Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niinimäki, K.; Peters, G.; Dahlbo, H.; Perry, P.; Rissanen, T.; Gwilt, A. The Environmental Price of Fast Fashion. Nat. Rev. Earth Environ. 2020, 1, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Stanescu, M.D. State of the Art of Post-Consumer Textile Waste Upcycling to Reach the Zero Waste Milestone. Environ. Sci. Pollut. Res. 2021, 28, 14253–14270. [Google Scholar] [CrossRef] [PubMed]
- Nimkar, U. Sustainable Chemistry: A Solution to the Textile Industry in a Developing World. Curr. Opin. Green Sustain. Chem. 2018, 9, 13–17. [Google Scholar] [CrossRef]
- Prabakar, D.; Manimudi, V.T.; Mathimani, T.; Kumar, G.; Rene, E.R.; Pugazhendhi, A. Pretreatment Technologies for Industrial Effluents: Critical Review on Bioenergy Production and Environmental Concerns. J. Environ. Manag. 2018, 218, 165–180. [Google Scholar] [CrossRef]
- Sivaram, N.M.; Gopal, P.M.; Barik, D. Toxic Waste from Textile Industries; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; ISBN 9780081025284. [Google Scholar]
- European Clothing Action Plan (ECAP). Available online: http://www.ecap.eu.com/ (accessed on 26 June 2020).
- Piribauer, B.; Bartl, A. Textile Recycling Processes, State of the Art and Current Developments: A Mini Review. Waste Manag. Res. J. A Sustain. Circ. Econ. 2019, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- European Parliament, Council. Directive 2008/98/EC of the European and of the Council of 19 November 2008 on Waste and Repealing Directives. 2008. Available online: http://www.fao.org/faolex/results/details/es/c/LEX-FAOC083580/ (accessed on 24 April 2021).
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of Anaerobic Digestion Process: A Review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Apollo, S.; Onyango, M.S.; Ochieng, A. Integrated UV Photodegradation and Anaerobic Digestion of Textile Dye for Efficient Biogas Production Using Zeolite. Chem. Eng. J. 2014, 245, 241–247. [Google Scholar] [CrossRef]
- Gonzalez, A.; Hendriks, A.T.W.M.; van Lier, J.B.; de Kreuk, M. Pre-Treatments to Enhance the Biodegradability of Waste Activated Sludge: Elucidating the Rate Limiting Step. Biotechnol. Adv. 2018, 36, 1434–1469. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Qin, Y.; Chen, B.; Wu, C.; Zheng, S.; Chen, R.; Yang, S.; Yang, L.; Liu, Z. Enhancing Degradation and Biogas Production during Anaerobic Digestion of Food Waste Using Alkali Pretreatment. Environ. Res. 2020, 188, 109743. [Google Scholar] [CrossRef]
- Anacleto, T.M.; Oliveira, H.R.; Diniz, V.L.; de Oliveira, V.P.; Abreu, F.; Enrich-Prast, A. Boosting Manure Biogas Production with the Application of Pretreatments: A Meta-Analysis. J. Clean. Prod. 2022, 362, 132292. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Poulsen, T.G.; Xia, Y.; Sheng, K. Combinations of Fungal and Milling Pretreatments for Enhancing Rice Straw Biogas Production during Solid-State Anaerobic Digestion. Bioresour. Technol. 2017, 224, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Orlando, M.Q.; Borja, V.M. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies 2020, 13, 3573. [Google Scholar] [CrossRef]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.I. Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.; Zhang, R.; Liu, G.; Chen, C. Pretreatment Methods of Lignocellulosic Biomass for Anaerobic Digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Pellera, F.M.; Santori, S.; Pomi, R.; Polettini, A.; Gidarakos, E. Effect of Alkaline Pretreatment on Anaerobic Digestion of Olive Mill Solid Waste. Waste Manag. 2016, 58, 160–168. [Google Scholar] [CrossRef]
- Thompson, T.M.; Young, B.R.; Baroutian, S. Advances in the Pretreatment of Brown Macroalgae for Biogas Production. Fuel Process. Technol. 2019, 195, 106151. [Google Scholar] [CrossRef]
- Montgomery, L.F.R.; Bochmann, G. Pretreatment of Feedstock for Enhanced Biogas Production. IEA Bioenergy 2014. Available online: https://www.ieabioenergy.com/wp-content/uploads/2014/02/pretreatment_web.pdf (accessed on 13 November 2021).
