Inertia Control Strategy of DFIG-Based Wind Turbines Considering Low-Frequency Oscillation Suppression
Abstract
:1. Introduction
2. Inertia Control of DFIG-Based Wind Turbine
3. Influence of the Integration of Inertia Control on the Low-Frequency Oscillation Characteristics of Systems
3.1. Two-Machine Infinite-Bus System
3.2. Four-Machine Two-Area System
4. Inertia Control Strategy of DFIG-Based Wind Turbine Considering Low-Frequency Oscillation Suppression
4.1. Improved Inertia Control Strategy of DFIG-Based Wind Turbine
4.2. Simulation Analysis
4.2.1. The Influence on the Inertia Support Capability
4.2.2. The Influence on the Suppression of Low-Frequency Oscillation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hydro-Québec TransÉnergie. Technical Requirements for the Connection of Generating Stations to the Hydro-Québec Transmission System. Available online: https://www.hydroquebec.com/transenergie/en/connecting-to-hydroquebec-system.html (accessed on 18 July 2021).
- National Grid Electricity System Operator. The Grid Code. Available online: https://www.nationalgrideso.com/industry-information/codes/grid-code/code-documents (accessed on 18 July 2021).
- The European Commission. The Network Code on Requirements for Generators. Available online: https://www.entsoe.eu/network_codes/rfg/ (accessed on 18 July 2021).
- Yan, X.; Sun, X. Inertia and droop frequency control strategy of doubly-fed induction generator based on rotor kinetic energy and supercapacitor. Energies 2020, 13, 3697. [Google Scholar] [CrossRef]
- Li, C.; Hang, Z.; Zhang, H.; Guo, Q.; Zhu, Y.; Terzija, V. Evaluation of DFIGs’ primary frequency regulation capability for power systems with high penetration of wind power. Energies 2020, 13, 6178. [Google Scholar] [CrossRef]
- Abouzeid, S.I.; Guo, Y.F.; Zhang, H.C. A frequency response strategy for variable speed wind turbine based on a dynamic inertial response and tip-speed ratio control. Electr. Eng. 2019, 101, 35–44. [Google Scholar] [CrossRef]
- Shao, H.; Cai, X.; Zhou, D.; Li, Z.; Zheng, D.; Cao, Y.; Wang, Y.; Rao, F. Equivalent modeling and comprehensive evaluation of inertia emulation control strategy for DFIG wind turbine generator. IEEE Access 2019, 7, 64798–64811. [Google Scholar] [CrossRef]
- Beltran, H.; Harrison, S.; Egea-Àlvarez, A.; Xu, L. Techno-economic assessment of energy storage technologies for inertia response and frequency support from wind farms. Energies 2020, 13, 3421. [Google Scholar] [CrossRef]
- Liu, J.L.; Yang, Z.F.; Yu, J.; Huang, J.K.; Li, W.Y. Coordinated control parameter setting of DFIG wind farms with virtual inertia control. Int. J. Electr. Power. Energy. Syst. 2020, 122, 106167. [Google Scholar] [CrossRef]
- Sun, L.; Liu, K.; Hu, J.; Hou, Y. Analysis and mitigation of electromechanical oscillations for DFIG wind turbines involved in fast frequency response. IEEE Trans. Power Syst. 2019, 34, 4547–4556. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, D.; Shen, Y.; Phadke, A.G. Research on positioning method of low frequency oscillating source in DFIG-integrated system with virtual inertia control. IEEE Trans. Sustain. Energy 2020, 11, 1693–1706. [Google Scholar] [CrossRef]
- Wu, G.; Sun, H.; Zhao, B.; Xu, S.; Zhang, X.; Egea-Àlvarez, A.; Wang, S.; Li, G.; Li, Y.; Zhou, X. Low-frequency converter-driven oscillations in weak grids: Explanation and damping improvement. IEEE Trans. Power Syst. 2021, 36, 5944–5947. [Google Scholar] [CrossRef]
