# Modeling and Simulation of Electric Motors Using Lightweight Materials

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Motor Selection

## 3. Design of Single-Phase Induction Motor

_{0}and L is given as

## 4. Methodology

#### 4.1. Electric Motor Designed on Motor-CAD (Fan Cooling System)

#### 4.2. Electric Motor Designed with Motor-CAD (Water Jacket Cooling System)

#### 4.3. Water-Cooled Motor with Lightweight Material PA6GF30 as Casing

## 5. Results and Discussion

#### 5.1. Radial and Axial Views of Fan-Cooled Motor along with Path of Air Flow from Fan Cooling System

#### 5.2. Performance of FEM Thermal Analysis of Motor (Fan-Cooled)

#### 5.3. Radial and Axial Views of Motor along with Path of Water Flow for Water-Cooled Motor with Housing Water Jacket

#### 5.4. Thermal Analysis of Water-Cooled Motor with Aluminum (Alloy 195 Cast) Casing

#### 5.5. Output Data Obtained for Motor Thermal Analysis (Comparison of Fan-Cooled and Water-Cooled Motor with Aluminum Casing)

#### 5.6. Thermal Analysis of Water-Cooled Electric Motor of Lightweight PA6GF30 Casing

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Conflicts of Interest

## Abbreviations

CAD | Computer-aided design |

EEC | Electric engine cooling |

FEA | Finite element analysis |

FEM | Finite element method |

PMSM | Permanent magnet synchronous machine |

CFRP | Carbon fiber-reinforced polymer |

GFRP | Glass fiber-reinforced polymer |

## References

- Koch, S.F.; Peter, M.; Fleischer, J. Lightweight design and manufacturing of composites for high-performance electric motors. Procedia CIRP
**2017**, 66, 283–288. [Google Scholar] [CrossRef] - Fang, S.; Liu, H.; Wang, H.; Yang, H.; Lin, H. High Power Density PMSM With Lightweight Structure and High-Performance Soft Magnetic Alloy Core. IEEE Trans. Appl. Supercond.
**2019**, 29, 2. [Google Scholar] [CrossRef] - Sarfraz, M.S.; Hong, H.; Kim, S.S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos. Struct.
**2021**, 266, 113864. [Google Scholar] [CrossRef] - Jurca, F.N.; Inte, R.; Martis, C. Optimal rotor design of novel outer rotor reluctance synchronous machine. Electr. Eng.
**2020**, 102, 107–116. [Google Scholar] - Müller, T.; Blazek, G.; Henning, F. Design concept of a lightweight electric motor casing with support from thermomechanical simulations. Int. J. Automot. Compos.
**2016**, 2, 2. [Google Scholar] [CrossRef] - Solomon, D.G.; Greco, A.; Masselli, C.; Gundabattini, E.; Rassiah, R.S.; Kuppan, R. A review on methods to reduce weight and to increase efficiency of electric motors using lightweight materials, novel manufacturing processes, magnetic materials and cooling methods. Ann. De Chim.-Sci. Des Matériaux
**2020**, 44, 1–14. [Google Scholar] [CrossRef] - Sobotka, L.; Pechánek, R.; Veg, L. Coupled Transient Thermal Analyses of Passive Cooling Traction PMSM from the Racing Formula. In Proceedings of the IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 21 May 2021. [Google Scholar]
- Palka, R.; Woronowicz, K. Linear Induction Motors in Transportation Systems. Energies
