Robust Exploration and Production Sharing Agreements Using the Taguchi Method
Abstract
:1. Introduction
1.1. Petroleum Contracts
1.2. Taguchi Method
1.3. Study Objectives
2. Case Study and EPSA IV
2.1. The Mechanism of the Production Sharing Split
2.1.1. Step 1: Production Share
2.1.2. Step 2: The Sliding Scales
2.1.3. The Effect of “A” Factor and “B” Factor on the Production Share of the IOC
2.1.4. Net Cash Flow and Net Present Value of Each Party
2.2. Taguchi Method
3. Results and Analysis
3.1. First Response Variable: ASPS
3.2. The Second Response Variable: Company Take (SPP)
3.3. Managerial Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A factor | |
B factor 1, 2, 3, 4 | |
Base factor | |
CAPEX | Capital expenditure, USD |
CO | Cost oil, % |
COR | Cost oil revenue, USD |
DS | Development share, (%) |
FOPR | Field oil production rate, STB/day |
FP NCF | First party net cash flow, USD |
FPS | First party share, (%) |
FPπe (O,G,LHP)) | First party excess profit (oil, gas, liquid hydrocarbon byproduct), USD |
Gp | Gas production, MMcf/day |
LHP | Liquid hydrocarbon by product |
Np | Annual oil production, STB |
β (Np, LHP, Gp) | Bonus of annual (oil, gas, liquid hydrocarbon byproduct) production, USD |
OPEX | Operating expenditure, USD |
Gas price, USD/Mcf | |
Liquid hydrocarbon by product price, USD/bbl | |
Oil price, USD/bbl | |
PRS1,2,3,n | Production rate slide1,2,3,n |
rK | Capital cost |
R | Ratio of the cumulative value of production received by second party over the cumulative petroleum operation expenditures incurred by the second party |
SP NCF | Second party net cash flow, USD |
SPS | Second party share, (%) |
SPπe (O,G,LHP)) | Second party excess profit (oil, gas, liquid hydrocarbon byproduct), USD |
πEXS | Excess profit, USD |
, , | Excess profit of oil, gas, LHP, USD |
References
- Ahmadov, I.; Artemyev, A.; Aslanly, K.; Rzaev, I.; Shaban, I. How to Scrutinise a Production Sharing Agreement. A Guide for the Oil and Gas Sector based on the Experience from the Caspian Region; International Institute for Environment Development (IIED): London, UK; Soros Foundation-Kazakhstan: Almaty, Kazakhstan; Public Finance Monitoring Center (PFMC): Baku, Azerbaijan, 2012. [Google Scholar]
- Al Shehhi, A.; Al Hazza, M.; Alnahhal, M.; Sakhrieh, A.; Al Zarooni, M. Challenges and Barriers for Renewable Energy Implementation in the United Arab Emirates: Empirical Study. Int. J. Energy Econ. Policy 2021, 11, 158. [Google Scholar] [CrossRef]
- Ali, S.F.; Yusoff, N. Determination of Optimal Cut Point Temperatures at Crude Distillation Unit Using the Taguchi Method. Int. J. Eng. Technol. 2012, 12, 36–46. [Google Scholar]
- Balhasan, S.A.; Towler, B.F.; Miskimins, J.L. Modifying the Libyan fiscal regime to optimise its oil reserves and attract more foreign capital part 1: LEPSA I proposal. OPEC Energy Rev. 2013, 37, 220–246. [Google Scholar] [CrossRef]
- Balhasan, S.A.; Towler, B.F.; Miskimins, J.L. Modifying the Libyan fiscal regime to optimise its oil reserves and attract more foreign capital part 2: Application to CO2-EOR project in Libya. OPEC Energy Rev. 2013, 37, 270–313. [Google Scholar] [CrossRef]
- Balhasan, S.A.; Towler, B.F.; AlHadramy, K.O.; Biltayib, B.M. Comparative risk evaluation and sensitivity analysis of the Libyan EPSA IV and its modified model LEPSA I. Petroleum 2020, 6, 206–213. [Google Scholar] [CrossRef]
- Balhasan, S.; Biltayib, B. Risk Evaluation & Sensitivity Analysis of the Exploration & Production Sharing Agreement. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 11–14 November 2019. [Google Scholar]
- Balhasan, S.; Misbah, B.; Omar, M.; Musbah, I.; Khameiss, B. Impact of Proposal Changes to Libyan Oil Taxation System on Developing the 137 B Offshore Field. J. Eng. Appl. Sci. 2018, 13, 6085–6090. [Google Scholar]