- Silva-Monroy, C.; Neely, J.; Byrne, R.; Elliott, R.; Schoenwald, D. Wind generation controls for damping of inter-area oscillations. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Pulgar-Painemal, H.; Gálvez-Cubillos, R. Wind farms participation in frequency regulation and its impact on power system damping. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble, France, 16–20 June 2013. [Google Scholar]
- Geng, H.; Xi, X.; Liu, L.; Yang, G.; Ma, J. Hybrid modulated active damping control for DFIG-based wind farm participating in frequency response. IEEE Trans. Energy Convers. 2017, 32, 1220–1230. [Google Scholar] [CrossRef]
- Xi, X.Z.; Geng, H.; Yang, G. Small signal stability of weak power system integrated with inertia tuned large scale wind farm. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies—Asia, Kuala Lumpur, Malaysia, 20–23 May 2014. [Google Scholar]
- Lucas, E.; Campos-Gaona, D.; Anaya-Lara, O. Assessing the Impact of DFIG Synthetic Inertia Provision on Power System Small-Signal Stability. Energies 2019, 12, 3440. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Yuan, X.; Hu, J.; He, W. Impact of inertia control of DFIG-based WT on electromechanical oscillation damping of SG. IEEE Trans. Power Syst. 2018, 33, 3450–3459. [Google Scholar] [CrossRef]
- Ma, J.; Qiu, Y.; Li, Y.; Zhang, W.; Song, Z.; Thorp, J.S. Research on the impact of DFIG virtual inertia control on power system small-signal stability considering the phase-locked loop. IEEE Trans. Power Syst. 2017, 32, 2094–2105. [Google Scholar] [CrossRef]
- Geng, H.; Xi, X.Z.; Yang, G. Small-signal stability of power system integrated with ancillary-controlled largescale DFIG-based wind farm. IET Renew. Power Gener. 2017, 11, 1191–1198. [Google Scholar] [CrossRef]
- Hughes, F.M.; Anaya-Lara, O.; Jenkins, N.; Strbac, G. A power system stabilizer for DFIG-based wind generation. IEEE Trans. Power Syst. 2006, 21, 763–772. [Google Scholar] [CrossRef]
- Dominguez-Garcia, J.L.; Gomis-Bellmunt, O.; Bianchi, F.D.; Sumper, A. Power oscillation damping supported by wind power: A review. Renewable Sustain. Energy Rev. 2012, 16, 4994–5006. [Google Scholar] [CrossRef]
- Surinkaew, T.; Ngamroo, I. Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power sscillation damping. IEEE Trans. Sustain. Energy 2016, 7, 943–955. [Google Scholar] [CrossRef]
- Morshed, M.J.; Fekih, A. A probabilistic robust coordinated approach to stabilize power oscillations in DFIG-based power systems. IEEE Trans. Ind. Inf. 2019, 15, 5599–5612. [Google Scholar] [CrossRef]
- Singh, M.; Allen, A.J.; Muljadi, E.; Gevorgian, V.; Zhang, Y.; Santoso, S. Interarea oscillation damping controls for wind power plants. IEEE Trans. Sustain. Energy 2015, 6, 967–975. [Google Scholar] [CrossRef]
- Ramirez-Gonzalez, M.; Malik, O.; Castellanos-Bustamante, R.; Calderon-Guizar, G. Conventional and fuzzy PODCs for DFIG-based wind farms and their impact on inter-area and torsional oscillation damping. IET Renew. Power Gener. 2017, 11, 333–340. [Google Scholar] [CrossRef]
- Xi, X.Z.; Geng, H.; Yang, G.; Li, S.; Gao, F. Two-level damping control for DFIG-based wind farm providing synthetic inertial service. IEEE Trans. Ind. Appl. 2018, 54, 1712–1723. [Google Scholar] [CrossRef]
- Yu, S.S.; Chau, T.K.; Fernando, T.; Iu, H.H. An enhanced adaptive phasor power oscillation damping approach with latency compensation for modern power systems. IEEE Trans. Power Syst. 2018, 33, 4285–4296. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994; Chapter 12. [Google Scholar]
