Supporting Multi-Attribute, Non-Compensating Selection of the Right Heat Pump Device for a Residential Building, Considering the Limited Availability of the Necessary Resources
Abstract
:1. Introduction
2. Methods
2.1. Multi-Attribute Decision Making Support
- MADA problem description.
- The choice (indication) of the most suitable option (options) among options available.
- Ranking/ordering of available options from best to worst, or vice versa.
- Grouping (sorting or classification) of available options.
- Problem definition.
- The determination of considered options and appropriate criteria for their assessment.
- The choice of the technique for solving the problem, as well as the construction of a detailed problem model.
- A multidimensional assessment of options.
- Provision of a problem solution by means of the recommendation of the best option (or a set of the best options), constructing the ranking of options, or dividing options into several groups.
- Full preference aggregation techniques.
- Outranking relation techniques.
- Goal, aspiration, or reference-level techniques.
- Minimizing the differences between the evaluation of options and the evaluation of certain patterns, e.g., in linear programming-based goal programming [116] for ranking of options and the choice of the best option.
- The concept of a distance in a multidimensional space of assessment criteria from an option to assumed anti-ideal and ideal option patterns, such as in popular ranking approaches Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [117] and Visekriterijumska Optimizacija i Kompromisno Resenje (VIKOR) [118].
- Result-to-input ratios, such as data envelopment analysis (DEA) [119], used to identify effective (nondominated) options in terms of productivity.
2.2. The Choice of Appropriate Approach
2.3. The Procedure Supporting the Selection of a Heat Pump
- Initial limitation of the set of all available heat pump devices based on local conditions and technical feasibility.
- Multidimensional device assessment and ordering of technically feasible heat pump devices in terms of important substantive attributes other than critical resources needed to acquire and use a device.
- The identification of the best device taking into account critical resource availability.
- The maximums, called stimulants in econometrics, and values in commercial offers (a higher level is better).
- The minimums, called destimulants in econometrics, and shortcomings in commercial offers (a lower level is better).
- The optimums, called nominants in econometrics, and mediums in commercial offers (a given range of levels is best).
- Determination of the characteristics of option attributes and their states for individual options.
- The creation of a rectangular decision matrix X to describe attributes of considered options. The matrix consists of n rows which are devoted to subsequent options (I = 1, 2, …, n) and m columns which deal with subsequent substantive attributes (j = 1, 2, …, m). Matrix component xij contains information about a state (a level) of the j-th subsequent attribute in the case of the i-th subsequent option.
- Unifying the character of option attributes—the transformation of the decision matrix into a form X* which is based on a uniform nature of all attributes. This can be achieved by means of adequate transformation of all attributes that are minimums or optimums into maximums. For example, the application of zero-based unitarization [135] may help in this regard.
- The identification of direct option dominance cases thanks to the application of n(n − 1)/2 pairwise option comparisons and the construction of direct dominance matrix A (Equation (1)).
- The identification of indirect option dominance cases, i.e., the dominance through other options. The derivation of a series of results of raising B matrix (Equation (2)) to subsequent powers and the construction of domination matrix D (Equation (3)) to express final dominance hierarchy for heat pump device alternatives.
2.4. A Sample Analysis
2.4.1. Basic Requirements
2.4.2. Utilized ASHP Offers
2.4.3. Substantial Attributes and Required Resources
- Brand.
- Model.
- Nominal power (kW).
- Seasonal energy efficiency scores SCOP (-), SSEff. (%), and annual energy consumption (kWh/year).
- For heating: power output (kW), external input energy demand (kW), and coefficient of performance—COP (-); for different external air temperature (OAT) levels: 15 °C, 7 ° C, 2 °C, and −7 °C.
- For cooling: power output (kW), external input energy demand (kW), and energy efficiency ratio EER (-); for different combinations of external air temperature (OAT) and leaving water temperature LWT (°C) levels, e.g., 35 °C and 18 °C, and 35 °C and 7 °C, respectively.
- Applied refrigerant brand and amount (kg).
- Heat pump operational temperature range for heating and for cooling function (°C).
- Water temperature range in indoor plant part for heating and for cooling function (°C).
- Domestic hot water temperature range (°C).
- Noise intensity (dB).
- Mass of outdoor and indoor ASHP device parts (kg).
- Hot water tank volume (if used as standard component of ASHP device set) (l).
- Energy efficiency class for heating (and for domestic hot water production by means of a standard dhw tank together with water consumption profile).
- Length and height difference limits for tubes (m).
- Power supply: voltage (V), current (A), and number of current phases.
- Number and power (kW) of additional heaters.
- Nominal power.
- Power output, required power supply, and COP indicator during heating at an outdoor temperature level of 7 °C.
- Power output, required power supply, and EER indicator for cooling function at an outdoor temperature level of 35 °C and leaving water temperature of 18 °C.
- Maximum provided temperature for domestic hot water.
- Hot tank volume (if applicable).
- Mass of basic device components (the contribution equal to 90%).
- Energy efficiency classes (87%).
- Noise level (87%).
- Lower (83%) and upper (80%) outdoor temperature limits for heating function.
- Amount and type of refrigerant (80%).
2.5. Software Support
3. Results
3.1. Domination Hierarchy
3.2. Identification of the Best Offers
4. Discussion
5. Conclusions
- Flexibility, consisting of the possibility of its strict adaptation to the needs related to various local conditions.
- The non-compensatory nature of the Pareto domination idea, which prevents undesirable compromises and allows for an uncompromising multi-attribute evaluation of available ASHP device offers.
- The simplicity of considering both tangible and intangible device attributes in available offers, thanks to the application of universal and easily implementable pairwise comparisons.
