Models of Electricity Price Forecasting: Bibliometric Research
Abstract
:1. Introduction
2. Method
3. Results
3.1. Bibliometric Analysis Results
3.2. Overview of the Most Cited and Most Accurate Publications of EPF Models
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazzucato, M. Financing the Green New Deal. Nat. Sustain. 2022, 5, 93–94. [Google Scholar] [CrossRef]
- Kozar, Ł. Energy Sector and the Challenges of Sustainable Development Analysis of Spatial Differentiation of the Situation in the EU Based on Selected Indicators [Sektor energetyczny, a wyzwania zrównoważonego rozwoju-analiza przestrzennego zróżnicowania sytuacji]. Zesz. Nauk. Szk. Głównej Gospod. Wiej. w Warszawie Probl. Rol. Światowego 2018, 18, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Medvedeva, Y.Y.; Luchaninov, R.S.; Poluyanova, N.V.; Semenova, S.V.; Alekseeva, E.A. The Stakeholders’ Role in the Corporate Strategy Creation for the Sustainable Development of Russian Industrial Enterprises. Economies 2022, 10, 116. [Google Scholar] [CrossRef]
- Dereń, A.; Górski, A.; Parkitna, A.; Skonieczny, J. Dimensions of business ecosystem efficiency. In Proceedings of the Proceedings of 38th International Conference on Information Systems Architecture and Technology, ISAT 2017, Szklarska Poręba, Poland, 17–19 September 2017; Pt. 3. pp. 128–140. [Google Scholar]
- Schmidt, C.; Mayer, B.; Junginger, F.; Rebholz, M.; Grupp, A.; Brida, D.; Huber, R.; Leitenstorfer, A.; Pashkin, A. Ultrafast low-energy dynamics of graphite studied by nonlinear multi-THz spectroscopy. In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2013; Volume 41. [Google Scholar]
- Kulhanek, L.; Sulich, A.; Zema, T. European integration and real convergence in V4 Group: Transformation towards green economy. In Proceedings of the 6th International Conference on European Integration 2022, Ostrava, Czechy, 18–20 May 2022; Stanickova, M., Melecky, L., Eds.; VSB–Technical University of Ostrava: Ostrava, Czech Republic, 2022; pp. 363–371. [Google Scholar]
- Almutairi, K.; Thoma, G.; Durand-Morat, A. Ex-Ante Analysis of Economic, Social and Environmental Impacts of Large-Scale Renewable and Nuclear Energy Targets for Global Electricity Generation by 2030. Sustainability 2018, 10, 2884. [Google Scholar] [CrossRef] [Green Version]
- Tănasie, A.V.; Năstase, L.L.; Vochița, L.L.; Manda, A.M.; Boțoteanu, G.I.; Sitnikov, C.S. Green Economy—Green Jobs in the Context of Sustainable Development. Sustainability 2022, 14, 4796. [Google Scholar] [CrossRef]
- Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J. Forecast. 2014, 30, 1030–1081. [Google Scholar] [CrossRef] [Green Version]
- Uniejewski, B.; Marcjasz, G.; Weron, R. On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II—Probabilistic forecasting. Energy Econ. 2019, 79, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Kozar, Ł.; Oleksiak, P. Organisations Facing the Challenges of Sustainable Development-Selected Aspects [Organizacje Wobec Wyzwań Zrównoważonego Rozwoju–Wybrane Aspekty]; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2022; ISBN 9788382208191. [Google Scholar]
- Gunter, S.I.; Aksu, C. N-step combinations of forecasts. J. Forecast. 1989, 8, 253–267. [Google Scholar] [CrossRef]
- Benalcazar, P.; Kaszyński, P.; Kamiński, J. Assessing the effects of uncertain energy and carbon prices on the operational patterns and economic results of chp systems. Energies 2021, 14, 8216. [Google Scholar] [CrossRef]
- Komorowska, A.; Benalcazar, P.; Kaszyński, P.; Kamiński, J. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 2020, 144, 111683. [Google Scholar] [CrossRef]
- Castelli, M.; Groznik, A.; Popovič, A. Forecasting electricity prices: A machine learning approach. Algorithms 2020, 13, 119. [Google Scholar] [CrossRef]
