74.08 | 0.96 | |||
RTBALSS | 38.67 | 0.46 | 39.78 | 0.43 | 74.78 | 0.46 | |||
SS | 38.87 | 2.66 | 39.78 | 2.66 | 74.72 | 2.65 | |||
SSALSS | 38.866 | 0.56 | 38.82 | 0.66 | 74.74 | 0.46 |
Shading Instant | Percentage Insolation Reduction on Each Module with Respect to a Full Insolation of 1000 W/m | |||
---|---|---|---|---|
Module 1 | Module 2 | Module 3 | Module 4 | |
1 (0–3 s) | 0% | 7% | 22% | 37% |
2 (3–6 s) | 0% | 37% | 45% | 80% |
3 (6–9 s) | 0% | 11% | 40% | 50% |
4 (9–12 s) | 0% | 19% | 70% | 90% |
Algorithms | Shading Instants | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (0–3 s) | 2 (3–6 s) | 3 (6–9 s) | 4 (9–12 s) | |||||||||
Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | |
JayaLF | 70.36 | 70.74 | 0.6 | 39.26 | 39.36 | 0.6 | 62.1 | 62.44 | 0.61 | 37.32 | 37.32 | 1.6 |
JLFALSS | 70.74 | 0.4 | 39.36 | 0.4 | 62.3 | 0.45 | 37.2 | 0.46 | ||||
RMOTLBO | 69.647 | 0.92 | 39.19 | 1.16 | 61.99 | 0.71 | 37.23 | 1.15 | ||||
RTBALSS | 70.62 | 0.46 | 39.36 | 0.46 | 62.44 | 0.47 | 37.32 | 0.46 | ||||
SS | 70.67 | 2.66 | 39.34 | 2.66 | 62.44 | 2.65 | 37.31 | 2.66 | ||||
SSALSS | 70.62 | 0.46 | 39.36 | 0.46 | 62.26 | 0.46 | 37.2 | 0.5 |
Shading Instant | Percentage Insolation Reduction on Each Module with Respect to a Full Insolation of 1000 W/m | |||
---|---|---|---|---|
Module 1 | Module 2 | Module 3 | Module 4 | |
1 (0–3 s) | 0 | 48% | 79% | 91% |
2 (3–6 s) | 0 | 33% | 52% | 69% |
3 (6–9 s) | 0 | 21% | 32% | 60% |
4 (9–12 s) | 0 | 0% | 15% | 35% |
5 (12–15 s) | 0 | 0% | 0% | 0% |
Algorithms | Shading Instants | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 (0–3 s) | 2 (3–6 s) | 3 (6–9 s) | 4 (9–12 s) | 5 (12–15 s) | |||||||||||
Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | Power (W) | True MPP (W) | Time (s) | |
JayaLF | 24.624 | 24.8 | 0.96 | 35.058 | 35.059 | 0.61 | 48.32 | 48.32 | 0.91 | 63.415 | 63.56 | 0.61 | 87.08 | 87.2 | 0.9 |
JLFALSS | 24.704 | 0.4 | 35.04 | 0.65 | 48.32 | 0.46 | 63.54 | 0.46 | 87.02 | 0.4 | |||||
RMOTLBO | 24.69 | 1.1 | 35.05 | 1.15 | 47.855 | 0.98 | 62.2 | 1.17 | 87.01 | 0.81 | |||||
RTBALSS | 24.8 | 0.4 | 35.04 | 0.46 | 48.32 | 0.47 | 63.56 | 0.466 | 87 | 0.41 | |||||
SS | 24.8 | 2.46 | 34.79 | 1.47 | 48.32 | 2.66 | 63.47 | 2.67 | 87.08 | 2.75 | |||||
SSALSS | 24.59 | 0.66 | 35.04 | 0.41 | 48.32 | 0.45 | 63.54 | 0.46 | 86.88 | 0.56 |
Metrics | Algorithms | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
JayaLF [14] | JLFALSS | RMOTLBO [8] | RTBALSS | SS [24] | SSALSS | AJaya [15] | MBOA [13] | PSODV [12] | APSO [10] | |
Large power fluctuations | Present | Not present | Present | Not present | Present | Not present | Present | Present | Present | Present |
Convergence speed | Fast | Very fast | Moderate | Very fast | Slow | Very fast | Moderate | Fast | Very slow | Moderate |
Total number of power fluctuations | Moderate | Very few | Moderate | Very few | Many | Very few | Moderate | Few | Too many | Moderate |
Convergence after tracking the MPP | Moderate | Very fast | Moderate | Very fast | Slow | Very fast | Moderate | Moderate | Very slow | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pervez, I.; Antoniadis, C.; Massoud, Y. Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms. Energies 2022, 15, 5650. https://doi.org/10.3390/en15155650
Pervez I, Antoniadis C, Massoud Y. Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms. Energies. 2022; 15(15):5650. https://doi.org/10.3390/en15155650
Chicago/Turabian StylePervez, Imran, Charalampos Antoniadis, and Yehia Massoud. 2022. "Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms" Energies 15, no. 15: 5650. https://doi.org/10.3390/en15155650
APA StylePervez, I., Antoniadis, C., & Massoud, Y. (2022). Advanced Limited Search Strategy for Enhancing the Performance of MPPT Algorithms. Energies, 15(15), 5650. https://doi.org/10.3390/en15155650