- The possibility to take into account the actual limited availability of critical resources, e.g., financial sources, necessary for the reliable implementation and operation of an ASHP device. Note that the procedure may also comprise an interesting tool for providing its user with information about the scale of possible insufficiency of critical resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASCII | American Standard Code for Information Interchange |
AHP | Analytic hierarchy process |
ANN | Artificial neural network |
ANP | Analytic network process |
ASHP | Air source heat pump |
COP | Coefficient of performance |
DEA | Data envelopment analysis |
dhw | Domestic hot water |
EER | Energy efficiency ratio |
ELECTRE | Élimination et Choix Tranduisant la Réalité |
FLOSS | Free and Libre Open-Source Software |
GSHP | Ground source heat pump |
GWP | Global warming potential |
HPWH | Heat pump water heater |
HVAC | Heating, ventilation and air-conditioning |
ISM | Interpretative structural modeling |
LP | Linear programming |
LWT | Leaving water temperature |
MACBETH | Measuring Attractiveness by a Categorical-Based Evaluation Technique |
MADA | Multi-attribute decision analysis |
MCDA | Multicriteria decision analysis |
MCDM | Multicriteria decision making |
MILP | Mixed linear programming |
MINLP | Mixed integer nonlinear programming |
MIQCP | Mixed integer quadratic constrained programming |
MODM | Multi-objective decision making |
NDAHP | Novel dual ASHP |
OAT | External air temperature |
PROMETHEE | Preference Ranking Organization Method for Enriched Evaluation |
REMBRANDT | Ratio Estimation in Magnitudes or Deci-Bells to Rate Alternatives Which Are Nondominated |
SAW | Simple additive weighting |
SCOP | Seasonal coefficient of performance |
SSEff. | Seasonal energy efficiency score |
SWOT | Strengths, weaknesses, opportunities, and threats analysis |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
UK | The United Kingdom and Northern Ireland |
VIKOR | Visekriterijumska Optimizacija i Kompromisno Resenje |
WSHP | Water source heat pump |
Appendix A
No. | Brand | Name | Type | dhw Tank | Nominal Power (kW) |
---|---|---|---|---|---|
1 | LG | R32 Monobloc | Mono | No | 14 |
2 | LG | R410A Split | Split | No | 14 |
3 | LG | R410A Split IWT | Split | Yes | 14 |
7 | Viessmann | Split Vitocal 101-s 101.A14 | Split | No | 14 |
8 | Viessmann | Vitocal 200-A mono 201 A13 | Mono | No | 13 |
9 | Viessmann | Split Vitocal 200-S 201.D13 | Split | No | 13 |
10 | Viessmann | Vitocal 222-A mono 221.D13 | Mono | Yes | 13 |
11 | Viessmann | Split Vitocal 222-S 221.C13 + dhw | Split | Yes | 13 |
12 | Viessmann | Vitocal 300-A mono 301.B14 | Mono | No | 14 |
16 | Vaillant | Split aroTHERM VWL 155/2A | Split | No | 15 |
17 | Hestor | Lzti—LZTi/SW6 | Mono | No | 15 |
18 | Hestor | Split WZT—WZT/SW6 14M | Split | No | 14 |
19 | Hestor | Split WZT—WZT/SW6 14Tt | Split | No | 14 |
20 | Panasonic | AllInOne Aquarea HP—KIT-ADC16HE5 + dhw | Split | Yes | 16 |
21 | Panasonic | AllInOne Aquarea HP—KIT-ADC16HE8 + dhw | Split | Yes | 16 |
22 | Panasonic | AllInOne Aquarea T-CAP generacji H—KIT-A XC16HE8 + dhw | Split | Yes | 16 |
23 | Panasonic | AllInOne Aquarea T-CAP generacji H—KIT-AQC16HE + dhw | Split | Yes | 16 |
24 | Panasonic | Split Aquarea HP generacji H SDC—KIT-WC16H6E5 | Split | No | 16 |
25 | Panasonic | Split Aquarea HP generacji H SDC—KIT-WC16H9E8 | Split | No | 16 |
26 | Panasonic | Split Aquarea T-CAP generacji H SXC—KIT-WXC16H9E8 | Split | No | 16 |
27 | Panasonic | Split Aquarea T-CAP generacji H SQC—KIT-WQC16H9E8 | Split | No | 16 |
28 | Panasonic | Mono Aquarea HP generacji H MDC—WH-MDC16H6E5 | Mono | No | 16 |
29 | Panasonic | Mono Aquarea HP generacji H MXC—WH-MXC16H9E8 | Mono | No | 16 |
32 | Haier | Monoblock AU162FYCRA(HW) | Mono | No | 16 |
47 | Inventor | ATS 14T/HU160T9 | Split | No | 14 |
48 | Inventor | ATMH14T9 | Mono | No | 14 |
52 | Daikin | Altherma 3—16S18D6V(G)/D9W(G) + 14DV | Split | Yes | 14 |
53 | Daikin | Altherma 3—16D6V/D9W + 14DV | Split | Yes | 14 |
54 | Sevra | SEV-HPS1-14/O + SEV-MHPS3-16/I | Split | No | 14 |
55 | Sevra | SEV-HPS3-14/O + SEV-MHPS3-16/I | Split | No | 14 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13a | 13b |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14 | 3.11 | 4.50 | 14 | 3.26 | 4.3 | 80 | - | A+++ | 63 | −25 | 48 | R32 | ? |
2 | 14 | 3.18 | 4.41 | 12 | 3.08 | 3.9 | 80 | - | A+++ | 66 | −20 | 48 | R410A | ? |
3 | 14 | 3.43 | 4.08 | 11 | 3.53 | 3.12 | 60 | 200 | A+++/A | 66 | −20 | 48 | R410A | ? |
7 | 15 | 3.19 | 4.70 | 9.5 | 2.57 | 3.7 | 60 | - | A++ | 64 | ? | ? | R410A | 5 |
8 | 14.2 | 2.84 | 5.00 | 9 | 2.20 | 4.1 | 60 | - | A+++ | ? | −20 | ? | R410A | 2.4 |
9 | 13.7 | 2.80 | 4.90 | 11.5 | 2.95 | 3.9 | 60 | - | A+++ | ? | ? | ? | R410A | 3.6 |
10 | 14.2 | 2.84 | 5.00 | 11.5 | 2.95 | 3.9 | 60 | 220 | A+++/A+ | ? | ? | ? | R410A | 3.6 |
11 | 13.7 | 2.74 | 5.00 | 11.5 | 2.95 | 3.9 | 60 | 220 | A+++/A+ | ? | ? | ? | R410A | 3.6 |
12 | 13.9 | 2.78 | 5,00 | 12 | 4.80 | 2.5 | 60 | - | A++ | 54 | ? | ? | R410A | 4.75 |
16 | 14.6 | 3.40 | 4.50 | 13.7 | 4.40 | 3.2 | 63 | - | A++ | 66 | −20 | 46 | R410A | 4.4 |
17 | 15 | 3.40 | 4.40 | 14.5 | 3.71 | 3.9 | 65 | - | ? | 67 | −20 | ? | ? | ? |
18 | 13.9 | 3.30 | 4.20 | 15.4 | 4.10 | 3.8 | 65 | - | ? | 66 | −20 | ? | ? | ? |
19 | 13.9 | 3.20 | 4.30 | 15.5 | 4.00 | 3.9 | 65 | - | ? | 66 | −20 | ? | ? | ? |
20 | 16 | 3.74 | 4.28 | 12.2 | 2.96 | 4.12 | 65 | 185 | A+++/A | 72 | −20 | 35 | R410A | 2.55 |