- BenZeglam, M.S. Development and Evaluation of an Economic Model for a Libyan Oil Field Development with an EPSA Agreement. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bindemann, K. Production-Sharing Agreements: An Economic Analysis; Oxford Institute for Energy Studies: Oxford, UK, 1999. [Google Scholar]
- Boopathi, S. Experimental investigation and parameter analysis of LPG refrigeration system using Taguchi method. SN Appl. Sci. 2019, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Allen, J.K.; Tsui, K.L.; Mistree, F. A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors. J. Mech. Des. 1996, 118, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.W.; Kurnia, J.C.; Ghoreishi-Madiseh, S.A.; Sasmito, A.P. Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method. Energy 2019, 188, 116098. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Failler, P. The Impact of Uncertainties on Crude Oil Prices: Based on a Quantile-on-Quantile Method. Energies 2022, 15, 3510. [Google Scholar] [CrossRef]
- Diouf, A.; Laporte, B. Oil contracts and government take: Issues for Senegal and developing countries. J. Energy Dev. 2017, 43, 213–234. [Google Scholar]
- Dirani, F.; Ponomarenko, T. Contractual Systems in the Oil and Gas Sector: Current Status and Development. Energies 2021, 14, 5497. [Google Scholar] [CrossRef]
- Durrani, M.; Ahmad, I.; Kano, M.; Hasebe, S. An Artificial Intelligence Method for Energy Efficient Operation of Crude Distillation Units under Uncertain Feed Composition. Energies 2018, 11, 2993. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, H.; Kianfar, K.; Bijari, M. Scheduling a cellular manufacturing system based on price elasticity of demand and time-dependent energy prices. Comput. Ind. Eng. 2021, 159, 107460. [Google Scholar] [CrossRef]
- Hossain, M.A.; Chakrabortty, R.K.; Ryan, M.J.; Pota, H.R. Energy management of community energy storage in grid-connected microgrid under uncertain real-time prices. Sustain. Cities Soc. 2021, 66, 102658. [Google Scholar] [CrossRef]
- Hussein, M.; Kareem, I. Optimising the chemical demulsification of water-in-crude oil emulsion using the Taguchi method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 987, 012016. [Google Scholar] [CrossRef]
- Johnston, D. International Exploration Economics, Risk and Contract Analysis; Pennwell: Tulsa, OK, USA, 2003. [Google Scholar]
- Kolovrat, M.; Jukić, L.; Sedlar, D.K. Comparison of Hydrocarbon Fiscal Regimes of Some European Oil and Gas Producers and Perspectives for Improvement in the Republic of Croatia. Energies 2021, 14, 5056. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Failler, P. Dynamic Correlation between Crude Oil Price and Investor Sentiment in China: Heterogeneous and Asymmetric Effect. Energies 2022, 15, 687. [Google Scholar] [CrossRef]
- Lyu, Y.; Yi, H.; Wei, Y.; Yang, M. Revisiting the role of economic uncertainty in oil price fluctuations: Evidence from a new time-varying oil market model. Econ. Model. 2021, 103, 105616. [Google Scholar] [CrossRef]
- Mian, A. Project Economics and Decision Analysis: Deterministic Models, 2nd ed.; PennWell Corporation: Tulsa, OK, USA, 2011. [Google Scholar]
- Romasheva, N.; Dmitrieva, D. Energy Resources Exploitation in the Russian Arctic: Challenges and Prospects for the Sustainable Development of the Ecosystem. Energies 2021, 14, 8300. [Google Scholar] [CrossRef]
- Setak, M.; Fozooni, N.; Daneshvari, H. Developing a model for pricing and control the inventory of perishable products with exponential demand. Int. J. Ind. Syst. Eng. 2019, 12, 120–140. [Google Scholar]
- Shen, Y.; Shi, X.; Zeng, T. Uncertainty, Macroeconomic Activity and Commodity Price: A Global Analysis. 2018. Available online: https://ssrn.com/abstract=3280848 (accessed on 1 July 2022).