- Kayikci, M.; Milanovic, J.V. Dynamic contribution of DFIG-based wind plants to system frequency disturbances. IEEE Trans. Power Syst. 2009, 24, 859–867. [Google Scholar] [CrossRef]
- Mauricio, J.M.A.; Gomez-Exposito, M.A.; Martinez Ramos, J.L. Frequency regulation contribution through variable-speed wind energy conversion systems. IEEE Trans. Power Syst. 2009, 24, 173–180. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Frequency Stability Enhancement for Low Inertia Systems Using Synthetic Inertia of Wind Power. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017. [Google Scholar]
- Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Combination of synchronous condenser and synthetic inertia for frequency stability enhancement in low-inertia systems. IEEE Trans. Sustain. Energy 2019, 10, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Surinkaew, T.; Ngamroo, I. Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties. IEEE Trans. Sustain. Energy 2014, 5, 823–833. [Google Scholar] [CrossRef]
- Hao, Z.; Yu, Y.; Zeng, Y. A control strategy for increasing power system damping with wind turbine-driven doubly-fed induction generator. Autom. Electr. Power Syst. 2011, 35, 25–29. [Google Scholar]
Parameters | Values | Parameters | Values |
---|---|---|---|
1.8 p.u. | 0.2 p.u. | ||
0.3 p.u. | 0.0025 p.u. | ||
0.25 p.u. | 8.0 s | ||
1.7 p.u. | 0.03 s | ||
0.55 p.u. | 0.4 s | ||
0.25 p.u. | 0.05 s | ||
(in G1) | 6.5 s | (in G3 and G4) | 6.175 s |
Case | Mode #no. | Eigenvalue | Damping Ratio | Related Generators |
---|---|---|---|---|
Without IC | Intra-area #1 | −0.3582 ± j 6.6884 | 0.0535 | G3, G4 |
Inter-area #2 | −0.2597 ± j 3.4535 | 0.0750 | G1, G3, G4 | |
With IC | Intra-area #1 | −0.3739 ± j 6.6243 | 0.0564 | G3, G4 |
Inter-area #2 | −0.1155 ± j 4.6272 | 0.0245 | G1, G3, G4, WF |
Case | Mode #no. | Eigenvalue | Damping Ratio | Related Generators |
---|---|---|---|---|
MPPT control | Intra-area #1 | −0.3582 ± j 6.6884 | 0.0535 | G3, G4 |
Inter-area #2 | −0.2597 ± j 3.4535 | 0.0750 | G1, G3, G4 | |
K = 0 (original IC) | Intra-area #1 | −0.3739 ± j 6.6243 | 0.0564 | G3, G4 |
Inter-area #2 | −0.1155 ± j 4.6272 | 0.0245 | G1, G3, G4, WF | |
K = 50 | Intra-area #1 | −0.3660 ± j 6.6087 | 0.0553 | G3, G4 |
Inter-area #2 | −0.2374 ± j 4.7039 | 0.0504 | G1, G3, G4, WF | |
K = 100 | Intra-area #1 | −0.3610 ± j 6.5924 | 0.0547 | G3, G4 |
Inter-area #2 | −0.3333 ± j 4.8050 | 0.0692 | G1, G3, G4, WF | |
K = 150 | Intra-area #1 | −0.3588 ± j 6.5762 | 0.0545 | G3, G4 |
Inter-area #2 | −0.3963 ± j 4.9182 | 0.0803 | G1, G3, G4, WF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yang, S.; Yuan, X. Inertia Control Strategy of DFIG-Based Wind Turbines Considering Low-Frequency Oscillation Suppression. Energies 2022, 15, 29. https://doi.org/10.3390/en15010029
Liu H, Yang S, Yuan X. Inertia Control Strategy of DFIG-Based Wind Turbines Considering Low-Frequency Oscillation Suppression. Energies. 2022; 15(1):29. https://doi.org/10.3390/en15010029
Chicago/Turabian StyleLiu, Haoming, Suxiang Yang, and Xiaoling Yuan. 2022. "Inertia Control Strategy of DFIG-Based Wind Turbines Considering Low-Frequency Oscillation Suppression" Energies 15, no. 1: 29. https://doi.org/10.3390/en15010029
APA StyleLiu, H., Yang, S., & Yuan, X. (2022). Inertia Control Strategy of DFIG-Based Wind Turbines Considering Low-Frequency Oscillation Suppression. Energies, 15(1), 29. https://doi.org/10.3390/en15010029