- Brémond, U.; de Buyer, R.; Steyer, J.P.; Bernet, N.; Carrere, H. Biological Pretreatments of Biomass for Improving Biogas Production: An Overview from Lab Scale to Full-Scale. Renew. Sustain. Energy Rev. 2018, 90, 583–604. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Estarli, M.; Barrera, E.S.A.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2016, 20, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experimental Ecology; Wiley: Hoboken, NJ, USA, 1999; Volume 80. [Google Scholar]
- Cao, Y.; Wang, X.; Bai, Z.; Chadwick, D.; Misselbrook, T.; Sommer, S.G.; Qin, W.; Ma, L. Mitigation of Ammonia, Nitrous Oxide and Methane Emissions during Solid Waste Composting with Different Additives: A Meta-Analysis. J. Clean. Prod. 2019, 235, 626–635. [Google Scholar] [CrossRef]
- Johnson, S.; Echeverria, D.; Venditti, R.; Jameel, H.; Yao, Y. Supply Chain of Waste Cotton Recycling and Reuse: A Review. AATCC J. Res. 2020, 7, 19–31. [Google Scholar] [CrossRef]
- Our World in Data. Available online: https://ourworldindata.org/grapher/plastic-waste-polymer?tab=table (accessed on 13 November 2021).
- Sołowski, G.; Konkol, I.; Cenian, A. Methane and Hydrogen Production from Cotton Waste by Dark Fermentation under Anaerobic and Micro-Aerobic Conditions. Biomass Bioenergy 2020, 138, 105576. [Google Scholar] [CrossRef]
- Šerá, J.; Serbruyns, L.; De Wilde, B.; Koutný, M. Accelerated Biodegradation Testing of Slowly Degradable Polyesters in Soil. Polym. Degrad. Stab. 2020, 171, 109031. [Google Scholar] [CrossRef]
- Ornelas-Ferreira, B.; Lobato, L.C.S.; Colturato, L.F.D.; Torres, E.O.; Pombo, L.M.; Pujatti, F.J.P.; Araújo, J.C.; Chernicharo, C.A.L. Strategies for Energy Recovery and Gains Associated with the Implementation of a Solid State Batch Methanization System for Treating Organic Waste from the City of Rio de Janeiro—Brazil. Renew. Energy 2020, 146, 1976–1983. [Google Scholar] [CrossRef]
- Sołowski, G.; Konkol, I.; Shalaby, M.; Cenian, A. Rapid Hydrogen Generation from Cotton Wastes by Mean of Dark Fermentation. SN Appl. Sci. 2020, 2, 1–7. [Google Scholar] [CrossRef]
- Hasanzadeh, E.; Mirmohamadsadeghi, S.; Karimi, K. Enhancing Energy Production from Waste Textile by Hydrolysis of Synthetic Parts. Fuel 2018, 218, 41–48. [Google Scholar] [CrossRef]
- Salem Allafi, F.A.; Hossain, M.S.; Ab Kadir, M.O.; Hakim Shaah, M.A.; Lalung, J.; Ahmad, M.I. Waterless Processing of Sheep Wool Fiber in Textile Industry with Supercritical CO2: Potential and Challenges. J. Clean. Prod. 2021, 285, 124819. [Google Scholar] [CrossRef]
- Wagner, A.O.; Lins, P.; Malin, C.; Reitschuler, C.; Illmer, P. Impact of Protein-, Lipid- and Cellulose-Containing Complex Substrates on Biogas Production and Microbial Communities in Batch Experiments. Sci. Total Environ. 2013, 458–460, 256–266. [Google Scholar] [CrossRef]
- Dlamini, S.; Simatele, M.D.; Serge Kubanza, N. Municipal Solid Waste Management in South Africa: From Waste to Energy Recovery through Waste-to-Energy Technologies in Johannesburg. Local Environ. 2019, 24, 249–257. [Google Scholar] [CrossRef]
- Cudjoe, D.; Acquah, P.M. Environmental Impact Analysis of Municipal Solid Waste Incineration in African Countries. Chemosphere 2021, 265, 129186. [Google Scholar] [CrossRef]
- Expert Network on Textile Recycling (ENTeR). Strategic Agenda on Textile Waste Management and Recycling. 2016. Available online: https://www.interreg-central.eu/Content.Node/Stategic-Agenda.pdf (accessed on 20 May 2021).
