Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia
Abstract
:1. Introduction
2. Wind Energy in Malacca
2.1. Site
2.2. Wind Speed Data Set
3. System Description and Specifications
3.1. Selection of Wind Turbine
3.2. Storage Battery
4. Charging-Station Energy Consumption
5. Economic Parameters and Assessment Criteria
5.1. Discount Rate
5.2. Inflation Rate
5.3. Cost of Energy (COE)
5.4. HOMER Software
6. System Design
6.1. Wind Turbine
6.2. Energy Storage System
6.3. System Converter
7. Results and Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HOMER | Hybrid Optimization of Multiple Electric Renewables |
EV | Electric Vehicle |
M | Metre |
WT | Wind Turbine |
kW | Kilowatt |
Sq. mi. | Square Mile |
MMD | Malaysian Meteorological Department |
CPI | Consumer Price Index |
COE | Cost of Energy |
RES | Renewable Energy System |
BESS | Battery Energy Storage System |
AC | Alternating Current |
DC | Direct Current |
USD | United States Dollar |
NPC | Net Present Cost |
Ren Frac | Renewable Energy Fraction |
BNM | Bank Negara Malaysia |
References
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Shezan, S.K.A.; Lai, C.Y. Optimization of hybrid wind-diesel-battery energy system for remote areas of Malaysia. In Proceedings of the 2017 Australasian Universities Power Engineering Conference, AUPEC, Melbourne, Australia, 19–22 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ho, L.W. Wind energy in Malaysia: Past, present and future. Renew. Sustain. Energy Rev. 2016, 53, 279–295. [Google Scholar] [CrossRef]
- Campbell, J.E.; Lobell, D.B.; Field, C.B. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 2009, 324, 1055–1057. [Google Scholar] [CrossRef] [Green Version]
- Latif, S.A.; Chiong, M.; Rajoo, S.; Takada, A.; Chun, Y.-Y.; Tahara, K.; Ikegami, Y. The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix. Energies 2021, 14, 2200. [Google Scholar] [CrossRef]
- Noman, F.M.; Alkawsi, G.A.; Abbas, D.; Alkahtani, A.A.; Tiong, S.K.; Ekanayake, J. Comprehensive Review of Wind Energy in Malaysia: Past, Present, and Future Research Trends. IEEE Access 2020, 8, 124526–124543. [Google Scholar] [CrossRef]
- Luo, L.; Gu, W.; Wu, Z.; Zhou, S. Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation. Appl. Energy 2019, 242, 1274–1284. [Google Scholar] [CrossRef]
- Yang, L.; Cheng, Z.; Zhang, B.; Ma, F. Electric Vehicle Charging Station Location Decision Analysis for a Two-Stage Optimization Model Based on Shapley Function. J. Math. 2021, 2021, 5098378. [Google Scholar] [CrossRef]
- Albani, A.; Ibrahim, M.Z.; Hamzah, M.H.M. Assessment of wind energy potential based on METAR data in Malaysia. Int. J. Renew. Energy Res. 2013, 3, 959–968. [Google Scholar] [CrossRef]
- Dayal, K.K.; Cater, J.E.; Kingan, M.J.; Bellon, G.D.; Sharma, R.N. Wind resource assessment and energy potential of selected locations in Fiji. Renew. Energy 2021, 172, 219–237. [Google Scholar] [CrossRef]
- Alkawsi, G.; Baashar, Y.; Alkahtani, A.A.; Lim, C.W.; Tiong, S.K.; Khudari, M. Viability assessment of small-scale on-grid wind energy generator for households in Malaysia. Energies 2021, 14, 3391. [Google Scholar] [CrossRef]
- Song, Q.; Lubitz, W.D. Design and Testing of a New Small Wind Turbine Blade. J. Sol. Energy Eng. 2014, 136, 034502. [Google Scholar] [CrossRef]
- Basrawi, F.; Ismail, I.; Ibrahim, T.K.; Idris, D.M.N.D.; Anuar, S. A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia. AIP Conf. Proc. 2017, 1826, 30014. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, A.R.; Salam, Z.; Aziz, M.J.B.A.; Yee, K.P. A critical review of electric vehicle charging using solar photovoltaic. Int. J. Energy Res. 2016, 40, 439–461. [Google Scholar] [CrossRef]