- Pourdaryaei, A.; Mohammadi, M.; Karimi, M.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S. Recent development in electricity price forecasting based on computational intelligence techniques in deregulated power market. Energies 2021, 14, 6104. [Google Scholar] [CrossRef]
- Benalcazar, P.; Suski, A.; Kaminski, J. The effects of capital and energy subsidies on the optimal design of microgrid systems. Energies 2020, 13, 995. [Google Scholar] [CrossRef] [Green Version]
- Stós, K.; Kamiński, J.; Malec, M. Analysis of selected environmental regulations influencing the long-term operation of cogeneration companies. Polityka Energetyczna-Energy Policy J. 2019, 22, 81–96. [Google Scholar] [CrossRef]
- Sulich, A.; Sołoducho-Pelc, L. Renewable Energy Producers’ Strategies in the Visegrád Group Countries. Energies 2021, 14, 3048. [Google Scholar] [CrossRef]
- Księżopolski, K.; Maśloch, G. Time Delay Approach to Renewable Energy in the Visegrad Group. Energies 2021, 14, 1928. [Google Scholar] [CrossRef]
- Kamińska, A.M.; Parkitna, A.; Górski, A. Factors determining the development of small enterprises. Proceedings of 38th International Conference on Information Systems Architecture and Technology, ISAT 2017, Szklarska Poręba, Poland, 17–19 September 2017; Pt. 3. pp. 197–209. [Google Scholar]
- Gostkowski, M.; Rokicki, T.; Ochnio, L.; Koszela, G.; Wojtczuk, K.; Ratajczak, M.; Szczepaniuk, H.; Bórawski, P.; Bełdycka-Bórawska, A. Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group. Energies 2021, 14, 5612. [Google Scholar] [CrossRef]
- Sulich, A.; Rutkowska, M. Factor analysis of the green management in the context of Poland regions sustainable development. In Proceedings of the Experimental and Quantitative Methods in Contemporary Economics: Computational Methods in Experimental Economics (CMEE) 2018: Conference, Łódź, Poland, 29–30 November 2018; pp. 143–156. [Google Scholar]
- Goldstein, H. Multilevel Statistical Models; Oxford University Press: London, UK, 2003. [Google Scholar]
- Łuszczyk, M.; Sulich, A.; Siuta-Tokarska, B.; Zema, T.; Thier, A. The development of electromobility in the european union: Evidence from Poland and cross-country comparisons. Energies 2021, 14, 8247. [Google Scholar] [CrossRef]
- Ropuszynska-Surma, E.; Weglarz, M. Profiling end user of renewable energy sources among residential consumers in Poland. Sustainability 2018, 10, 4452. [Google Scholar] [CrossRef] [Green Version]
- Florczak-Strama, M.; Parkitna, A. Project appraisal in the transport sector. In Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology, ISAT 2015, Karpacz, Poland, 20–22 September 2015; Springer: Berlin/Heidelberg, Germany, 2015; Pt. 4; pp. 63–73. [Google Scholar]
- Mazzucato, M. A computational model of economies of scale and market share instability. Struct. Chang. Econ. Dyn. 1998, 9, 55–83. [Google Scholar] [CrossRef] [Green Version]
- Kozar, Ł.; Paduszyńska, M. Change Dynamics of Electricity Prices for Households in the European Union between 2011 and 2020. Finans. i Prawo Finans. 2021, 4, 97–115. [Google Scholar] [CrossRef]
- Di Palma, M.A.; Filzmoser, P.; Gallo, M.; Hron, K. A robust Parafac model for compositional data. J. Appl. Stat. 2017, 45, 1347–1369. [Google Scholar] [CrossRef]
- Simionescu, M.; Wojciechowski, A.; Tomczyk, A.; Rabe, M. Revised Environmental Kuznets Curve for V4 Countries and Baltic States. Energies 2021, 14, 3302. [Google Scholar] [CrossRef]
- Kochanek, E. The Energy Transition in the Visegrad Group Countries. Energies 2021, 14, 2212. [Google Scholar] [CrossRef]
- Górka, K.; Łuszczyk, M.; Thier, A. The Impact of a Circular Economy on Sustainable Development. Barom. Reg. 2018, 4, 7–14. [Google Scholar]
- Grzesiak, S.; Sulich, A. Car Engines Comparative Analysis: Sustainable Approach. Energies 2022, 15, 5170. [Google Scholar] [CrossRef]
- Robinson, D.K.R.; Mazzucato, M. The evolution of mission-oriented policies: Exploring changing market creating policies in the US and European space sector. Res. Policy 2019, 48, 936–948. [Google Scholar] [CrossRef]