- Arafat, H.A.; Jijakli, K.; Ahsan, A. Environmental Performance and Energy Recovery Potential of Five Processes for Municipal Solid Waste Treatment. J. Clean. Prod. 2015, 105, 233–240. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Armato, C.; Pozo, C.; González-Martínez, A.; González-López, J. New Concepts in Anaerobic Digestion Processes: Recent Advances and Biological Aspects. Appl. Microbiol. Biotechnol. 2018, 102, 5065–5076. [Google Scholar] [CrossRef] [PubMed]
- Millati, R.; Wikandari, R.; Ariyanto, T.; Putri, R.U.; Taherzadeh, M.J. Pretreatment Technologies for Anaerobic Digestion of Lignocelluloses and Toxic Feedstocks. Bioresour. Technol. 2020, 304, 122998. [Google Scholar] [CrossRef] [PubMed]
- Patinvoh, R.J.; Osadolor, O.A.; Chandolias, K.; Sárvári Horváth, I.; Taherzadeh, M.J. Innovative Pretreatment Strategies for Biogas Production. Bioresour. Technol. 2017, 224, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebrati, L.; El Achaby, M.; Chatoui, H.; Laqbaqbi, M.; El Kharraz, J.; Aziz, F. Inhibiting Effect of Textile Wastewater on the Activity of Sludge from the Biological Treatment Process of the Activated Sludge Plant. Saudi J. Biol. Sci. 2019, 26, 1753–1757. [Google Scholar] [CrossRef]
- Kabir, M.M.; Forgács, G.; Sárvári Horváth, I. Enhanced Methane Production from Wool Textile Residues by Thermal and Enzymatic Pretreatment. Process Biochem. 2013, 48, 575–580. [Google Scholar] [CrossRef]
- Zhou, W.; Tuersun, N.; Zhang, Y.; Wang, Y.; Cheng, C.; Chen, X. Optimization and System Energy Balance Analysis of Anaerobic Co-Digestion Process of Pretreated Textile Dyeing Sludge and Food Waste. J. Environ. Chem. Eng. 2021, 9, 106855. [Google Scholar] [CrossRef]
- Kuzmanova, E.; Zhelev, N.; Akunna, J.C. Effect of Liquid Nitrogen Pre-Treatment on Various Types of Wool Waste Fibres for Biogas Production. Heliyon 2018, 4, e00619. [Google Scholar] [CrossRef]
- Aksu Bahçeci, H.; Sanin, S.L.; Sanin, F.D. Co-Digestion Potential of Industrial Sludges with Municipal Sludge. Waste Biomass Valorization 2021, 12, 5437–5449. [Google Scholar] [CrossRef]
- Malik, K.; Salama, E.S.; Kim, T.H.; Li, X. Enhanced Ethanol Production by Saccharomyces Cerevisiae Fermentation Post Acidic and Alkali Chemical Pretreatments of Cotton Stalk Lignocellulose. Int. Biodeterior. Biodegrad. 2020, 147, 104869. [Google Scholar] [CrossRef]
- Yao, Y.; Bergeron, A.D.; Davaritouchaee, M. Methane Recovery from Anaerobic Digestion of Urea-Pretreated Wheat Straw. Renew. Energy 2018, 115, 139–148. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Z.; Sun, J.; Long, J. Ecofriendly Pretreatment of Grey Cotton Fabric with Enzymes in Supercritical Carbon Dioxide Fluid. J. Clean. Prod. 2016, 120, 85–94. [Google Scholar] [CrossRef]