- Lee, Y.; Hur, J. A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion. Renew. Energy 2019, 144, 172–179. [Google Scholar] [CrossRef]
- Daut, I.; Irwanto, M.; Irwan, Y.M.; Gomesh, N.; Ahmad, N.S. Potential of wind speed for wind power generation in Perlis, Northern Malaysia. Telkomnika 2011, 9, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Anwari, M.; Rashid, M.I.M.; Muhyiddin, H.T.M.; Ali, A.R.M. An evaluation of hybrid wind/diesel energy potential in Pemanggil Island Malaysia. In Proceedings of the 2012 International Conference on Power Engineering and Renewable Energy, ICPERE, Bali, Indonesia, 3–5 July 2012. [Google Scholar] [CrossRef]
- Naghizadeh, N.; Williamson, S.S. A comprehensive review of power electronic converter topologies to integrate photovoltaics (PV), AC grid, and electric vehicles. In Proceedings of the 2013 IEEE Transportation Electrification Conference and Expo: Components, Systems, and Power Electronics—From Technology to Business and Public Policy, ITEC, Detroit, MI, USA, 16–19 June 2013. [Google Scholar] [CrossRef]
- Saeed, M.A.; Ahmed, Z.; Hussain, S.; Zhang, W. Wind resource assessment and economic analysis for wind energy development in Pakistan. Sustain. Energy Technol. Assess. 2021, 44, 101068. [Google Scholar] [CrossRef]
- Islam, M.M.; Shareef, H.; Mohamed, A. A review of techniques for optimal placement and sizing of electric vehicle charging stations. Prz. Elektrotechniczny 2015, 91, 122–126. [Google Scholar] [CrossRef] [Green Version]
- 5 kW Small Wind Turbine|Renewable On-Grid & Off-Grid Energy Systems. Available online: https://www.ryse.energy/5kw-wind-turbines/ (accessed on 7 July 2022).
- Cao, W.; Xie, Y.; Tan, Z. Wind Turbine Generator Technologies. Adv. Wind. Power 2012, 1, 177–204. [Google Scholar] [CrossRef] [Green Version]
- Storage Library. Available online: https://www.homerenergy.com/products/pro/docs/latest/storage_library.html (accessed on 7 July 2022).
- Rodriguez-Hernandez, O.; Martinez, M.; Lopez-Villalobos, C.; Garcia, H.; Campos-Amezcua, R. Techno-economic feasibility study of small wind turbines in the Valley of Mexico metropolitan area. Energies 2019, 12, 890. [Google Scholar] [CrossRef] [Green Version]
- Cleary, B. A Techno-Economic Analysis of Wind Generation in Conjunction with Compressed Air Energy in the Integrated Single Electricity Market. Ph.D. Thesis, Technological University Dublin, Dublin, Ireland, 2016. [Google Scholar] [CrossRef]
- High Voltage Battery Information. Available online: https://www.tesla.com/ownersmanual/model3/en_jo/GUID-7FE78D73-0A17-47C4-B21B-54F641FFAEF4.html (accessed on 7 July 2022).
- Nik, W.B.W.; Ahmad, M.F.; Ibrahim, M.Z.; Samo, K.B.; Muzathik, A.M. Wind energy potential at east coast of Peninsular Malaysia. Int. J. Appl. Eng. Res. 2019, 4, 9–16. [Google Scholar]
- Tiang, T.L.; Ishak, D. Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 3034–3042. [Google Scholar] [CrossRef]
- Saberi, Z.; Fudholi, A.; Sopian, K. Potential Evaluation of Wind Energy in Kuala Terengganu, Malaysia through Weibull Distribution Method. IOP Conf. Ser. Earth Environ. Sci. 2019, 268, 012074. [Google Scholar] [CrossRef]
- Syafawati, A.; Daut, I.; Shema, S.; Irwanto, M.; Farhana, Z.; Razliana, N.; Shatri, C. Potential of wind and solar energy using Weibull and hargreaves method analysis. In Proceedings of the 2011 5th International Power Engineering and Optimization Conference, PEOCO 2011—Program and Abstracts, Shah Alam, Malaysia, 6–7 June 2011; pp. 144–147. [Google Scholar] [CrossRef]