**2021**, 14, 2549. [Google Scholar] [CrossRef] - Palka, R. The Performance of Induction Machines. Energies
**2022**, 15, 3291. [Google Scholar] [CrossRef] - Gundabattini, E.; Kuppan, R.; Solomon, D.G.; Kalam, A.; Kothari, D.P.; Abu Bakar, R. A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Eng. J.
**2021**, 12, 497–505. [Google Scholar] [CrossRef] - Gundabattini, E.; Mystkowski, A.; Idzkowski, A.; Raja Singh, R.; Solomon, D.G. Thermal Mapping of a High-Speed Electric Motor Used for Traction Applications and Analysis of Various Cooling Methods—A Review. Energies
**2021**, 14, 1472. [Google Scholar] [CrossRef] - Gundabattini, E.; Mystkowski, A.; Raja Singh, R.; Gnanaraj, S.D. Water cooling, PSG, PCM, Cryogenic cooling strategies and thermal analysis (experimental and analytical) of a Permanent Magnet Synchronous Motor: A review. Sādhanā
**2021**, 46, 3. [Google Scholar] [CrossRef] - Wardach, M.; Paplicki, P.; Palka, R. A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges. Energies
**2018**, 11, 676. [Google Scholar] [CrossRef][Green Version] - Wardach, M.; Palka, R.; Paplicki, P.; Prajzendanc, P.; Zarebski, T. Modern Hybrid Excited Electric Machines. Energies
**2020**, 13, 5910. [Google Scholar] [CrossRef] - Palka, R.; Wardach, M. Design and Application of Electrical Machines. Energies
**2022**, 15, 523. [Google Scholar] [CrossRef] - Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol.
**2007**, 189, 1–12. [Google Scholar] [CrossRef] - Gao, Y.; Fujiki, T.; Dozono, H.; Muramatsu, K.; Guan, W.; Yuan, J.; Tian, C.; Chen, B. Modeling of Magnetic Characteristics of Soft Magnetic Composite Using Magnetic Field Analysis. IEEE Trans. Magn.
**2018**, 54, 1–4. [Google Scholar] [CrossRef] - Li, B.; Li, X.; Wang, S.; Liu, R.; Wang, Y.; Lin, Z. Analysis and Cogging Torque Minimization of a Novel Flux Reversal Claw Pole Machine with Soft Magnetic Composite Cores. Energies
**2022**, 15, 1285. [Google Scholar] [CrossRef] - Ansys Motor-CAD. Available online: https://www.ansys.com/products/electronics/ansys-motor-cad (accessed on 30 June 2022).
- Boldea, I.; Nasar, S.A. The Induction Machines Design Handbook; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Karnavas, Y.L.; Chasiotis, I.D. Design and manufacturing of a single-phase induction motor: A decision aid tool approach. Int. Trans. Electr. Energ. Syst.
**2017**, 27, e2357. [Google Scholar] [CrossRef] - Yao, Z.; Saadon, Y.; Mandel, R.; McCluskey, F.P. Cooling of Integrated Electric Motors. In Proceedings of the 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 21–23 July 2020. [Google Scholar]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers
**2021**, 13, 3721. [Google Scholar] [CrossRef] - Introduction to Cast Iron: History, Properties, and Uses. Reliance Foundry Co. Ltd. Available online: https://www.reliance-foundry.com/blog/cast-iron (accessed on 10 July 2022).
- Carbon Fiber—Material Table—Application—Price. Available online: https://material-properties.org/carbon-fiber-application-price/ (accessed on 10 July 2022).
- Mazza, L.T.; Paxson, E.B.; Rodgers, R.L. Measurement of Damping Coefficients and Dynamic Modulus of Fiber Composites. Army Aviation Materiel Labs Fort Eustis VA. 1970. Available online: https://apps.dtic.mil/sti/citations/AD0869025 (accessed on 23 January 1971).
- Gronwald, P.O.; Kern, T.A. Traction Motor Cooling Systems: A Literature Review and Comparative Study. IEEE Trans. Transp. Electrif.
**2021**, 7, 2892–2913. [Google Scholar] [CrossRef] - Hong, T.; Rakotovao, M.; Henner, M.; Moreau, S.; Savage, J. Thermal Analysis of Electric Motors in Engine Cooling Fan Systems. SAE Tech. Pap.
**2001**, 1017. [Google Scholar] [CrossRef] - Ben, T.; Chen, L.; Yan, R.; Zhang, Y.; Yang, Q. Stress Analysis of Induction Motor Core Considering Anisotropic Magnetic and Magnetostrictive Properties. Diangong Jishu Xuebao/Trans. China Electrotech. Soc.
**2019**, 34, 66–74. [Google Scholar] [CrossRef] - Kumar, J.A.; Swaroopan, N.M.J.; Shanker, N.R. Induction motor’s rotor slot variation measurement using logistic regression. Automatika
**2022**, 63, 288–302. [Google Scholar] [CrossRef]

