Progressive Intercalation and Exfoliation of Clay in Polyaniline–Montmorillonite Clay Nanocomposites and Implication to Nanocomposite Impedance
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.1.1. Preparation of the Nanocomposites
2.1.2. Preparation of Polyimide/PACN Coatings
2.2. Characterization
3. Results and Discussion
3.1. Compositions
3.2. Scanning Electron Microscopy (SEM)
3.3. Wide-Angle X-ray Diffraction (WAXD)
3.4. Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS)
3.5. Transmission Electron Microscopy (TEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chow, G.M.; Ovid’ko, I.A.; Tsakalakos, T. Nanostructured Films and Coatings; NATO Science Series, High Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 78. [Google Scholar]
- Krishnamoorti, R.; Vaia, R.A.; Giannelis, E.P. Structure and Dynamics of Polymer-Layered Silicate Nanocomposites. Chem. Mater. 1996, 8, 1728–1734. [Google Scholar] [CrossRef]
- Burnside, S.D.; Giannelis, E.P. Nanostructure and properties of polysiloxane-layered silicate nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 1595–1604. [Google Scholar] [CrossRef]
- Vaia, R.A.; Giannelis, E.P. Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules 1997, 30, 8000–8009. [Google Scholar] [CrossRef]
- De León-Almazan, C.M.; Estrada-Moreno, I.A.; Páramo-García, U.; Rivera-Armenta, J.L. Polyaniline/clay nanocomposites: A comparative approach in developing acid and the clay spacing technique. Synth. Met. 2018, 236, 61–67. [Google Scholar] [CrossRef]
- Kalotra, S.; Mehta, R. Synthesis of Polyaniline/clay nanocomposites by in-situ polymerization and its application for removal of acid green 25 dye from water. Polym. Bull. 2021, 78, 2439–2463. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, C.; Chen, C. Anticorrosion performance of polyaniline/clay nanocomposites in epoxy coatings. J. Appl. Polym. Sci. 2022, 139, 52323. [Google Scholar] [CrossRef]
- Sudha, J.; Sivakala, S.; Patel, K.; Nair, P.R. Development of electromagnetic shielding materials from the conductive blends of polystyrene polyaniline-clay nanocomposite. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1647–1652. [Google Scholar] [CrossRef]
- Navarchian, A.H.; Joulazadeh, M.; Karimi, F. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog. Org. Coat. 2014, 77, 347–353. [Google Scholar] [CrossRef]
- Abbas, M.; Hachemaoui, A.; Yahiaoui, A.; I Mourad, A.-H.; Belfedal, A.; Cherupurakal, N. Chemical synthesis of nanocomposites via in-situ polymerization of aniline and iodoaniline using exchanged montmorillonite. Polym. Polym. Compos. 2020, 29, 982–991. [Google Scholar] [CrossRef]
- Hajjaoui, H.; Soufi, A.; Boumya, W.; Abdennouri, M.; Barka, N. Polyaniline/Nanomaterial Composites for the Removal of Heavy Metals by Adsorption: A Review. J. Compos. Sci. 2021, 5, 233. [Google Scholar] [CrossRef]
- Vaia, R.A.; Giannelis, E.P. Lattice model of polymer-melt intercalation in organically modified layered silicates. Macromolecules 1997, 30, 7990–7999. [Google Scholar] [CrossRef]
- LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 1999, 15, 11–29. [Google Scholar] [CrossRef]
- Kornmann, X.; Lindberg, H.; Berglund, L. Synthesis of epoxy–clay nanocomposites: Influence of the nature of the clay on structure. Polymer 2001, 42, 1303–1310. [Google Scholar] [CrossRef]
- Lan, T.; Kaviratna, P.D.; Pinnavaia, T.J. Epoxy self-polymerization in smectite clays. J. Phys. Chem. Solids 1996, 57, 1005–1010. [Google Scholar] [CrossRef]
- Fong, H.; Vaia, R.A.; Sanders, J.H.; Lincoln, D.; Vreugdenhil, A.J.; Liu, W.; Bultman, J.; Chen, C. Self-Passivation of Polymer-Layered Silicate Nanocomposites. Chem. Mater. 2001, 13, 4123–4129. [Google Scholar] [CrossRef]
- Wu, T.M.; Liao, C.S. Polymorphism in nylon 6/clay nanocomposites. Macromol. Chem. Phys. 2000, 201, 2820–2825. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, C.; Qi, R.; Zhang, H. Synthesis and characterization of nylon 1012/clay nanocomposites. J. Appl. Pol. Sci. 2002, 83, 2403–2410. [Google Scholar] [CrossRef]
- Delozier, D.M.; Orwoll, R.A.; Cahoon, J.F.; Johnston, N.J. Preparation and characterization of polyimide/organoclay nanocomposites. Polymer 2002, 43, 813–822. [Google Scholar] [CrossRef]
- Liang, Z.-M.; Yin, J.; Xu, H.-J. Polyimide/montmorillonite nanocomposites based on thermally stable, rigid-rod aromatic amine modifiers. Polymer 2003, 44, 1391–1399. [Google Scholar] [CrossRef]
- Chen, T.K.; Tien, Y.I.; Wei, K.H. Synthesis and characterization of novel segmented polyurethane/clay nanocomposites via poly (ε-caprolactone)/clay. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2225–2233. [Google Scholar] [CrossRef]