- Jędrzejewski, A.; Marcjasz, G.; Weron, R. Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO. Energies 2021, 14, 3249. [Google Scholar] [CrossRef]
- Boyack, K.; Glänzel, W.; Gläser, J.; Havemann, F.; Scharnhorst, A.; Thijs, B.; van Eck, N.J.; Velden, T.; Waltmann, L. Topic identification challenge. Scientometrics 2017, 111, 1223–1224. [Google Scholar] [CrossRef]
- Bilgaev, A.; Sadykova, E.; Mikheeva, A.; Bardakhanova, T.; Ayusheeva, S.; Li, F.; Dong, S. Green Economy Development Progress in the Republic of Buryatia (Russia). Int. J. Environ. Res. Public Health 2022, 19, 7928. [Google Scholar] [CrossRef]
- Andriuškevičius, K.; Štreimikienė, D. Sustainability Framework for Assessment of Mergers and Acquisitions in Energy Sector. Energies 2022, 15, 4557. [Google Scholar] [CrossRef]
- Lago, J.; Marcjasz, G.; De Schutter, B.; Weron, R. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Appl. Energy 2021, 293, 116983. [Google Scholar] [CrossRef]
- Cuerda, C.; Zornoza, A.; Gallud, J.A.; Tesoriero, R.; Ayuso, D.R. Deep learning assisted cognitive diagnosis for the D-Riska application. Soft Comput. 2022, 26, 665–676. [Google Scholar] [CrossRef]
- Komorowska, A. Can decarbonisation and capacity market go together? The case study of Poland. Energies 2021, 14, 5151. [Google Scholar] [CrossRef]
- Komorowska, A. Cross-border exchange of electricity between Poland and the neighboring countries. Polityka Energetyczna-Energy Policy J. 2019, 22, 37–52. [Google Scholar] [CrossRef]
- Sobiech-Grabka, K.; Stankowska, A.; Jerzak, K. Determinants of Electric Cars Purchase Intention in Poland: Personal Attitudes v. Economic Arguments. Energies 2022, 15, 3078. [Google Scholar] [CrossRef]
- Acaroğlu, H.; García Márquez, F.P. Comprehensive review on electricity market price and load forecasting based on wind energy. Energies 2021, 14, 7473. [Google Scholar] [CrossRef]
- Sołoducho-Pelc, L.; Sulich, A. Between Sustainable and Temporary Competitive Advantages in the Unstable Business Environment. Sustainability 2020, 12, 8832. [Google Scholar] [CrossRef]
- Kunisch, S.; Menz, M.; Bartunek, J.M.; Cardinal, L.B.; Denyer, D. Feature topic at organizational research methods: How to conduct rigorous and impactful literature reviews? Organ. Res. Methods 2018, 21, 519–523. [Google Scholar] [CrossRef] [Green Version]
- Denyer, D.; Tranfield, D. Producing a systematic review. W The Sage Handbook of Organizational Research Methods; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689. ISBN 978-1-4129-3118-2. [Google Scholar]
- MacFarlane, A.; Russell-Rose, T.; Shokraneh, F. Search strategy formulation for systematic reviews: Issues, challenges and opportunities. Intell. Syst. Appl. 2022, 15, 200091. [Google Scholar] [CrossRef]
- Charbonnier, F.; Morstyn, T.; McCulloch, M.D. Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy. Appl. Energy 2022, 318, 119188. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, X.; Qin, Y.; Lu, Z.; Ma, Q.; Zhao, X.; Liu, L. Visualization and mapping of literature on the scientific analysis of wall paintings: A bibliometric analysis from 2011 to 2021. Herit. Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, web of science, dimensions, crossref, and microsoft academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; van Eck, N.J. A taxonomy of bibliometric performance indicators based on the property of consistency. In Proceedings of the 12th International Conference on Scientometrics and Informetrics, ISSI 2009, Rio de Janeiro, Brazil, 14–17 July 2009; pp. 1002–1003. [Google Scholar]
- van Eck, N.J.; Waltman, L.; Noyons, E.C.M.; Buter, R.K. Automatic term identification for bibliometric mapping. Scientometrics 2010, 82, 581–596. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C.; Biblioshiny. Bibliometrix for no Coders. Available online: https://bibliometrix.org/biblioshiny/assets/player/KeynoteDHTMLPlayer.html#0 (accessed on 18 June 2022).
