Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization
Abstract
:1. Introduction
2. Material and Tests
2.1. Preparation of Sample
2.2. Raman Spectral Characterization of the Samples
2.3. Thermogravimetric Analysis
2.4. Calculation of Combustion Characteristic Parameters
2.5. Description of Kinetic Model
3. Results and Discussion
3.1. Structure Characterization Analysis
3.2. Separate Combustion of PS, SHM and SHM-HTC
3.3. Combustion of Mixed Samples
3.4. Kinetic Analysis
4. Conclusions
- (1)
- According to the results of Raman analysis, the ID3+D4/IG value of SHM-HTC decreased, which showed that HTC treatment had improved the carbon ordering degree of coal.
- (2)
- The conversion rate curve of PS combustion had two obvious peaks, so its combustion process was carried out in two stages, while the combustion of coal and its upgraded product showed only one peak, and the Ti and Tf of PS were both at low temperature. A better combustion performance of PS can be observed.
- (3)
- Compared with raw coal, upgraded coal had reduced volatile content and increased fixed carbon content, Ti and Tf were lower than raw coal, DTGmean became higher, and C and S indexes increased, which showed that the combustion performance of upgraded coal was improved.
- (4)
- The mixture of PS and SHM-HTC had lower activation energy than the mixture of PS and SHM, which indicated that SHM-HTC and PS were better options as mixed fuel.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strezov, V.; Evans, T.J. Thermal processing of paper sludge and characterisation of its pyrolysis products. Waste Manag. 2009, 29, 1644–1648. [Google Scholar] [CrossRef] [PubMed]
- Vamvuka, D.; Salpigidou, N.; Kastanaki, E.; Sfakiotakis, S. Possibility of using paper sludge in co-firing applications. Fuel 2009, 88, 637–643. [Google Scholar] [CrossRef]
- Yu, Y.H.; Kim, S.D.; Lee, J.M.; Lee, K.H. Kinetic studies of dehydration, pyrolysis and combustion of paper sludge. Energy 2002, 27, 457–469. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, C.; Xing, Y.; Li, Y.; Feng, L.; Jia, M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Manag. 2018, 74, 288–296. [Google Scholar] [CrossRef]
- Xu, C.B.; Lancaster, J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water. Water Res. 2008, 42, 1571–1582. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Ma, X.Q. The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresour. Technol. 2013, 146, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Taramian, A.; Doosthoseini, K.; Mirshokraii, S.A.; Faezipour, M. Particleboard manufacturing: An innovative way to recycle paper sludge. Waste Manag. 2007, 27, 1739–1746. [Google Scholar] [CrossRef]
- Quaye, A.K.; Volk, T.A.; Hafner, S.; Leopold, D.J.; Schirmer, C. Impacts of paper sludge and manure on soil and biomass pro-duction of willow. Biomass Bioenergy 2011, 35, 2796–2806. [Google Scholar] [CrossRef]
- Nunes, J.R.; Cabral, F.; López-Piñeiro, A. Short-term effects on soil properties and wheat production from secondary paper sludge application on two Mediterranean agricultural soils. Bioresour. Technol. 2008, 99, 4935–4942. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Ma, X.; Peng, X.; Hu, S.; Yu, Z.; Fang, S. Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Appl. Therm. Eng. 2015, 91, 574–582. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, X.; Ning, X.; Yu, Z. TGA–FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes. Energy Convers. Manag. 2015, 89, 727–734. [Google Scholar] [CrossRef]