**Figure 5.**Motor (fan-cooled) drawn using Motor-CAD software (according to specifications of the chosen motor).

**Figure 7.**Radial view of fan-cooled motor mainly showcasing the housing type-axial fins (the windings, stator, and rotor) (

**a**); axial view of fan-cooled motor depicting air flow coming from fan cooling system through the arrows (

**b**).

**Figure 10.**Radial view (

**a**) and axial view (

**b**) of water-cooled motor with aluminum casing (Alloy 195 cast) water-cooled motor.

Section/Part of the Motor | Specific Part | Dimensions (mm) |
---|---|---|

Radial dimensions | Housing diameter | 140 |

Stator lamination diameter | 130 | |

Shaft diameter | 50 | |

Shaft height | 95 | |

Axial dimensions | Motor length | 240 |

Stator lamination length | 50 | |

Rotor lamination length | 90 | |

Base length | 350 | |

Stator parameters | Housing diameter | 140 |

Tooth width | 71 | |

Fin extension | 12.5 | |

Rotor parameters | Rotor bars | 26 |

Rotor tooth width | 4 | |

Shaft diameter | 50 |

Parameters | Values |
---|---|

Rated output power | 373 W (0.5 HP) |

Rated voltage | 230 V |

Rated speed | 1430 rpm |

Number of poles | 4 |

Number of stator slots | 24 |

Frequency | 50 Hz |

Type | Permanent split capacitor |

Mechanical Properties | Cast Iron | CFRP |
---|---|---|

Tensile strength (ultimate) | 1650 MPa | 4000 MPa |

Compressive stress | 1370 MPa | 890 MPa |

Young’s modulus | 168 GPa | 500 GPa |

Damping capacity | 11.5 × 10^{−3} | 11 × 10^{−3} |

No. | Material | Thermal Conductivity (k·m) | Specific Heat (g·K) | Density (g/cm) |
---|---|---|---|---|

1. | PA6GF30 | 0.41 | 1.30 | 1.36 |

2. | Mg–Zn (magnesium alloy) | 116 | 1.02 | 1.76 |

3. | Ti–6Al–4V (titanium alloy) | 62 | 0.56 | 3.73 |

4. | Epoxy carbon fiber | 5 | 2.02 | 1.21 |

No. | Input Parameter | Input Data |
---|---|---|

1. | Housing | Round axial fins |

2. | Housing material | Aluminum (alloy 195 cast), thermal conductivity—168 W/m/C, specific heat—833 J/kg/C |

3. | Armature winding material | Copper (pure), thermal conductivity—401 W/m/C, specific heat—385 J/kg/C |

4. | Calculation type | Steady-state thermal analysis |

5. | Input power | 800 W |

6. | Shaft speed | 2880 rpm |

7. | Cooling type | Blown over (convection) air cooling (TEFC) |

8. | Velocity of air | Reference flow velocity proportional to speed at 5 m/s |

No. | Output Parameter | Value |
---|---|---|

1. | Total weight of motor obtained including foot mounted base | 13 kg |

2. | Temperature range observed in radial thermal FEM analysis | 160–249 °C |

3. | Temperature range observed in axial thermal FEM analysis | 104–250 °C |

**Table 7.**Comparison of thermal analyses of two fan-cooled motors from a previous study 28 and this study.

No. | Comparison Part | EEC Fan-Cooled Motor [28] (°C) | Fan-Cooled Motor Used in This Study (°C) |
---|---|---|---|

1. | Front cover | 91 | 153.0 |

2. | Rear bearing | 89 | 125.2 |

3. | Rear case | 84 | 132.0 |

**Table 8.**Input parameters for thermal analysis on water-cooled motor with aluminum casing (ANSYS Motor-CAD).

No. | Comparison Part | Fan-Cooled Induction Motor Used in This Study (°C) |
---|---|---|