- Ashourian, M.H.; Cherati, S.M.; Zin, A.A.M.; Niknam, N.; Mokhtar, A.S.; Anwari, M. Optimal green energy management for island resorts in Malaysia. Renew. Energy 2013, 51, 36–45. [Google Scholar] [CrossRef]
- Han, Q.; Chu, F. Directional wind energy assessment of China based on nonparametric copula models. Renew. Energy 2021, 164, 1334–1349. [Google Scholar] [CrossRef]
- Almutairi, K.; Dehshiri, S.S.H.; Dehshiri, S.J.H.; Mostafaeipour, A.; Jahangiri, M.; Techato, K. Technical, economic, carbon footprint assessment, and prioritizing stations for hydrogen production using wind energy: A case study. Energy Strategy Rev. 2021, 36, 100684. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rated power | 5 KW |
Cut-in wind speed | 2.01 m/s |
Rated wind speed | 4 m/s |
Cut-off wind speed | 10 m/s |
Capital cost | USD 2000 |
Replacement cost | USD 1500 |
Operation and maintenance costs | USD 200 |
Lifetime | 20 years |
Connector Type | Typical Power Ratings (kW) | Range of Charging per Hour (Miles) | |
---|---|---|---|
AC | Type 1 | 3.7 | 12.5 |
7 | 25 | ||
Type 2 | 3.7 | 12.5 | |
7 | 25 | ||
22 | 75 | ||
DC | CHAdeMO | 50 | 75 |
100 | 150 | ||
Combined Charging System (CCS) | 50 | 75 | |
150 | 225 | ||
350 | 525 | ||
Type 2 | 150 | 225 | |
250 | 375 |
Specification | Details |
---|---|
Name | RC-5K-A |
Abbreviation | RC5K |
Rated capacity | 10 kW |
Manufacturer | Generic |
Quantity needed | 2 |
Capital | USD 2000 |
Replacement | USD 1500 |
Operating and Maintenance | USD 200 (per year) |
Specification | Details |
---|---|
Name | NEC DSS 510 kWh |
Nominal Voltage | 720 v |
Nominal Capacity | 510 kWh |
Nominal Capacity | 708 Ah |
Quantity needed | 1 |
Capital | USD 3000 |
Replacement | USD 2500 |
Operating and Maintenance | USD 300 (per year) |
Specification | Details |
---|---|
Name | System Converter |
Capital | USD 500 |
Replacement | USD 400 |
Operations and Maintenance | USD 50 (per year) |
Label | Value |
---|---|
RC5K | 15 |
NEC DSS 510 kWh | 1 |
Convertor (kW) | 21.4 |
Dispatch | CC |
COE (USD) | USD 0.081 |
NPC (USD) | USD 76,855 |
Operating cost (USD/year) | USD 3299 |
Initial capital (USD) | USD 28,717 |
Ren Frac (%) | 100 |
Total Fuel (L/year) | 0 |
Production (kWh/year) | 214,272 |
Primary load kWh/year | 650,117 |
Component | Name | Size | Unit |
---|---|---|---|
Storage | NEC DSS 510 kWh | 1 | strings |
Wind turbine | RC-5K-A | 15 | each |
System converter | System Converter | 21.4 | kW |
Dispatch strategy | HOMER Cycle Charging |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahim, M.; Alkawsi, G.; Alkahtani, A.A.; Alhasan, A.M.W.; Khudari, M.; Abdul Kadir, M.R.; Ekanayake, J.; Tiong, S.K. Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia. Energies 2022, 15, 5412. https://doi.org/10.3390/en15155412
Abdelrahim M, Alkawsi G, Alkahtani AA, Alhasan AMW, Khudari M, Abdul Kadir MR, Ekanayake J, Tiong SK. Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia. Energies. 2022; 15(15):5412. https://doi.org/10.3390/en15155412
Chicago/Turabian StyleAbdelrahim, Misbah, Gamal Alkawsi, Ammar Ahmed Alkahtani, Ali M. W. Alhasan, Mohammad Khudari, Mohd Rizuan Abdul Kadir, Janaka Ekanayake, and Sieh Kiong Tiong. 2022. "Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia" Energies 15, no. 15: 5412. https://doi.org/10.3390/en15155412
APA StyleAbdelrahim, M., Alkawsi, G., Alkahtani, A. A., Alhasan, A. M. W., Khudari, M., Abdul Kadir, M. R., Ekanayake, J., & Tiong, S. K. (2022). Techno-Economic Analysis of a Wind-Energy-Based Charging Station for Electric Vehicles in High-Rise Buildings in Malaysia. Energies, 15(15), 5412. https://doi.org/10.3390/en15155412