- Hu, S.; Ma, X.; Lin, Y.; Yu, Z.; Fang, S. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste. Energy Convers. Manag. 2015, 99, 112–118. [Google Scholar] [CrossRef]
- Shin, D.; Jang, S.; Hwang, J. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed. Waste Manag. 2005, 25, 680–685. [Google Scholar] [CrossRef]
- Cai, Z.; Ma, X.; Fang, S.; Yu, Z.; Lin, Y. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl. Therm. Eng. 2016, 106, 938–943. [Google Scholar] [CrossRef]
- Liu, K.; Ma, X.Q.; Xiao, H.M. Experimental and kinetic modeling of oxygen-enriched air combustion of paper mill sludge. Waste Manag. 2010, 30, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.F.; Ma, X.Q. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge. Apply Energy 2010, 87, 3526–3532. [Google Scholar]
- Coimbra, R.N.; Paniagua, S.; Escapa, C.; Calvo, L.F.; Otero, M. Thermogravimetric analysis of the co-pyrolysis of a bituminous coal and pulp mill sludge. J. Therm. Anal. 2015, 122, 1385–1394. [Google Scholar] [CrossRef]
- Areeprasert, C.; Scala, F.; Coppola, A.; Urciuolo, M.; Chirone, R.; Chanyavanich, P.; Yoshikawa, K. Fluidized bed co-combustion of hy-drothermally treated paper sludge with two coals of different rank. Fuel Process Technol. 2016, 144, 230–238. [Google Scholar] [CrossRef]
- Dey, S. Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Process. Technol. 2012, 94, 151–158. [Google Scholar] [CrossRef]
- Lievens, C.; Ci, D.; Bai, Y.; Ma, L.; Zhang, R.; Chen, J.Y.; Gai, Q.; Long, Y.; Guo, X. A study of slow pyrolysis of one low rank coal via pyrolysis–GC/MS. Fuel Process. Technol. 2013, 116, 85–93. [Google Scholar] [CrossRef]
- Lv, D.; Yuchi, W.; Bai, Z.; Bai, J.; Kong, L.; Guo, Z.; Yan, J.; Li, W. An approach for utilization of direct coal liquefaction residue: Blending with low-rank coal to prepare slurries for gasification. Fuel 2015, 145, 143–150. [Google Scholar] [CrossRef]
- Ye, D.; Agnew, J.; Zhang, D. Gasification of a South Australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies. Fuel 1998, 77, 1209–1219. [Google Scholar] [CrossRef]
- Wu, J.; Liu, J.; Yuan, S.; Zhang, X.; Liu, Y.; Wang, Z.; Zhou, J. Sulfur Transformation during Hydrothermal Dewatering of Low Rank Coal. Energy Fuels 2015, 29, 6586–6592. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Liu, J.; Yang, Y.; Cheng, J.; Wang, Z.; Zhou, J.; Cen, K. Moisture removal mechanism of low-rank coal by hydro-thermal dewatering: Physicochemical property analysis and DFT calculation. Fuel 2017, 187, 242–249. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Wang, R.; Zhou, J.; Cen, K. Effect of hydrothermal dewatering on the slurryability of brown coals. Energy Convers. Manag. 2012, 57, 8–12. [Google Scholar] [CrossRef]
- Ning, X.-J.; Liang, W.; Zhang, J.-L.; Wang, G.-W.; Li, Y.-J.; Jiang, C.-H. Effect of ash on coal structure and combustibility. Int. J. Miner. Met. Mater. 2019, 26, 973–982. [Google Scholar] [CrossRef]