- Stermole, F.J.; Stermole, J.M. Economic Evaluation and Investment Decision Methods; Investment Evaluations Corporation: Denver, CO, USA, 2006. [Google Scholar]
- Swe, W.T.; Emodi, N.V. Assessment of Upstream Petroleum Fiscal Regimes in Myanmar. J. Risk Financial Manag. 2018, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Tsui, K.L. An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans. 1992, 24, 44–57. [Google Scholar] [CrossRef]
- Urum, K.; Pekdemir, T.; Gopur, M. Optimum conditions for washing of crude oil-contaminated soil with bio surfactant solutions. Process Saf. Environ. Prot. 2003, 81, 203–209. [Google Scholar] [CrossRef]
- Yang, L. Connectedness of economic policy uncertainty and oil price shocks in a time domain perspective. Energy Econ. 2019, 80, 219–233. [Google Scholar] [CrossRef]
Cost Type/Assumption | Value |
---|---|
CAPEX | USD 569 MM |
OPEX | USD 547 MM |
Exploration costs | USD 180 MM |
Other costs | USD 97 MM |
The borrowed money | USD 321 MM |
The discount rate | 10% |
The annual inflation rate | 2% |
The loan payment period | 5 years |
The loan interest rate | 7% |
The production share | 15% |
Original oil in place | 1 Billion STB |
The range of oil prices | 80 USD/STB to 90 USD/STB |
The range of gas prices | 4 USD/MMBTU to 6 USD/MMBTU |
The range of liquefied hydrocarbon by product price | 80 USD/STB to 95 USD/STB |
R | “A” Factor |
---|---|
1.0–1.5 | A1 = 0.93 |
1.5–3.0 | A2 = 0.81 |
3.0–4.0 | A3 = 0.63 |
>4.0 | A 4 = 0.43 |
Production Rate (bbl/Day) | “B” Factor |
---|---|
1–20,000 | B1 = 0.93 |
20,001–30,000 | B2 = 0.77 |
30,001–60,000 | B3 = 0.63 |
60,001–85,000 | B4 = 0.47 |
Factor | Levels | |||
---|---|---|---|---|
A. Control factors | Level 1 | Level 2 | Level 3 | Level 4 |
A1 | 0.9 | 0.92 | 0.94 | 0.96 |
A2 | 0.78 | 0.8 | 0.82 | 0.84 |
A3 | 0.55 | 0.6 | 0.65 | 0.7 |
A4 | 0.35 | 0.4 | 0.45 | 0.5 |
B1 | 0.90 | 0.92 | 0.94 | 0.96 |
B2 | 0.7 | 0.75 | 0.8 | 0.85 |
B3 | 0.55 | 0.6 | 0.65 | 0.7 |
B4 | 0.4 | 0.45 | 0.5 | 0.55 |
B. Noise factors | Level 1 | Level 2 | ||
Oil price | 80 | 90 | ||
LHP price | 81 | 94 | ||
Gas price | 4 | 5.33 |
Outer Array (L8) | Oil price | 90 | 90 | 80 | 90 | 80 | 90 | 80 | 80 | |||||||
LHP price | 94 | 81 | 94 | 94 | 81 | 81 | 94 | 81 | ||||||||
Gas price | 4 | 4 | 5.33 | 5.33 | 5.33 | 5.33 | 4 | 4 | ||||||||
Inner Array (256) | Results | |||||||||||||||
Run | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | ||||||||
1 | 0.9 | 0.8 | 0.65 | 0.5 | 0.96 | 0.8 | 0.6 | 0.4 | ||||||||
2 | 0.9 | 0.78 | 0.7 | 0.4 | 0.96 | 0.85 | 0.7 | 0.55 | ||||||||
3 | 0.94 | 0.8 | 0.55 | 0.5 | 0.9 | 0.85 | 0.55 | 0.45 | ||||||||
4 | 0.96 | 0.78 | 0.55 | 0.5 | 0.9 | 0.8 | 0.6 | 0.55 | ||||||||
5 | 0.9 | 0.84 | 0.55 | 0.5 | 0.9 | 0.75 | 0.65 | 0.5 | ||||||||
7 | 0.94 | 0.82 | 0.7 | 0.4 | 0.96 | 0.75 | 0.6 | 0.4 | ||||||||
9 | 0.92 | 0.8 | 0.6 | 0.5 | 0.9 | 0.8 | 0.55 | 0.5 | ||||||||
10 | 0.96 | 0.84 | 0.6 | 0.4 | 0.94 | 0.85 | 0.65 | 0.55 |
Noise Factors Runs | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
Oil price | 90 | 90 | 80 | 90 | 80 | 90 | 80 | 80 | |||
LHP price | 94 | 81 | 94 | 94 | 81 | 81 | 94 | 81 | |||
Gas price | 4 | 4 | 5.33 | 5.33 | 5.33 | 5.33 | 4 | 4 | |||
Run | Results | S | |||||||||
1 | 0.095 | 0.095 | 0.102 | 0.094 | 0.103 | 0.094 | 0.106 | 0.107 | 0.100 | 0.006 | 25.04 |
2 | 0.091 | 0.091 | 0.104 | 0.089 | 0.104 | 0.089 | 0.110 | 0.113 | 0.099 | 0.010 | 20.17 |