- Rousseau, D.M.; Manning, J.; Denyer, D. Evidence in Management and Organizational Science: Assembling the Field’s Full Weight of Scientific Knowledge Through Syntheses. Acad. Manag. Ann. 2008, 2, 475–515. [Google Scholar] [CrossRef]
- Fischl, M.; Scherrer-Rathje, M.; Friedli, T. Digging deeper into supply risk: A systematic literature review on price risks. Supply Chain Manag. Int. J. 2014, 19, 480–503. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Accuracy of citation data in Web of Science and Scopus. In Proceedings of the ISSI 2017—16th International Conference on Scientometrics and Informetrics, Conference Proceedings, Wuhan, China, 16–20 October 2017; pp. 1087–1092. [Google Scholar]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Bu, Y.; Waltman, L.; Huang, Y. A multidimensional framework for characterizing the citation impact of scientific publications. Quant. Sci. Stud. 2021, 2, 155–183. [Google Scholar] [CrossRef]
- Lamers, W.S.; Boyack, K.; Larivière, V.; Sugimoto, C.R.; van Eck, N.J.; Waltman, L.; Murray, D. Investigating disagreement in the scientific literature. Elife 2021, 10, e72737. [Google Scholar] [CrossRef]
- Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data. Appl. Soft Comput. J. 2014, 23, 27–38. [Google Scholar] [CrossRef]
- Efimova, O.; Serletis, A. Energy markets volatility modelling using GARCH. Energy Econ. 2014, 43, 264–273. [Google Scholar] [CrossRef]
- Nowotarski, J.; Raviv, E.; Trück, S.; Weron, R. An empirical comparison of alternative schemes for combining electricity spot price forecasts. Energy Econ. 2014, 46, 395–412. [Google Scholar] [CrossRef]
- Eklund, M.; Alamaniotis, M.; Hernandez, H.; Jevremovic, T. Method of characteristics-A review with applications to science and nuclear engineering computation. Prog. Nucl. Energy 2015, 85, 548–567. [Google Scholar] [CrossRef]
- Waltman, L.; van Eck, N.J. A new methodology for constructing a publication-level classification system of science. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2378–2392. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; Kaymak, U.; van Den Berg, J. Maximum likelihood parameter estimation in probabilistic fuzzy classifiers. In Proceedings of the IEEE International Conference on Fuzzy Systems, Reno, NV, USA, 25 May 2005; pp. 1098–1103. [Google Scholar]
- Tsironis, G.; Daglis, T.; Tsagarakis, K.P. Social media and EU companies’ engagement in circular economy: A LinkedIn approach. Sustain. Prod. Consum. 2022, 32, 802–816. [Google Scholar] [CrossRef]
- Xie, X.; Li, M.; Zhang, D. A multiscale electricity price forecasting model based on tensor fusion and deep learning. Energies 2021, 14, 7333. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 199–201. ISBN 978-1-118-67502-1. [Google Scholar]
- Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 2011, 11, 2664–2675. [Google Scholar] [CrossRef]
- Zhang, P.G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Barmayoon, S.; Mohammadi, M.; Ghadimi, N. The price prediction for the energy market based on a new method. Econ. Res.-Ekon. Istraživanja 2018, 31, 313–337. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chen, Y.; Zhang, W.; Feng, R. A novel ensemble deep learning model with dynamic error correction and multi-objective ensemble pruning for time series forecasting. Inf. Sci. 2021, 544, 427–445. [Google Scholar] [CrossRef]
- Wan, C.; Xu, Z.; Wang, Y.; Dong, Z.Y.; Wong, K.P. A Hybrid Approach for Probabilistic Forecasting of Electricity Price. IEEE Trans. Smart Grid 2014, 5, 463–470. [Google Scholar] [CrossRef]
- Gomółka, K.; Kasprzak, P. Household Ability of Expenditures on Electricity and Energy Resources in the Countries That Joined the EU after 2004. Energies 2022, 15, 3052. [Google Scholar] [CrossRef]
- Niemczyk, J.; Sus, A.; Bielińska-Dusza, E.; Trzaska, R.; Organa, M. Strategies of European Energy Producers. Directions of Evolution. Energies 2022, 15, 609. [Google Scholar] [CrossRef]
- Alamaniotis, M.; Gatsis, N.; Tsoukalas, L.H. Virtual Budget: Integration of electricity load and price anticipation for load morphing in price-directed energy utilization. Electr. Power Syst. Res. 2018, 158, 284–296. [Google Scholar] [CrossRef]