- Yu, C.; Ren, S.; Wang, G.; Xu, J.; Teng, H.; Li, T.; Huang, C.; Wang, C. Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model. Int. J. Miner. Met. Mater. 2022, 29, 464–472. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Qiu, T.; Yang, J.-G.; Bai, X.-J. Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite. Int. J. Miner. Met. Mater. 2020, 27, 162–172. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Chang, W.; Li, R.; Li, Y.; Wang, C. Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature. Energy 2018, 147, 25–35. [Google Scholar] [CrossRef]
- Li, X.; Hayashi, J.-I.; Li, C.-Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 2006, 85, 1700–1707. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Fang, H.L. Maturity Trends in Raman Spectra from Kerogen and Coal. Energy Fuels 2001, 15, 653–658. [Google Scholar] [CrossRef]
- Xu, J.; Tang, H.; Su, S.; Liu, J.; Xu, K.; Qian, K.; Wang, Y.; Zhou, Y.; Hu, S.; Zhang, A.; et al. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals. Appl. Energy 2018, 212, 46–56. [Google Scholar] [CrossRef]
- Zhu, H.; Yu, G.; Guo, Q.; Wang, X. In Situ Raman Spectroscopy Study on Catalytic Pyrolysis of a Bituminous Coal. Energy Fuels 2017, 31, 5817–5827. [Google Scholar] [CrossRef]
- Sheng, C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel 2007, 86, 2316–2324. [Google Scholar] [CrossRef]
- Liu, G.; Song, H.; Wu, J. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis. Waste Manag. 2015, 41, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, J.; Zhang, X.; Wang, Z.; Zhou, J.; Cen, K. Chemical and structural changes in XiMeng lignite and its carbon migration during hydrothermal dewatering. Fuel 2015, 148, 139–144. [Google Scholar] [CrossRef]
- Mo, Q.; Liao, J.J.; Chang, L.P.; Chaffee, A.L.; Bao, W.R. Transformation behaviors of C, H, O, N and S in lignite during hydro-thermal dewatering process. Fuel 2019, 236, 228–235. [Google Scholar] [CrossRef]
- Li, J.; Xu, R.; Wang, G.; Zhang, J.; Song, B.; Liang, W.; Wang, C. Study on the feasibility and co-combustion mechanism of mixed injection of biomass hydrochar and anthracite in blast furnace. Fuel 2021, 304, 121465. [Google Scholar] [CrossRef]
- Skodras, G.; Grammelis, P.; Basinas, P.; Prokopidou, M.; Kakaras, E.; Sakellaropoulos, G.P. A Thermochemical Conversion Study on the Combustion of Residue-Derived Fuels. Water Air Soil Pollut. Focus 2008, 9, 151–157. [Google Scholar] [CrossRef]
- Krugly, E.; Martuzevicius, D.; Puida, E.; Buinevicius, K.; Stasiulaitiene, I.; Radziuniene, I.; Minikauskas, A.; Kliucininkas, L. Characterization of Gaseous- and Particle-Phase Emissions from the Combustion of Biomass-Residue-Derived Fuels in a Small Residential Boiler. Energy Fuels 2014, 28, 5057–5066. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, Y.; Xu, C.; Wang, Z.; Zhou, J.; Cen, K. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals. Appl. Therm. Eng. 2015, 90, 174–181. [Google Scholar] [CrossRef]
- Muto, M.; Yuasa, K.; Kurose, R. Numerical simulation of ignition in pulverized coal combustion with detailed chemical reaction mechanism. Fuel 2017, 190, 136–144. [Google Scholar] [CrossRef]
- Coimbra, R.N.; Paniagua, S.; Escapa, C.; Calvo, L.F.; Otero, M. Combustion of primary and secondary pulp mill sludge and their respective blends with coal: A thermogravimetric assessment. Renew. Energy 2015, 83, 1050–1058. [Google Scholar] [CrossRef]