3 | 0.091 | 0.091 | 0.096 | 0.090 | 0.096 | 0.090 | 0.097 | 0.098 | 0.094 | 0.003 | 29.48 |
4 | 0.091 | 0.091 | 0.096 | 0.091 | 0.096 | 0.091 | 0.097 | 0.098 | 0.094 | 0.003 | 29.43 |
5 | 0.092 | 0.092 | 0.097 | 0.091 | 0.097 | 0.091 | 0.098 | 0.099 | 0.095 | 0.003 | 29.69 |
7 | 0.090 | 0.090 | 0.102 | 0.088 | 0.102 | 0.088 | 0.108 | 0.111 | 0.097 | 0.010 | 20.03 |
9 | 0.091 | 0.091 | 0.097 | 0.090 | 0.097 | 0.090 | 0.099 | 0.100 | 0.095 | 0.004 | 26.96 |
10 | 0.090 | 0.090 | 0.099 | 0.088 | 0.099 | 0.088 | 0.104 | 0.105 | 0.095 | 0.007 | 22.38 |
Run | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | SN Ratio | Range | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.9 | 0.78 | 0.7 | 0.35 | 0.94 | 0.75 | 0.7 | 0.5 | 9.50% | 18.83 | 2.63 |
2 | 0.9 | 0.82 | 0.6 | 0.45 | 0.96 | 0.75 | 0.55 | 0.5 | 9.51% | 24.38 | 1.37 |
4 | 0.96 | 0.82 | 0.6 | 0.4 | 0.96 | 0.85 | 0.6 | 0.45 | 9.51% | 22.26 | 1.75 |
5 | 0.94 | 0.82 | 0.6 | 0.4 | 0.94 | 0.8 | 0.7 | 0.45 | 9.52% | 22.42 | 1.72 |
6 | 0.9 | 0.78 | 0.6 | 0.5 | 0.9 | 0.85 | 0.6 | 0.4 | 9.52% | 27.04 | 1.00 |
Run | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | SN Ratio | Range | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.92 | 0.84 | 0.6 | 0.35 | 0.92 | 0.85 | 0.6 | 0.5 | 3.21 | 31.26 | 0.2 |
2 | 0.96 | 0.78 | 0.7 | 0.4 | 0.9 | 0.7 | 0.65 | 0.55 | 3.21 | 32.59 | 0.18 |
3 | 0.92 | 0.78 | 0.55 | 0.45 | 0.96 | 0.8 | 0.65 | 0.5 | 3.21 | 27.86 | 0.32 |
4 | 0.96 | 0.84 | 0.7 | 0.4 | 0.96 | 0.7 | 0.55 | 0.5 | 3.21 | 31.58 | 0.2 |
5 | 0.9 | 0.8 | 0.55 | 0.4 | 0.9 | 0.8 | 0.7 | 0.55 | 3.21 | 28.36 | 0.3 |
6 | 0.94 | 0.8 | 0.65 | 0.5 | 0.92 | 0.7 | 0.65 | 0.4 | 3.21 | 26.66 | 0.35 |
Run | Control Factors | SPP | NPV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | Average (USD MM) | Standard Deviation (USD MM) | SN Ratio | ||
Min deviation | 0.96 | 0.78 | 0.7 | 0.4 | 0.9 | 0.7 | 0.65 | 0.55 | 3.21% | 193.91 | 17.30 | 20.99 |
Max deviation | 0.94 | 0.8 | 0.65 | 0.5 | 0.92 | 0.7 | 0.65 | 0.4 | 3.21% | 194.44 | 21.84 | 18.99 |
Randomly selected | 0.9 | 0.78 | 0.6 | 0.5 | 0.9 | 0.85 | 0.6 | 0.4 | 2.83% | 171.61 | 21.90 | 17.88 |
Run and Control Factors | MAD Values of NPV |
---|---|
1. Best combinations (Min deviation) A1 A2 A3 A4 B1 B2 B3 B4 0.96 0.78 0.7 0.4 0.9 0.7 0.65 0.55 | 3.83 MM |
2. Worst combinations (Max deviation) A1 A2 A3 A4 B1 B2 B3 B4 0.94 0.8 0.65 0.5 0.92 0.7 0.65 0.4 | 4.65 MM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balhasan, S.; Alnahhal, M.; Towler, B.; Salah, B.; Ruzayqat, M.; Tabash, M.I. Robust Exploration and Production Sharing Agreements Using the Taguchi Method. Energies 2022, 15, 5424. https://doi.org/10.3390/en15155424
Balhasan S, Alnahhal M, Towler B, Salah B, Ruzayqat M, Tabash MI. Robust Exploration and Production Sharing Agreements Using the Taguchi Method. Energies. 2022; 15(15):5424. https://doi.org/10.3390/en15155424
Chicago/Turabian StyleBalhasan, Saad, Mohammed Alnahhal, Brian Towler, Bashir Salah, Mohammed Ruzayqat, and Mosab I. Tabash. 2022. "Robust Exploration and Production Sharing Agreements Using the Taguchi Method" Energies 15, no. 15: 5424. https://doi.org/10.3390/en15155424
APA StyleBalhasan, S., Alnahhal, M., Towler, B., Salah, B., Ruzayqat, M., & Tabash, M. I. (2022). Robust Exploration and Production Sharing Agreements Using the Taguchi Method. Energies, 15(15), 5424. https://doi.org/10.3390/en15155424