- Niemczyk, J.; Sus, A.; Borowski, K.; Jasiński, B.; Jasińska, K. The Dominant Motives of Mergers and Acquisitions in the Energy Sector in Western Europe from the Perspective of Green Economy. Energies 2022, 15, 1065. [Google Scholar] [CrossRef]
- Stor, M.; Haromszeki, Ł. Competency management and the financial results of the foreign subsidiaries of Polish MNCs: The empirical research findings. Hum. Syst. Manag. 2022, 41, 393–405. [Google Scholar] [CrossRef]
- Silveira Gontijo, T.; Azevedo Costa, M.; Barbosa De Santis, R. Electricity price forecasting on electricity spot market: A case study based on the Brazilian Difference Settlement Price. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 239. [Google Scholar]
- Weron, R.; Ziel, F. Electricity price forecasting. In Routledge Handbook of Energy Economics; Soytaş, U., Sarı, R., Eds.; Taylor and Francis: London, UK, 2019; pp. 506–521. [Google Scholar]
- Boyack, K.W.; van Eck, N.J.; Colavizza, G.; Waltman, L. Characterizing in-text citations in scientific articles: A large-scale analysis. J. Informetr. 2018, 12, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Cuccurullo, C.; Aria, M.; Sarto, F. Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains. Scientometrics 2016, 108, 595–611. [Google Scholar] [CrossRef]
- Šubelj, L.; van Eck, N.J.; Waltman, L. Clustering scientific publications based on citation relations: A systematic comparison of different methods. PLoS ONE 2016, 11, e0154404. [Google Scholar] [CrossRef] [Green Version]
Query | 10 December 2021 | 10 May 2022 | 10 July 2022 |
---|---|---|---|
1 (Scopus) | 766 | 798 | 851 |
2 (WoS) | 377 | 435 | 443 |
Cluster | Color | Keywords |
---|---|---|
1 | Red | Bayesian networks; clustering; fuzzy neural networks; wavelet transforms; genetic algorithms; Monte Carlo methods; neural networks |
2 | Green | convolutional neural networks; deep learning; long short-term memory; multilayer neural networks; recurrent neural networks; reinforcement learning |
3 | Blue | feedforward neural networks; linear regression; arima; support vector machine; hybrid model; garch |
4 | Yellow | adaptive boosting; decision trees; ensemble learning; gradient boosting |
5 | Purple | extreme learning machine; machine learning |
Cluster | Color | Keywords |
---|---|---|
1 | Red | machine learning; regression; deep learning; support vector machines |
2 | Green | selection; lasso; quantile regression; arima |
3 | Blue | artificial intelligence; neural networks; classification |
4 | Yellow | genetic algorithms; support vector regression; extreme learning-machine |
Cluster | Color | Keywords |
---|---|---|
1 | Red | neural networks; fuzzy neural networks; wavelet transforms; multilayer neural networks; genetic algorithms |
2 | Green | decision trees; support vector machines; clustering; adaptive boosting |
3 | Blue | long short-term memory; deep learning |
4 | Yellow | arima; hybrid model |
5 | Purple | machine learning; extreme learning machines |
Cluster | Color | Keywords |
---|---|---|
1 | Red | machine learning; xgboost; sarima; ga-bp algorithm |
2 | Green | arima; hybrid model; neural networks; lasso |
3 | Yellow | classification; decision trees |
Most Cited Scientific Publications | Most Accurate Scientific Publications |
---|---|
extreme machine learning; machine learning; arima; neural networks | arima; hybrid model; decision trees |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zema, T.; Sulich, A. Models of Electricity Price Forecasting: Bibliometric Research. Energies 2022, 15, 5642. https://doi.org/10.3390/en15155642
Zema T, Sulich A. Models of Electricity Price Forecasting: Bibliometric Research. Energies. 2022; 15(15):5642. https://doi.org/10.3390/en15155642
Chicago/Turabian StyleZema, Tomasz, and Adam Sulich. 2022. "Models of Electricity Price Forecasting: Bibliometric Research" Energies 15, no. 15: 5642. https://doi.org/10.3390/en15155642
APA StyleZema, T., & Sulich, A. (2022). Models of Electricity Price Forecasting: Bibliometric Research. Energies, 15(15), 5642. https://doi.org/10.3390/en15155642