21 | 16 | 3.74 | 4.28 | 12.2 | 2.96 | 4.12 | 65 | 185 | A+++/A | 72 | −20 | 35 | R410A | 2.55 |
22 | 16 | 3.74 | 4.28 | 12.2 | 3.50 | 3.49 | 60 | 185 | A+++/A | 68 | −28 | 35 | R410A | 2.99 |
23 | 16 | 3.74 | 4.28 | 12.2 | 3.50 | 3.49 | 60 | 185 | A++/A | 68 | −28 | 35 | R410A | 2.99 |
24 | 16 | 3.74 | 4.28 | 12.2 | 2.96 | 4.12 | 60 | - | A+++ | 72 | −20 | 35 | R410A | 2.55 |
25 | 16 | 3.74 | 4.28 | 12.2 | 2.96 | 4.12 | 60 | - | A+++ | 72 | −20 | 35 | R410A | 2.55 |
26 | 16 | 3.74 | 4.28 | 12.2 | 3.50 | 3.49 | 60 | - | A++ | 72 | −28 | 35 | R410A | 2.9 |
27 | 16 | 3.74 | 4.28 | 12.2 | 3.50 | 3.49 | 60 | - | A++ | 68 | −28 | 35 | R410A | 2.99 |
28 | 16 | 3.74 | 4.28 | 12.2 | 2.96 | 4.12 | 60 | - | A+++ | 72 | −20 | 35 | R410A | 2.1 |
29 | 16 | 3.74 | 4.28 | 12.2 | 3.50 | 3.49 | 60 | - | A++ | 72 | −20 | 35 | R410A | 2.35 |
32 | 16 | 3.86 | 4.15 | 16 | 3.64 | 4.4 | 60 | - | ? | 67 | −20 | 46 | R32 | 2.6 |
47 | 14.5 | 3.09 | 4.7 | 13.5 | 3.75 | 3.6 | 60 | - | A+++ | 65 | −25 | 43 | R32 | 1.65 |
48 | 14.5 | 3.15 | 4.6 | 13.5 | 3.75 | 3.6 | 60 | - | A+++ | 69 | −25 | 43 | R32 | 1.75 |
52 | 14.5 | 2.91 | 4.99 | 11.1 | 2.72 | 4.09 | 70 | 180 | A+++/A | 68 | −28 | 43 | R32 | 3.5 |
53 | 14.5 | 2.91 | 4.99 | 11.1 | 2.72 | 4.09 | 75 | 180 | A++ | 68 | −28 | 43 | R32 | 3.5 |
54 | 14.5 | 3.09 | 4.70 | 13.5 | 3.75 | 3.6 | 60 | - | A+++ | 65 | −25 | 43 | R32 | 1.84 |
55 | 14.5 | 3.09 | 4.70 | 13.5 | 3.75 | 3.6 | 60 | - | A+++ | 65 | −25 | 43 | R32 | 1.84 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.130 | 0.670 | 0.457 | 0.714 | 0.409 | 0.947 | 1 | - | 0.5 | −0.625 | 1 | ? |
2 | 0.130 | 0.607 | 0.359 | 0.429 | 0.340 | 0.736 | 1 | - | 0.333 | 0 | 1 | ? |
3 | 0.130 | 0.384 | 0 | 0.286 | 0.512 | 0.326 | 0 | 0.5 | 0.333 | 0 | 1 | ? |
7 | 0.565 | 0.597 | 0.674 | 0.071 | 0.143 | 0.632 | 0 | - | 0.444 | ? | ? | 0 |
8 | 0.217 | 0.911 | 1 | 0 | 0 | 0.842 | 0 | - | ? | 0 | ? | 0.582 |
9 | 0 | 0.950 | 0.891 | 0.357 | 0.289 | 0.737 | 0 | - | ? | ? | ? | 0.313 |
10 | 0.217 | 0.911 | 1 | 0.357 | 0.289 | 0.737 | 0 | 1 | ? | ? | ? | 0.313 |
11 | 0 | 1 | 1 | 0.357 | 0.289 | 0.737 | 0 | 1 | ? | ? | ? | 0.313 |
12 | 0.087 | 0.964 | 1 | 0.429 | 1 | 0 | 0 | - | 1 | ? | ? | 0.056 |
16 | 0.391 | 0.411 | 0.457 | 0.671 | 0.846 | 0.368 | 0.15 | - | 0.333 | 0 | 0.847 | 0.134 |
17 | 0.565 | 0.411 | 0.348 | 0.786 | 0.582 | 0.737 | 0.25 | - | 0.278 | 0 | ? | ? |
18 | 0.087 | 0.5 | 0.130 | 0.914 | 0.731 | 0.684 | 0.25 | - | 0.333 | 0 | ? | ? |
19 | 0.087 | 0.589 | 0.239 | 0.929 | 0.693 | 0.736 | 0.25 | - | 0.333 | 0 | ? | ? |
20 | 1 | 0.109 | 0.217 | 0.457 | 0.294 | 0.853 | 0.25 | 0.125 | 0 | 0 | 0 | 0.549 |
21 | 1 | 0.109 | 0.217 | 0.457 | 0.294 | 0.853 | 0.25 | 0.125 | 0 | 0 | 0 | 0.549 |
22 | 1 | 0.109 | 0.217 | 0.457 | 0.499 | 0.521 | 0 | 0.125 | 0.222 | 1 | 0 | 0.450 |
23 | 1 | 0.109 | 0.217 | 0.457 | 0.499 | 0.521 | 0 | 0.125 | 0.222 | 1 | 0 | 0.450 |
24 | 1 | 0.109 | 0.217 | 0.457 | 0.294 | 0.853 | 0 | - | 0 | 0 | 0 | 0.549 |
25 | 1 | 0.109 | 0.217 | 0.457 | 0.294 | 0.853 | 0 | - | 0 | 0 | 0 | 0.549 |
26 | 1 | 0.109 | 0.217 | 0.457 | 0.499 | 0.521 | 0 | - | 0 | 1 | 0 | 0.470 |
27 | 1 | 0.109 | 0.217 | 0.457 | 0.499 | 0.521 | 0 | - | 0.222 | 1 | 0 | 0.450 |
28 | 1 | 0.109 | 0.217 | 0.457 | 0.294 | 0.853 | 0 | - | 0 | 0 | 0 | 0.649 |
29 | 1 | 0.109 | 0.217 | 0.457 | 0.499 | 0.521 | 0 | - | 0 | 0 | 0 | 0.949 |
32 | 1 | 0 | 0.076 | 1 | 0.555 | 1 | 0 | - | 0.278 | 0 | 0.847 | 0.931 |
47 | 0.348 | 0.688 | 0.674 | 0.643 | 0.597 | 0.579 | 0 | - | 0.389 | 0.625 | 0.615 | 1 |
48 | 0.348 | 0.634 | 0.565 | 0.643 | 0.597 | 0.579 | 0 | - | 0.167 | 0.625 | 0.615 | 0.993 |
52 | 0.348 | 0.848 | 0.989 | 0.3 | 0.202 | 0.837 | 0.5 | 0 | 0.222 | 1 | 0.615 | 0.866 |
53 | 0.348 | 0.848 | 0.989 | 0.3 | 0.202 | 0.837 | 0.75 | 0 | 0.222 | −1 | 0.615 | 0.866 |
54 | 0.348 | 0.688 | 0.674 | 0.643 | 0.597 | 0.579 | 0 | - | 0.389 | 0.625 | 0.615 | 0.986 |
55 | 0.348 | 0.688 | 0.674 | 0.643 | 0.597 | 0.579 | 0 | - | 0.389 | 0.625 | 0.615 | 0.986 |
References
- Grassi, W. Heat Pumps, Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Zehnle, P. Considerations generales sur les hydrocarbures du point de vue thermodynamique. In Proceedings of the World Petroleum Congress, Paris, France, 14–19 April 1937; pp. 551–557. [Google Scholar]
- Berry, R.U. Possibilities of Heat Pumps for Heating Homes. Trans. Am. Inst. Electr. Eng. 1944, 63, 619–622. [Google Scholar] [CrossRef]
- Penrod, E.B. Continuous air conditioning with the heat pump. Am. Sci. 1947, 35, 502–524. [Google Scholar] [PubMed]
- Almack, R.B.; Ambrose, E.R.; Augenstein, M.K.; Bates, L.W. The heat pump: One unit for year-round air conditioning. Hospitals 1950, 24, 39–41. [Google Scholar] [PubMed]
- Andrews, S.W. The Heat Pump from the Utility’s Point of View. Trans. Am. Inst. Electr. Eng. 1948, 67, 562–564. [Google Scholar] [CrossRef]
- Bary, C. The Heat Pump—Its Significance as a Potential Residential Electric Load. Trans. Am. Inst. Electr. Eng. 1949, 68, 1–8. [Google Scholar] [CrossRef]
- Penrod, E.B. Measurement of the thermal diffusivity of a soil by the use of a heat pump. J. Appl. Phys. 1950, 21, 425–427. [Google Scholar] [CrossRef]
- Penrod, E.B. Progress in heat pump engineering. Phys. Today 1952, 5, 10–15. [Google Scholar] [CrossRef]
- Mei, V.C.; Baxter, V.D. Performance of a ground-coupled heat pump with multiple dissimilar u-tube coils in series. ASHRAE Trans. 1986, 92 Pt 2A, 30–42. [Google Scholar]
- Guoyuan, M.; Qinhu, C.; Yi, J. Experimental investigation of air-source heat pump for cold regions. Int. J. Refrig. 2003, 26, 12–18. [Google Scholar] [CrossRef]