- Kodaire, P.; Kalgaonkar, R.; Hambir, S.; Bulakh, N.; Jog, J.P. PP/clay nanocomposites: Effect of clay treatment on morphology and dynamic mechanical properties. J. Appl. Polym. Sci. 2001, 81, 1786–1792. [Google Scholar]
- Heeger, A.J.; MacDiarmid, A.G.; Shirakawa, H. 2000 Nobel prize in chemistry for discovery and development of conductive polymers. Macromolecules 2002, 35, 1137–1139. [Google Scholar]
- Wang, L.; Brazis, P.; Rocci, M.; Kannewurf, C.R.; Kanatzidis, M.G. A new redox host for intercalative polymerization: Insertion of polyaniline into α-RuCl3. Chem. Mater. 1998, 10, 3298. [Google Scholar] [CrossRef]
- Wu, Q.; Xue, Z.; Qi, Z.; Wang, F. Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline. Polymer 2000, 41, 2029–2032. [Google Scholar] [CrossRef]
- Biswas, M.; Ray, S.S. Water-dispersable nanocomposites of polyaniline and montmorillonite clay. J. Appl. Polym. Sci. 2000, 77, 2948. [Google Scholar] [CrossRef]
- Nicolau, Y.F.; Djurado, D. Polyaniline membranes for separation and purification of gases, liquids, and electrolyte solutions. Sep. Purif. Rev. 2006, 35, 249–283. [Google Scholar]
- Campbell, D.; Pethrick, R.A.; White, J.R. Polymer Characterization: Physical Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pouget, J.; Laridjani, M.; Jozefowicz, M.; Epstein, A.; Scherr, E.; MacDiarmid, A. Structural aspects of the polyaniline family of electronic polymers. Synth. Met. 1992, 51, 95–101. [Google Scholar] [CrossRef]
- Zhu, Y.; Iroh, J.O.; Rajagopolan, R.; Aykanat, A.; Vaia, R. Optimizing the Synthesis and Thermal Properties of Conducting Polymer–Montmorillonite Clay Nanocomposites. Energies 2022, 15, 1291. [Google Scholar] [CrossRef]
- Yeh, J.-M.; Liou, S.-J.; Lai, C.-Y.; Wu, P.-C.; Tsai, T.-Y. Enhancement of Corrosion Protection Effect in Polyaniline via the Formation of Polyaniline−Clay Nanocomposite Materials. Chem. Mater. 2001, 13, 1131–1136. [Google Scholar] [CrossRef]
- Rubner, M.F.; Skotheim, T.A. Controlled Molecular Assemblies of Electrically Conductive Polymers. In Conjugated Polymers; Brédas, J.L., Silbey, R., Eds.; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Simon, R.M. Conductive Polymers; Seymour, R.B., Ed.; Plenum Press: New York, NY, USA, 1981; p. 49. [Google Scholar]
- Qiang, Z.; Liang, G.; Gu, A.; Yuan, L. The interaction between unique hyperbranched polyaniline and carbon nanotubes, and its influence on the dielectric behavior of hyperbranched polyaniline/carbon nanotube/epoxy resin composites. J. Nanoparticle Res. 2014, 16, 2391. [Google Scholar] [CrossRef]
- MacDiarmid, A.G.; Epstein, A.J. ‘Synthetic metals’: A novel role for organic polymers. Chem. Int. Ed. 2001, 40, 2581. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Chen, Y.; Cheng, S.; Fan, L.-J. Preparation and characterization of polyaniline coated microspheres for potential application in anisotropic conductive film. J. Polym. Res. 2011, 18, 2169–2174. [Google Scholar] [CrossRef]
- Yun, J.; Kim, H.-I. Erratum to: Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites. Polym. Bull. 2012, 69, 261. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.; Zhang, L.; Li, J. Complex permittivity and electromagnetic interference shielding properties of Ti3SiC2/polyaniline composites. J. Mater. Sci. 2009, 44, 945–948. [Google Scholar] [CrossRef]
- Sharma, M.; Kaushik, D.; Singh, R.R. Study of electropolymerized polyaniline films using cyclic voltammetry, atomic force microscopy and optical spectroscopy. J. Mater. Sci. Mater. Electron. 2006, 17, 537–541. [Google Scholar] [CrossRef]
- Fernández, L.; Martínez, E.O.; Zambrano, H. Electrochemical oxidation of ethylene at pani/pt and ag/pani/pt modified electrodes. Química Nova 2016, 39, 932–935. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Kottarath, S.; Iroh, J.O.; Vaia, R.A. Progressive Intercalation and Exfoliation of Clay in Polyaniline–Montmorillonite Clay Nanocomposites and Implication to Nanocomposite Impedance. Energies 2022, 15, 5366. https://doi.org/10.3390/en15155366
Zhu Y, Kottarath S, Iroh JO, Vaia RA. Progressive Intercalation and Exfoliation of Clay in Polyaniline–Montmorillonite Clay Nanocomposites and Implication to Nanocomposite Impedance. Energies. 2022; 15(15):5366. https://doi.org/10.3390/en15155366
Chicago/Turabian StyleZhu, Yanrong, Sandeep Kottarath, Jude O. Iroh, and Richard A. Vaia. 2022. "Progressive Intercalation and Exfoliation of Clay in Polyaniline–Montmorillonite Clay Nanocomposites and Implication to Nanocomposite Impedance" Energies 15, no. 15: 5366. https://doi.org/10.3390/en15155366
APA StyleZhu, Y., Kottarath, S., Iroh, J. O., & Vaia, R. A. (2022). Progressive Intercalation and Exfoliation of Clay in Polyaniline–Montmorillonite Clay Nanocomposites and Implication to Nanocomposite Impedance. Energies, 15(15), 5366. https://doi.org/10.3390/en15155366