Sample | HHV (MJ/kg) | Proximate Analysis (wt.%) | Ultimate Analysis (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ad | Vd | FCda | V/FC | Cd | Hd | Oda | Nd | Sd | O/C | H/C | ||
SHM | 30.30 | 1.65 | 43.05 | 55.30 | 0.78 | 74.95 | 5.09 | 17.05 | 0.86 | 0.40 | 0.17 | 0.81 |
SHM-HTC | 31.23 | 1.25 | 34.43 | 64.32 | 0.54 | 78.29 | 4.69 | 14.58 | 0.85 | 0.35 | 0.14 | 0.72 |
PS | 16.14 | 23.74 | 63.84 | 12.42 | 5.14 | 42.76 | 3.68 | 29.11 | 0.87 | 0.35 | 0.51 | 1.03 |
Samples | ID4 | ID1 | ID3 | IG | ID2 | ID3+D4/IG |
---|---|---|---|---|---|---|
SHM | 7497 | 10,178 | 4148 | 10,154 | 651 | 1.147 |
SHM-HTC | 12,369 | 60,897 | 15,071 | 34,322 | 973 | 0.799 |
Samples | T1 (°C) | DTGmax−1× 10−4 (s−1) | T2 (°C) | DTGmax−2× 10−4 (s−1) | Ti (°C) | Tf (°C) | DTGmax× 10−4 (s−1) | DTGmean 10−4 (s−1) | C × 10−8 | S × 10−14 |
---|---|---|---|---|---|---|---|---|---|---|
PS | 301.8 | 43.90 | 420.1 | 7.01 | 235.2 | 724.5 | 43.90 | 6.46 | 7.94 | 7.08 |
10PS90SHM | 350.5 | 5.20 | 486.6 | 22.30 | 342.1 | 587.5 | 22.30 | 5.61 | 1.91 | 1.82 |
20PS80SHM | 337.5 | 7.18 | 498.6 | 21.30 | 317.6 | 589.3 | 21.30 | 5.64 | 2.11 | 2.02 |
30PS70SHM | 324.5 | 9.29 | 493.3 | 23.30 | 308.2 | 578.9 | 23.30 | 5.74 | 2.45 | 2.43 |
50PS50SHM | 323.1 | 15.50 | 512.1 | 19.30 | 291.4 | 607.1 | 19.30 | 5.80 | 2.27 | 2.17 |
SHM | - | - | 501.9 | 23.10 | 375.7 | 581.8 | 23.10 | 5.51 | 1.64 | 1.55 |
10PS90SHM-HTC | 345.4 | 4.77 | 482.7 | 22.20 | 346.7 | 576.7 | 22.20 | 5.53 | 1.85 | 1.77 |
20PS80SHM-HTC | 321.6 | 6.82 | 460.1 | 21.80 | 309.7 | 566.8 | 21.80 | 5.63 | 2.27 | 2.26 |
30PS70SHM-HTC | 320.2 | 10.30 | 471.1 | 22.20 | 300.3 | 562.9 | 22.20 | 5.76 | 2.46 | 2.52 |
50PS50SHM-HTC | 308.7 | 21.00 | 485.6 | 19.30 | 277.2 | 592.4 | 21.00 | 5.87 | 2.73 | 2.71 |
SHM-HTC | - | - | 478.1 | 22.20 | 366.9 | 573.9 | 22.20 | 5.69 | 1.65 | 1.64 |
Samples | T (°C) | E (kJ/mol) | A × 105 (min−1) | R2 |
---|---|---|---|---|
PS | 350~600 | 5.91 | 1.16 | 0.9560 |
10PS90SHM | 350~600 | 28.92 | 482.00 | 0.9758 |
20PS80SHM | 350~600 | 24.79 | 166.00 | 0.9605 |
30PS70SHM | 350~600 | 24.07 | 158.00 | 0.9532 |
50PS50SHM | 350~600 | 18.81 | 40.70 | 0.9502 |
SHM | 350~600 | 35.39 | 2950.00 | 0.9963 |
10PS90SHM-HTC | 350~600 | 29.39 | 938.00 | 0.9729 |
20PS80SHM-HTC | 350~600 | 25.66 | 423.00 | 0.9721 |
30PS70SHM-HTC | 350~600 | 22.71 | 203.00 | 0.9606 |
50PS50SHM-HTC | 350~600 | 15.76 | 29.40 | 0.9549 |
SHM-HTC | 350~600 | 34.10 | 3300.00 | 0.9915 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, B.; Wang, G.; Li, R.; Xu, K.; Wu, J.; Li, D.; Liu, J. Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization. Energies 2022, 15, 5619. https://doi.org/10.3390/en15155619
Su B, Wang G, Li R, Xu K, Wu J, Li D, Liu J. Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization. Energies. 2022; 15(15):5619. https://doi.org/10.3390/en15155619
Chicago/Turabian StyleSu, Buxin, Guangwei Wang, Renguo Li, Kun Xu, Junyi Wu, Desheng Li, and Jiawen Liu. 2022. "Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization" Energies 15, no. 15: 5619. https://doi.org/10.3390/en15155619
APA StyleSu, B., Wang, G., Li, R., Xu, K., Wu, J., Li, D., & Liu, J. (2022). Co-Combustion Behavior of Paper Sludge Hydrochar and Pulverized Coal: Low Rank Coal and Its Product by Hydrothermal Carbonization. Energies, 15(15), 5619. https://doi.org/10.3390/en15155619