1. | Housing | Water jacket (axial) |

2. | Housing material | Aluminum (Alloy 195 cast), thermal conductivity—168 W/m/C, specific heat—833 J/kg/C |

3. | Armature winding material | Copper (pure), thermal conductivity—401 W/m/C, specific heat—385 J/kg/C) |

4. | Calculation type | Steady-state thermal analysis |

5. | Input power | 800 W |

6. | Shaft speed | 2880 rpm |

7. | Cooling type | Housing water jacket |

8. | Housing water jacket inlet temperature | 15 °C |

9. | Fluid properties | 7 L/min |

10. | Fluid volume flow rate | Fluid–water |

Fluid–Water | |
---|---|

Thermal conductivity | 0.6167 W/m·K |

Density | 994 kg/m^{3} |

No. | Output Parameter | Value |
---|---|---|

1. | Total weight of motor obtained including foot mounted base | 12.1 kg |

2. | Temperature range observed in radial thermal FEA | 18–123 °C |

3. | Temperature range observed in axial thermal FEA | 17–124 °C |

**Table 11.**Comparison of temperature analyses of two water-cooled motors from a previous study and this study.

No. | Comparison Part | Water-Cooled Motor [5] (°C) | Water-Cooled Motor Used in This Study Set to Same Parameters as Study Motor in [5] (°C) |
---|---|---|---|

1. | Casing temperature | 84 | 65 |

2. | Stator core temperature | 98 | 80 |

Part | Endcap | Front | Overhang | Central | Overhang | Rear | Endcap |
---|---|---|---|---|---|---|---|

Ambient | 40 °C | ||||||

Housing | 153.5 °C | 157.9 °C | 158. 6 °C | 160.2 °C | 145.2 °C | 140.5 °C | 132.2 °C |

Stator (back iron) | 184.0 °C | ||||||

Stator surface | 202.3 °C | ||||||

Rotor surface | 219.1 °C | ||||||

Rotor tooth | 219.3 °C | ||||||

Rotor lamination | 219.0 °C | ||||||

Shaft | 164.3 °C | 170.1 °C | 193.7 °C | 217.3 °C | 164.7 °C | 104.68 °C | 125.23 °C |

Rotor bar | 218.9 °C | 219.3 °C | 218.3 °C | ||||

Blown over air | 83.6 °C | 78.2 °C | 55.8 °C | 40 °C | |||

Winding max. | 252.9 °C | 248.3 °C | 252.8 °C | ||||

Winding av. | 247.3 °C | 234.1 °C | 246.7 °C | ||||

Winding min. | 232.2 °C | 195.7 °C | 233.8 °C |

Part | Endcap | Front | Overhang | Central | Overhang | Rear | Endcap |
---|---|---|---|---|---|---|---|

Ambient | 40 °C | ||||||

Housing | 32.5 °C | 20.0 °C | 17.5 °C | 18.1 °C | 17.1 °C | 21.8 °C | 26.1 °C |

Stator (back iron) | 45.7 °C | ||||||

Stator surface | 67.7 °C | ||||||

Rotor surface | 94.9 °C | ||||||

Rotor tooth | 95.2 °C | ||||||

Rotor lamination | 95.1 °C | ||||||

Shaft | 48.0 °C | 60.5 °C | 76.3 °C | 94.2 °C | 74.1 °C | 55.7 °C | 42.9 °C |

Rotor bar | 94.7 °C | 95.2 °C | 94.6 °C | ||||

Winding max. | 127.0 °C | 122.2 °C | 127.0 °C | ||||

Winding av. | 120.8 °C | 105.2 °C | 120.8 °C | ||||

Winding min. | 108.2 °C | 59.6 °C | 108.1 °C |

No. | Input Parameter | Input Data |
---|---|---|

1. | Housing | Water jacket (axial) |

2. | Housing material | PA6GF30, thermal conductivity—0.41 W/(K·m), specific heat—1.3 J/(g·K) |

3. | Armature winding material | Copper (pure), thermal conductivity—401 W/m/C, specific heat—385 J/kg/C) |