- Sharma, H.K.; Xu, C.; Qin, W. Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization 2019, 10, 235–251. [Google Scholar] [CrossRef]
- Forgács, G.; Lundin, M.; Taherzadeh, M.J.; Horváth, I.S. Pretreatment of Chicken Feather Waste for Improved Biogas Production. Appl. Biochem. Biotechnol. 2013, 169, 2016–2028. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Luo, T.; Mei, Z. Can Hydrothermal Pretreatment Improve Anaerobic Digestion for Biogas from Lignocellulosic Biomass? Bioresour. Technol. 2018, 249, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Saritha, M.; Arora, A. Lata Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J. Microbiol. 2012, 52, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Chen, X.; Dai, R.; Luo, Y.; Ma, P.; Ni, S.; Ma, C. Anaerobic Digestion of Recalcitrant Textile Dyeing Sludge with Alternative Pretreatment Strategies. Bioresour. Technol. 2016, 222, 252–260. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, X.; Dai, R.; Wang, Y.; Ma, P. Effect of Low Temperature of Thermal Pretreatment on Anaerobic Digestion of Textile Dyeing Sludge. Bioresour. Technol. 2017, 243, 426–432. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Motamed, B.; Ramakrishna, S.; Naebe, M. Death by Waste: Fashion and Textile Circular Economy Case. Sci. Total Environ. 2020, 718, 137317. [Google Scholar] [CrossRef]
Cotton | Jeans | Wool | Fresh Biosludge | Textile Dye Sludge | |
---|---|---|---|---|---|
TS (%) | 93.4 | 98.5 | 37.9 | 14.9 | 4.1 |
VS (%TS) | 84.2 | 61 | 16.6 | 77 | 52.6 |
pH | 7.1 | N.A. | 7.9 | 8.7 | 7.2 |
Biological oxygen Demand (BOD) (mg/L) | N.A. | N.A. | N.A. | 887.3 | 1512 |
Chemical oxygen demand (COD) (mg/L) | 2550 | N.A. | 2080.2 | 25,215 | 741.3 |
Protein (%DW) | N.A. | N.A. | 70 | N.A. | N.A. |
Heavy metals (mg/gSS) | N.A. | N.A. | N.A. | N.A. | Pb 0.04, Ni 0.10, Cd 0.03, Cu 0.26, Zn 0.29 |
Cotton (%DW) | N.A. | 70 | N.A. | N.A. | N.A. |
Polyester (%DW) | N.A. | 45 | N.A. | N.A. | N.A. |
Cellulose (%DW) | 80 | N.A. | N.A. | N.A. | N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anacleto, T.M.; Kozlowsky-Suzuki, B.; Wilson, A.E.; Enrich-Prast, A. Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry. Energies 2022, 15, 5574. https://doi.org/10.3390/en15155574
Anacleto TM, Kozlowsky-Suzuki B, Wilson AE, Enrich-Prast A. Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry. Energies. 2022; 15(15):5574. https://doi.org/10.3390/en15155574
Chicago/Turabian StyleAnacleto, Thuane Mendes, Betina Kozlowsky-Suzuki, Alan E. Wilson, and Alex Enrich-Prast. 2022. "Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry" Energies 15, no. 15: 5574. https://doi.org/10.3390/en15155574
APA StyleAnacleto, T. M., Kozlowsky-Suzuki, B., Wilson, A. E., & Enrich-Prast, A. (2022). Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry. Energies, 15(15), 5574. https://doi.org/10.3390/en15155574