- Li, Y.C.; Chen, G.M.; Huang, Y.Y.; Zhang, L. Techno-economic analysis on ground-source and air-source heat pump systems. In Proceedings of the International Conference on Cryogenics and Refrigeration, Hangzhou, China, 22–25 April 2003; pp. 691–694. [Google Scholar]
- Ma, G.; Chai, Q.-H.; Yan, Q. Performance characteristic of an ASHP system with scroll compressor economizer. In Proceedings of the 4th International Symposium on Heating, Ventilating and Air Conditioning, Beijing, China, 9–11 October 2003; pp. 730–736. [Google Scholar]
- Wang, R.X.; Xie, G.Z.; Wu, Y.Z. Air source heat pump with the substitute refrigerants working under the condition of low temperatures. In Proceedings of the International Conference on Cryogenics and Refrigeration, Hangzhou, China, 22–25 April 2003; pp. 699–702. [Google Scholar]
- Wang, W.; Ma, Z.; Jiang, Y.; Yang, Y.; Xu, S.; Yang, Z. Field test investigation of a double-stage coupled heat pumps heating system for cold regions. Int. J. Refrig. 2005, 28, 672–679. [Google Scholar] [CrossRef]
- Kelly, N.J.; Cockroft, J. Analysis of retrofit air source heat pump performance: Results from detailed simulations and comparison to field trial data. Energy Build. 2021, 43, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Cabrol, L.; Rowley, P. Towards low carbon homes—A simulation analysis of building-integrated air-source heat pump systems. Energy Build. 2012, 48, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Z.; Zheng, Y.; Lin, Z.; Hao, P.; Huan, C.; Wang, T. Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification. Appl. Energy 2015, 139, 212–219. [Google Scholar] [CrossRef]
- Safa, A.A.; Fung, A.S.; Kumar, R. Performance of two-stage variable capacity air source heat pump: Field performance results and TRNSYS simulation. Energy Build. 2015, 94, 80–90. [Google Scholar] [CrossRef]
- Hakkaki-Fard, A.; Eslami-Nejad, P.; Aidoun, Z.; Ouzzane, M. A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates. Energy 2015, 87, 49–59. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Nie, J.; Li, Y. Techno-economic analysis of air source heat pump applied for space heating in northern China. Appl. Energy 2017, 207, 533–542. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Q.; Li, B.; Fan, X.; Fu, Z. Application of an air source heat pump (ASHP) for heating in Harbin, the coldest provincial capital of China. Energy Build. 2017, 138, 96–103. [Google Scholar] [CrossRef]
- Wu, W.; Skye, H.M.; Domanski, P.A. Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings. Appl. Energy 2018, 212, 577–591. [Google Scholar] [CrossRef]
- Wang, J.; Belusko, M.; Liu, M.; Semsarilar, H.; Liddle, R.; Alemu, A.; Evans, M.; Zhao, C.; Hudson, J.; Bruno, F. A comprehensive study on a novel transcritical CO2 heat pump for simultaneous space heating and cooling—Concepts and initial performance. Int. J. Refrig. 2021, 243, 114397. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Jiang, Y. A comparative study on system performances of multi-split air source heat pump with different energy accumulators and storage methods. Energy Build. 2021, 231, 110588. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Z.; Zhou, Q.; Qiao, Y.; Cao, F. Model predictive control for the operation of a transcritical CO2 air source heat pump water heater. Appl. Energy 2021, 300, 117339. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Shao, S.; Xu, W.; Wang, Z.; Wang, Y.; Sun, X.; Yang, Q.; Xu, C.; Zhao, W. A semi-theoretical model for energy efficiency assessment of air source heat pump systems. Energy Convers. Manag. 2021, 228, 113667. [Google Scholar] [CrossRef]
- Chesser, M.; Lyons, P.; O’Reilly, P.; Carroll, P. Air source heat pump in-situ performance. Energy Build. 2021, 251, 111365. [Google Scholar] [CrossRef]
- Vučković, G.; Stolijiković, M.M.; Ignjatović, M.G.; Vukić, M. Air-source heat pump performance comparison in different real operational conditions based on advanced exergy and exergoeconomic approach. Therm. Sci. 2021, 25, 1849–1866. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, H.; Shi, W.; Zhang, M.; Wang, B. Analysis and determination of a seasonal performance evaluation for air source heat pumps. J. Build. Eng. 2021, 43, 102574. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, W.; Shao, S.; Wang, Z.; Xu, W.; Li, H.; Wang, Y.; Wang, W.; Yang, Q.; Xu, C. Analysis on key influence factors of air source heat pumps with field monitored data in Beijing. Sustain. Energy Technol. Assess. 2021, 48, 101642. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Luo, X.; Wang, D.; Hu, X.; Hu, L. Design and operation optimization of multi-source complementary heating system based on air source heat pump in Tibetan area of Western Sichuan, China. Energy Build. 2021, 242, 110979. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Li, X.; Xu, Z.; Yang, Q.; Yang, Y. Seasonal heating performance prediction of air-to-water heat pumps based on short-term dynamic monitoring. Renew. Energy 2021, 180, 829–837. [Google Scholar] [CrossRef]
- Abid, M.; Hewitt, N.; Huang, M.-J.; Wilson, C.; Cotter, D. Performance analysis of the developed air source heat pump system at low-to-medium and high supply temperatures for Irish housing stock heat load applications. Sustainability 2021, 13, 11753. [Google Scholar] [CrossRef]