4. | Calculation type | steady-state thermal analysis |

5. | Input power | 800 W |

6. | Shaft speed | 2880 rpm |

7. | Cooling type | Housing water jacket |

8. | Housing water jacket inlet temperature | 15 °C |

9. | Fluid properties | 7 L/min |

10. | Fluid volume flow rate | Fluid–water |

No. | Output Parameter | Value |
---|---|---|

1. | Total weight of motor obtained including foot mounted base | 9.647 kg |

2. | Temperature range observed in radial thermal FEA | 18–126 °C |

3. | Temperature range observed in axial thermal FEA | 17–129 °C |

Part | Endcap | Front | Overhang | Central | Overhang | Rear | Endcap |
---|---|---|---|---|---|---|---|

Ambient | 20 °C | ||||||

Housing | 67.2 °C | 28.0 °C | 17.1 °C | 18.0 °C | 17.1 °C | 53.7 °C | 66.3 °C |

Stator (back iron) | 46.5 °C | ||||||

Stator surface | 69.4 °C | ||||||

Rotor surface | 104.8 °C | ||||||

Rotor tooth | 105.2 °C | ||||||

Rotor lamination | 105.1 °C | ||||||

Shaft | 84.8 °C | 84.9 °C | 93.7 °C | 104.5 °C | 88.9 °C | 75.5 °C | 76.4 °C |

Rotor bar | 105.1 °C | 105.2 °C | 104.6 °C | ||||

Winding max. | 131.0 °C | 125.2 °C | 130.3 °C | ||||

Winding av. | 124.1 °C | 107.5 °C | 123.6 °C | ||||

Winding min. | 113.6 °C | 60.6 °C | 112.3 °C |

Part | Cuboid 1 | Cuboid 2 |
---|---|---|

End winding max. | 127.8 °C | 131.0 °C |

End winding av. | 121.0 °C | 127.3 °C |

End winding min. | 133.6 °C | 117.8 °C |

Winding max. | 120.9 °C | 125.2 °C |

Winding av. | 102.7 °C | 112.3 °C |

Winding min. | 60.6 °C | 86.5 °C |

End winding max. | 127.8 °C | 130.3 °C |

End winding av. | 120.5 °C | 126.6 °C |

End winding min. | 112.3 °C | 116.9 °C |

Tooth | 58.5 °C | 68.7 °C |

Cases | Lowest Temperature(along Axial Direction) (°C) | Highest Temperature(along Axial Direction) (°C) | Temperature Reduction of Highest Temperature When Compared to Air-Cooled Motor (%) |
---|---|---|---|

Case-1 | 104 | 250 | - |

Case-2 | 17 | 124 | 50.4 |

Case-3 | 17 | 129 | 48.4 |

Models | Weight of the Motor (kg) | Weight Reduction When Compared with Air-cooled Motor Model-1 (%) |
---|---|---|

Model-1 (air-cooled motor) | 13 | - |

Model-2 (water-cooled withAlloy 195 casing) | 12.1 | - |

Model-3 (water-cooled with PA6GF30) | 9.647 | 20.27 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Boopathi, N.G.; Muthuraman, M.S.; Palka, R.; Wardach, M.; Prajzendanc, P.; Gundabattini, E.; Rassiah, R.S.; Solomon, D.G. Modeling and Simulation of Electric Motors Using Lightweight Materials. *Energies* **2022**, *15*, 5183.
https://doi.org/10.3390/en15145183

**AMA Style**

Boopathi NG, Muthuraman MS, Palka R, Wardach M, Prajzendanc P, Gundabattini E, Rassiah RS, Solomon DG. Modeling and Simulation of Electric Motors Using Lightweight Materials. *Energies*. 2022; 15(14):5183.
https://doi.org/10.3390/en15145183

**Chicago/Turabian Style**

Boopathi, Nikita Gobichettipalayam, Manoj Shrivatsaan Muthuraman, Ryszad Palka, Marcin Wardach, Pawel Prajzendanc, Edison Gundabattini, Raja Singh Rassiah, and Darius Gnanaraj Solomon. 2022. "Modeling and Simulation of Electric Motors Using Lightweight Materials" *Energies* 15, no. 14: 5183.
https://doi.org/10.3390/en15145183