- Pei, X.; Guo, Y.; Guo, Y.; Li, R.; Yang, J.; Mao, M. Research on the characteristics of the refrigeration, heating and hot water combined air-conditioning system [Recherche sur les caractéristiques du système de conditionnement d’air combiné à la production de froid, de chauffage et d’eau chaude sanitaire]. Int. J. Refrig. 2021, 130, 150–160. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Xu, Z.; Shao, S.; Wang, Z.; Sun, X.; Wang, Y.; Xu, C.; Zhao, W. Impact of water volume on the energy saving potential of air source heat pump systems [Impact du volume d’eau sur le potentiel d’économie d’énergie des systémes de pompe à chaleur aérothermique]. Int. J. Refrig. 2021, 130, 128–139. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y.; Tian, X.; Niu, J.; Lin, Z. Performance analysis of a dual temperature heat pump based on ejector-vapor compression cycle. Energy Build. 2021, 248, 111194. [Google Scholar] [CrossRef]
- Mohammadpourkarbasi, H.; Sharples, S. Appraising the life cycle costs of heating alternatives for an affordable low carbon retirement development. Sustain. Energy Technol. Assess. 2022, 49, 101693. [Google Scholar] [CrossRef]
- Kamel, R.S.; Fung, A.S. Modeling, simulation and feasibility analysis of residential BIPV/T+ASHP system in cold climate—Canada. Energy Build. 2014, 82, 758–770. [Google Scholar] [CrossRef]
- Kazmi, H.; D’Oca, S.; Delmastro, C.; Lodeweyckx, S.; Corgnati, S.P. Generalizable occupant-driven optimization model for domestic hot water production in NZEB. Appl. Energy 2016, 175, 1–15. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Zhao, J.; Li, X. Data-driven modeling of residential air source heat pump system for space heating. J. Therm. Anal. Calorim. 2021, 145, 1863–1876. [Google Scholar] [CrossRef]
- Abid, M.; Hewitt, N.; Huang, M.-J.; Wilson, C.; Cotter, D. Domestic retrofit assessment of the heat pump system considering the impact of heat supply temperature and operating mode of control—A case study. Sustainability 2021, 13, 857. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, H.; Yao, Y.; Yan, L.; Gao, Q. Experimental study on concentration change of spray solution used for a novel non-frosting air source heat pump system. Energy Build. 2014, 68, 707–712. [Google Scholar] [CrossRef]
- Jabari, F.; Nojavan, S.; Mohammadi Ivatloo, B. Designing and optimizing a novel advanced adiabatic compressed air energy storage and air source heat pump based μ-Combined Cooling, heating and power system. Energy 2016, 116, 64–77. [Google Scholar] [CrossRef]
- Fang, G.; Chan, M.-Y.; Yan, H.; Chen, W.; Deng, S.; Liu, X. A numerical study on evaluating the thermal environment in a space served by a bed-based air source heat pump (B-ASHP) system. Energy Build. 2021, 234, 110693. [Google Scholar] [CrossRef]
- Fang, G.; Deng, S.; Liu, X. A numerical study on evaluating sleeping thermal comfort using a Chinese-Kang based space heating system. Energy Build. 2021, 248, 111174. [Google Scholar] [CrossRef]
- Heng, W.; Wang, Z.; Wu, Y. Experimental study on phase change heat storage floor coupled with air source heat pump heating system in a classroom. Energy Build. 2021, 251, 111352. [Google Scholar] [CrossRef]
- Ural, T.; Karaca Dolgun, G.; Güler, O.V.; Keçebaş, A. Performance analysis of a textile based solar assisted air source heat pump with the energy and exergy methodology. Sustain. Energy Technol. Assess. 2021, 47, 101534. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, G.; Chai, Q.; Jiang, Y. Experiment investigation of reverse cycle defrosting methods on air source heat pump with TXV as the throttle regulator. Int. J. Refrig. 2004, 27, 671–678. [Google Scholar] [CrossRef]
- Minglu, Q.; Liang, X.; Deng, S.; Yiqiang, J. Improved indoor thermal comfort during defrost with a novel reverse-cycle defrosting method for air source heat pumps. Build. Environ. 2010, 45, 2354–2361. [Google Scholar] [CrossRef]
- Wenju, H.; Yiqiang, J.; Minglu, Q.; Long, N.; Yang, Y.; Shiming, D. An experimental study on the operating performance of a novel reverse-cycle hot gas defrosting method for air source heat pumps. Appl. Therm. Eng. 2011, 31, 363–369. [Google Scholar] [CrossRef]
- Dong, J.; Deng, S.; Jiang, Y.; Xia, L.; Yao, Y. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump. Appl. Therm. Eng. 2012, 37, 380–387. [Google Scholar] [CrossRef]
- Qu, M.; Xia, L.; Deng, S.; Jiang, Y. A study of the reverse cycle defrosting performance on a multicircuit outdoor coil unit in an air source heat pump—Part I: Experiments. Appl. Energy 2012, 91, 122–129. [Google Scholar] [CrossRef]
- Jiang, Y.; Dong, J.; Qu, M.; Deng, S.; Yao, Y. A novel defrosting control method based on the degree of refrigerant superheat for air source heat pumps. Int. J. Refrig. 2013, 36, 2278–2288. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Y.; Wang, W.; Ge, Y.; Li, L.; Liu, J. A novel Temperature-Humidity-Time defrosting control method based on a frosting map for air-source heat pumps. Int. J. Refrig. 2015, 54, 45–54. [Google Scholar] [CrossRef]
- Tang, J.; Gong, G.; Su, H.; Wu, F.; Herman, C. Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method. Appl. Energy 2016, 169, 696–708. [Google Scholar] [CrossRef]
- Song, M.; Xu, X.; Mao, N.; Deng, S.; Xu, Y. Energy transfer procession in an air source heat pump unit during defrosting. Appl. Energy 2017, 204, 679–689. [Google Scholar] [CrossRef]
- Chung, Y.; Na, S.-I.; Yoo, J.W.; Kim, M.S. A determination method of defrosting start time with frost accumulation amount tracking in air source heat pump systems. Appl. Therm. Eng. 2021, 84, 116405. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Q.; Tian, G.; Wang, Y.; Zhao, Z.; Cao, F. A novel defrosting initiation strategy based on convolutional neural network for air-source heat pump [Une nouvelle stratégie de déclenchement du dégivrage basée sur un réseau neuronal convolutif pour une pompe à chaleur aérothermique]. Int. J. Refrig. 2021, 128, 95–103. [Google Scholar] [CrossRef]
- Pu, J.; Shen, C.; Zhang, C.; Liu, X. A semi-experimental method for evaluating frosting performance of air source heat pumps. Renew. Energy 2021, 173, 913–925. [Google Scholar]
- Li, Z.; Wang, W.; Sun, Y.; Wang, S.; Deng, S.; Lin, Y. Applying image recognition to frost built-up detection in air source heat pumps. Energy 2021, 233, 121004. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, R.; Xu, W.; Huang, D.; Qu, Z. A heater-assisted air source heat pump air conditioner to improve thermal comfort with frost-retarded heating and heatuninterrupted defrosting. Energies 2021, 14, 2646. [Google Scholar] [CrossRef]
- Song, M.; Deng, S.; Dang, C.; Mao, N.; Wang, Z. Review on improvement for air source heat pump units during frosting and defrosting. Appl. Energy 2018, 211, 1150–1170. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wang, Z.-L. An Overview of Frostless Methods for Air Source Heat Pump Systems. J. Eng. Therm. Energy Power 2021, 36, 1–8. [Google Scholar]
- Wang, W.; Xiao, J.; Guo, Q.C.; Lu, W.P.; Feng, Y.C. Field test investigation of the characteristics for the air source heat pump under two typical mal-defrost phenomena. Appl. Energy 2011, 88, 4470–4480. [Google Scholar] [CrossRef]
- Qu, M.; Xia, L.; Deng, S.; Jiang, Y. An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve. Appl. Energy 2012, 97, 327–333. [Google Scholar] [CrossRef]
- Song, M.; Xia, L.; Mao, N.; Deng, S. An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil. Appl. Energy 2016, 164, 36–44. [Google Scholar] [CrossRef]
- Song, M.; Deng, S.; Mao, N.; Ye, X. An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi-circuit outdoor coil. Appl. Energy 2016, 165, 371–382. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Gong, G.; Mao, N.; Deng, S.; Wang, Z. Experimental investigation on an air source heat pump unit with a three-circuit outdoor coil for its reverse cycle defrosting termination temperature. Appl. Energy 2017, 204, 1388–1398. [Google Scholar] [CrossRef]
- Eom, Y.H.; Chung, Y.; Park, M.; Hong, S.B.; Kim, M.S. Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions. Energy 2021, 228, 120542. [Google Scholar] [CrossRef]
- Di Schio, E.R.; Ballerini, V.; Dongellini, M.; Valdiserri, P. Defrosting of air-source heat pumps: Effect of real temperature data on seasonal energy performance for different locations in Italy. Appl. Sci. 2021, 11, 8003. [Google Scholar] [CrossRef]
- Singh, H.; Muetze, A.; Eames, P.C. Factors influencing the uptake of heat pump technology by the UK domestic sector. Renew. Energy 2010, 35, 873–878. [Google Scholar] [CrossRef]
- Navarro-Espinosa, A.; Mancarella, P. Probabilistic modeling and assessment of the impact of electric heat pumps on low voltage distribution networks. Appl. Energy 2014, 127, 249–266. [Google Scholar] [CrossRef]
- Su, C.; Madani, H.; Palm, B. Heating solutions for residential buildings in China: Current status and future outlook. Energy Convers. Manag. 2018, 177, 493–510. [Google Scholar] [CrossRef]
- Xu, L.; Li, M.; Zhang, Y.; Luo, X. Applicability and comparison of solar-air source heat pump systems between cold and warm regions of plateau by transient simulation and experiment. Build. Simul. 2021, 14, 1697–1708. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, X.; Liu, F.; Zhang, W.; Jiang, H.; Chen, S. Application and analysis of low temperature air source heat pump heating system in Cold Area. IOP Conf. Ser. Earth Environ. Sci. 2021, 766, 012086. [Google Scholar] [CrossRef]
- Lim, H.-W.; Kim, J.-H.; Lee, H.-S.; Shin, U.-C. Case study of load matching and energy cost for net-zero energy houses in Korea. Energies 2021, 14, 6407. [Google Scholar] [CrossRef]
- Tzinnis, E.; Baldini, L. Combining sorption storage and electric heat pumps to foster integration of solar in buildings. Appl. Energy 2021, 301, 117455. [Google Scholar] [CrossRef]
- Nikitin, A.; Deymi-Dashtebayaz, M.; Muraveinikov, S.; Nikitina, V.; Nazeri, R.; Farahnak, M. Comparative study of air source and ground source heat pumps in 10 coldest Russian cities based on energy-exergy-economic-environmental analysis. J. Clean. Prod. 2021, 321, 128979. [Google Scholar] [CrossRef]
- Kamel, R.S.; Fung, A.S.; Dash, P.R.H. Solar systems and their integration with heat pumps: A review. Energy Build. 2015, 87, 395–412. [Google Scholar] [CrossRef]
- Wang, X.; Xia, L.; Bales, C.; Zhang, X.; Copertaro, B.; Pan, S.; Wu, J. A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources. Renew. Energy 2020, 146, 2472–2487. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.W.; Xu, R.J.; Hua, N.; Xia, Y.; Zhou, W.B.; Yang, T.; Belyayev, Y.; Wang, H.S. Review of the advances in solar-assisted air source heat pumps for the domestic sector. Energy Convers. Manag. 2021, 247, 114710. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; He, B.-J.; Xu, W.; Jin, G.; Zhang, X. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Carroll, P.; Chesser, M.; Lyons, P. Air Source Heat Pumps field studies: A systematic literature review. Renew. Sustain. Energy Rev. 2020, 134, 110275. [Google Scholar] [CrossRef]
- Staffell, I.; Brett, D.; Brandon, N.; Hawkes, A. A review of domestic heat pumps. Energy Environ. Sci. 2012, 5, 9291–9306. [Google Scholar] [CrossRef]
- Greening, B.; Azapagic, A. Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK. Energy 2012, 39, 205–217. [Google Scholar] [CrossRef]
- Kelly, J.A.; Fu, M.; Clinch, J.P. Residential home heating: The potential for air source heat pump technologies as an alternative to solid and liquid fuels. Energy Policy 2016, 98, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Poppi, S.; Sommerfeldt, N.; Bales, C.; Madani, H.; Lundqvist, P. Techno-economic review of solar heat pump systems for residential heating applications. Renew. Sustain. Energy Rev. 2018, 81, 22–32. [Google Scholar] [CrossRef]
- Roy, B. Classement et choix en présen ce de points de vue multiples (la méthode ELECTRE). Rev. D’informatique Rech. Opérationelle 1968, 8, 57–75. [Google Scholar]
- Roy, B. Paradigms and Challenges. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; Volume 78, pp. 19–39. [Google Scholar]
- Ishizaka, A.; Nemery, P. General introduction. In Multi-Criteria Decision Analysis. Methods and Software; Ishizaka, A., Nemery, P., Eds.; Wiley: Chichester, UK, 2013; pp. 1–9. [Google Scholar]
- Greco, S.; Ehrgott, M.; Figueira, J.R. (Eds.) Multiple Criteria Decision Analysis. State of the Art Surveys; Springer: New York, NY, USA, 2016. [Google Scholar]
- Alinezhad, A.; Khalili, J. New Methods and Applications in Multiple Attribute Decision Making (MADM); Springer: Cham, Switzerland, 2019. [Google Scholar]
- Kahraman, C. (Ed.) Fuzzy Multi-Criteria Decision Making. Theory and Applications with Recent Developments; Springer: New York, NY, USA, 2008. [Google Scholar]
- Xu, Z. Uncertain Multi-Attribute Decision Making. Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Azzabi, L.; Azzabi, D.; Kobi, A. The Multi-Criteria Approach for Decision Support. An Introduction with Practical Applications; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Doumpos, M.; Figueira, J.R.; Greco, S.; Zopoundis, C. (Eds.) New Perspectives in Multiple Criteria Decision Making. Innovative Applications and Case Studies; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Huber, S.; Geiger, M.J.; Teixeira de Almeida, A. (Eds.) Multiple Criteria Decision Making and Aiding. Cases on Models and Methods with Computer Implementations; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Jahan, A.; Edwards, K.L.; Bahraminasab, M. Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials and Product Design; Butterworth-Heinemann: London, UK, 2016. [Google Scholar]
- Lee, P.T.-W.; Yang, Z. (Eds.) Multi-Criteria Decision Making in Maritime Studies and Logistics. Applications and Cases; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Linkov, I.; Moberg, E. Multi-Criteria Decision Analysis. Environmental Applications and Case Studies; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Mateo, J.R.S.C. Multi-Criteria Analysis in the Renewable Energy Industry; Springer: London, UK, 2012. [Google Scholar]
- Ozsahin, D.U.; Gökçekuş, H.; Uzun, B. (Eds.) Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Ren, J. (Ed.) Waste-to-Energy. Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Venkata, R. Decision Making in the Manufacturing Environment Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods; Springer: London, UK, 2013; Volume 2. [Google Scholar]
- Zopounidis, C.; Doumpos, M. (Eds.) Multiple Criteria Decision Making. Applications in Management and Engineering; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives. Preferences and Value Tradeoffs; Wiley & Sons: Chichester, UK, 1976. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer: New York, NY, USA, 2012. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process. Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bana e Costa, C.; Vansnick, J.-C. The MACBETH approach: Basic Ideas, software, and an application. In Advances in Decision Analysis, Mathematical Modelling. Theory and Applications; Meskens, N., Roubens, M., Eds.; Springer: Dordrecht, UK, 1999; Volume 4, pp. 131–157. [Google Scholar]
- Lootsma, F.A.; Mensch, T.C.A.; Vos, F.A. Multi-criteria analysis and budget reallocation in longterm research planning. Eur. J. Oper. Res. 1990, 47, 293–305. [Google Scholar] [CrossRef]
- Figueira, J.R.; Mousseau, V.; Roy, B. ELECTRE methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 155–185. [Google Scholar]
- Brans, J.; De Smet, Y. Promethee methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 187–219. [Google Scholar]
- Martel, J.-M.; Matarazzo, B. Other Outranking Approaches. In Multiple Criteria Decision Analysis: State of the Art Surveys; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA, 2016; pp. 221–282. [Google Scholar]
- Flavell, R. A new goal programming formulation. Omega 1976, 4, 731–732. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Multicriteria planning of post-earthquake sustainable reconstruction. Comput. Aided Civ. Infrastruct. Eng. 2002, 17, 211–220. [Google Scholar] [CrossRef]
- Huguenin, J.-M. Data Envelopment Analysis. In Multi-Criteria Decision Analysis. Methods and Software; Ishizaka, A., Nemery, P., Eds.; Wiley: Chichester, UK, 2013; pp. 235–274. [Google Scholar]
- Ginda, G. Pair-Wise Comparison Based Methods for Decision Making Support in Civil Engineering and Related Fields [Metody Porównywania Parami w Budownictwie i Dziedzinach Pokrewnych]; DWE: Wrocław, Poland, 2015. [Google Scholar]
- Vering, C.; Wüllhorst, F.; Mehrfeld, P.; Müller, D. Towards an integrated design of heat pump systems: Application of process intensification using two-stage optimization. Energy Convers. Manag. 2021, 250, 114888. [Google Scholar] [CrossRef]
- Wen, Q.; Yan, Q.; Qu, J.; Liu, Y. Fuzzy ensemble of multi-criteria decision making methods for heating energy transition in Danish households. Mathematics 2021, 9, 2420. [Google Scholar] [CrossRef]
- Rikkas, R.; Lahdelma, R. Energy supply and storage optimization for mixed-type buildings. Energy 2021, 231, 120839. [Google Scholar] [CrossRef]
- Vering, C.; Kroppa, H.; Gansen, S.; Genau, S.; Nürenberg, M.; Mehrfeld, P.; Streblow, R.; Müller, D. Systematic application of the decision process for working fluid selection of heat pumps [Systematische Anwendung des Entscheidungsprozesses zur Arbeitsmittelauswahl für Wärmepumpen]. Forsch. Im Ing. Eng. Res. 2021, 85, 21–38. [Google Scholar] [CrossRef]
- Zhou, K.; Mao, J.; Li, Y.; Zhang, H. Performance assessment and techno-economic optimization of ground source heat pump for residential heating and cooling: A case study of Nanjing, China. Sustain. Energy Technol. Assess. 2020, 40, 100782. [Google Scholar] [CrossRef]
- Hering, D.; Xhonneux, A.; Muller, D. Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming. Energy 2021, 226, 1745–1755. [Google Scholar] [CrossRef]
- Wu, R.; Mavromatidis, G.; Orehounig, K.; Carmeliet, J. Multiobjective optimisation of energy systems and building envelope retrofit in a residential community. Appl. Energy 2017, 190, 634–649. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, J.; Gao, Y. Multi-Level Decision Making. Models, Methods and Applications; Series: Intelligent Systems Reference Library; Springer: Berlin/Heidelberg, Germany, 2015; Volume 82. [Google Scholar]
- Ginda, G. How to help the choice of waterproof insulation to be sustainable? In Proceedings of the 13th International Conference: MBMST 2019. Modern Building Materials, Structures and Techniques, Vilnius, Lithuania, 16–17 May 2019; Juozapaitis, A., Daniūnas, A., Juknevičius, L., Eds.; VGTU: Vilnius, Lithuania, 2019; pp. 579–584. [Google Scholar]
- Dawiec, D.; Ginda, G. Low emission hell in Polish cities—How to get rid of it through technical solutions applied in single family houses. In Proceedings of the 13th International Conference: MBMST 2019. Modern Building Materials, Structures and Techniques, Vilnius, Lithuania, 16–17 May 2019; Juozapaitis, A., Daniūnas, A., Juknevičius, L., Eds.; VGTU: Vilnius, Lithuania; pp. 545–584. [Google Scholar]
- Kolman, K. Qualitology. Knowledge about Diverse Quality Dimensions [Kwalitologia. Wiedza o Różnych Dziedzinach Jakości]; Placet: Warszawa, Poland, 2009. [Google Scholar]
- Baker, K.A.; Fishburn, P.C.; Roberts, F.S. Partial Orders of Dimension 2. Networks 1971, 2, 11–28. [Google Scholar] [CrossRef]
- Yadav, A.; Sagar, M. Modified Total Interpretive Structural Modeling of Marketing Flexibility Factors for Indian Telecommunications Service Providers. Glob. J. Flex. Syst. Manag. 2021, 22, 307–330. [Google Scholar] [CrossRef]
- Warfield, J.N. Toward Interpretation of Complex Structural Models. IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 405–417. [Google Scholar] [CrossRef]
- Kukuła, L. Zero-Based Unitarization Technique [Metoda Unitaryzacji Zerowanej]; WN PWN: Warszawa, Poland, 2000. [Google Scholar]
- Goodwyn, P.; Wright, G. Decision Analysis for Management Judgment, 5th ed.; Wiley: New York, NY, USA, 2014. [Google Scholar]
Publication | Details | Technique |
---|---|---|
Vering et al. [121] | Selection of a refrigerant for a heat pump | PROMETHEE |
Wen et al. [122] | The prioritization of diverse residential energy sources | VIKOR and TOPSIS |
Rikkas et al. [123] | The optimization of energy supply for a building | LP/MILP |
Vering et al. [124] | The identification of the most appropriate working fluid for a heat pump | PROMETHEE |
Zhou et al. [125] | Numerical and economic GSHP optimization | Taguchi technique |
Hering et al. [126] | Multiple-heat-pump network optimization | MIQCP |
Wu et al. [127] | Emission and life cost-oriented optimization of a district for building retrofit purposes | Epsilon-constrained MILP |
Level | Offers |
---|---|
I | 1, 7, 8, 10, 11, 12, 16–19, 22, 23, 26, 27, 29, 32 |
II | 2, 9, 24, 25, 28, 32, 48 |
III | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginda, G.; Iwaszczuk, N.; Dudek, M. Supporting Multi-Attribute, Non-Compensating Selection of the Right Heat Pump Device for a Residential Building, Considering the Limited Availability of the Necessary Resources. Energies 2022, 15, 5478. https://doi.org/10.3390/en15155478
Ginda G, Iwaszczuk N, Dudek M. Supporting Multi-Attribute, Non-Compensating Selection of the Right Heat Pump Device for a Residential Building, Considering the Limited Availability of the Necessary Resources. Energies. 2022; 15(15):5478. https://doi.org/10.3390/en15155478
Chicago/Turabian StyleGinda, Grzegorz, Natalia Iwaszczuk, and Marek Dudek. 2022. "Supporting Multi-Attribute, Non-Compensating Selection of the Right Heat Pump Device for a Residential Building, Considering the Limited Availability of the Necessary Resources" Energies 15, no. 15: 5478. https://doi.org/10.3390/en15155478
APA StyleGinda, G., Iwaszczuk, N., & Dudek, M. (2022). Supporting Multi-Attribute, Non-Compensating Selection of the Right Heat Pump Device for a Residential Building, Considering the Limited Availability of the Necessary Resources. Energies, 15(15), 5478. https://doi.org/10.3390/en15155478