Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept
Abstract
:1. Introduction
2. Materials and Methods
2.1. Circular Economy
- achieving 65% recycling of municipal waste by 2035;
- achieving 75% recycling of packaging waste by 2035;
- reducing municipal waste landfilling to a maximum of 10% by 2030;
- a ban on the landfilling of selectively collected waste.
2.2. Municipal Solid Waste Management in Poland
- plus-mesh fraction (calorific);
- minus-mesh fraction (biological);
- ballast fraction (non-flammable).
- Kraków—220,000 Mg/year;
- Poznań—210,000 Mg/year;
- Bydgoszcz—180,000 Mg/year;
- Szczecin—150,000 Mg/year;
- Białystok—120,000 Mg/year;
- Rzeszów—100,000 Mg/year;
- Konin—94,000 Mg/year;
- Warszawa—50,000 Mg/year;
- Zabrze—250,000 Mg/year (multi-fuel boiler for RDF).
2.3. Mass Balance for Municipal Solid Waste in Poland
- —heat of combustion of the ‘i’ fraction in the waste
- xi—mass fraction of ‘i’ in the waste.
- Hu—calorific value [MJ/kg]
- w—moisture content of the fuel [%]
- Ho—fuel combustion heat [MJ/kg]
- rW—heat of water evaporation [MJ/kg] (rW = 2250 MJ/kg)
3. Results and Discussion
3.1. Implementation of Circular Economy Concept
- Variant I—achieving a level of separate collection equal to the required recycling targets for individual waste fractions in line with the requirements of the circular economy (paper and cardboard—85%, ferrous metals—80%, aluminum—60%, glass—75%, plastics—55%, wood—30%.);
- Variant II—achieving 65% separate collection with the assumption that all separate collected fractions will be recycled for whole stream of municipal waste (circular economy target for 2035);
- Variant III—achieving 65% real recycling of all municipal waste, assuming that only 90% of the separate collected fractions of municipal waste can be recycled.
3.2. Effect of a Changing Waste Management System on Waste Streams
3.3. Plastic Reduction
3.4. Reduction of the Amount of Glass Waste Due to the Introduction of a Deposit
3.5. Selective Collection of Bottom Ash
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zanetti, P. Air Pollution Modeling, Theories. Computational Methods and Available Software; Springer: New York, NY, USA, 1990. [Google Scholar]
- Chen, D.M.-C.; Bodirsky, B.L.; Krueger, T.; Mishra, A.; Popp, A. The world’s growing municipal solid waste: Trends and impacts. Environ. Res. Lett. 2020, 15, 074021. [Google Scholar] [CrossRef]
- Jappelli, T.; Pistaferri, L. The Consumption Response to Income Changes. Annu. Rev. Econ. 2010, 2, 479–506. [Google Scholar] [CrossRef] [Green Version]
- Bandara, N.; Hettiaratchi, J.P.A.; Wirasinghe, S.C.; Sumith Pilapiiya, S. Relation of waste generation and composition to socio-economic factors: A case study. Environ. Monit. Assess. 2007, 135, 31–39. [Google Scholar] [CrossRef]
- Khan, D.; Kumar, A.; Samadder, S.R. Impact of socioeconomic status on municipal solid waste generation rate. Waste Manag. 2016, 49, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Kala, K.; Bolia, N.B.; Sushil. Effects of socio-economic factors on quantity and type of municipal solid waste. Manag. Environ. Qual. 2020, 31, 877–894. [Google Scholar] [CrossRef]
- Niessen, W.R.; Alsobrook, A.F. Municipal and Industrial Refuse: Composition and Rates. In Proceedings of the National Waste Processing Conference, New York, NY, USA, 4–7 June 1972; pp. 112–117. [Google Scholar]
- Grossman, D.; Hudson, J.F.; Mark, D.H. Waste generation methods for solid waste collection. J. Environ. Eng. 1974, 6, 1219–1230. [Google Scholar] [CrossRef]
- Chang, N.B.; Pan, Y.C.; Huang, S.D. Time series forecasting of solid waste generation. J. Resour. Manag. Technol. 1993, 21, 1–10. [Google Scholar]
- Bruvoll, A.; Ibenholt, K. Future waste generation forecasts on the basis of a macroeconomic model. Resour. Conserv. Recycl. 1997, 19, 137–149. [Google Scholar] [CrossRef]
- Chang, N.B.; Lin, Y.T. An analysis of recycling impacts on solid waste generation by time series intervention modeling. Resour. Conserv. Recycl. 1997, 19, 165–186. [Google Scholar] [CrossRef]
- Navarro-Esbri, J.; Diamadopoulos, E.; Ginestar, D. Time series analysis and forecasting techniques for municipal solid waste management. Resour. Conserv. Recycl. 2002, 35, 201–214. [Google Scholar] [CrossRef]
- Dyson, B.; Chang, N.B. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Manag. 2005, 25, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Beigl, P.; Lebersorger, S.; Salhofer, S. Modeling municipal solid waste generation: A review. Waste Manag. 2008, 28, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.; Martinho, G.; Chang, N.B. Solid waste management in European countries: A review of systems analysis techniques. J. Environ. Manag. 2011, 92, 1033–1050. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Abduli, M.A.; Omidvar, B.; Baghvand, A. Forecasting municipal solid waste generation by hybrid support vector machine and partial least square model. Int. J. Environ. Res. 2013, 7, 27–38. [Google Scholar] [CrossRef]
- Kolekar, K.A.; Hazra, T.; Chakrabarty, S.N. A Review on Prediction of Municipal Solid Waste Generation Models. Procedia Environ. Sci. 2016, 35, 238–244. [Google Scholar] [CrossRef]
- Ghinea, C.; Dragoi, E.N.; Comanit, E.D.; Gavrilescu, M.; Campean, T.; Curteanu, S.; Gavrilescu, M. Forecasting municipal solid waste generation using prognostic tools and regression analysis. J. Environ. Manag. 2016, 182, 80–93. [Google Scholar] [CrossRef]
- Wei, Y.; Xue, Y.; Yin, J.; Ni, W. Prediction of municipal solid waste generation in China by multiple linear regression method. Int. J. Comput. Appl. 2013, 35, 136–140. [Google Scholar] [CrossRef]
- Grazhdani, D. Assessing the variables affecting on the rate of solid waste generation and recycling: An empirical analysis in Prespa Park. Waste Manag. 2016, 48, 3–13. [Google Scholar] [CrossRef]
- Wang, S.; Huang, G.H.; Yang, B.T. An interval-valued fuzzy-stochastic programming approach and its application to municipal solid waste management. Environ. Model. Softw. 2012, 29, 24–36. [Google Scholar] [CrossRef]
- Gambella, C.; Maggioni, F.; Vigo, D. A stochastic programming model for a tactical solid waste management problem. Eur. J. Oper. Res. 2019, 273, 684–694. [Google Scholar] [CrossRef]
- Zade, M.J.G.; Noori, R. Prediction of municipal solid waste generation by use of artificial neural network: A case study of Mashhad. Int. J. Environ. Res. 2008, 2, 13–22. [Google Scholar] [CrossRef]
- Abbasi, M.; El Hanandeh, A. Forecasting municipal solid waste generation using artificial intelligence modeling approaches. Waste Manag. 2016, 56, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ljunggren, M. Modeling national solid waste management. Waste Manag. Res. 2000, 18, 525–537. [Google Scholar] [CrossRef]
- Morrisey, A.; Browne, J. Waste management models and their application to sustainable waste management. Waste Manag. 2004, 24, 297–308. [Google Scholar] [CrossRef]
- Vergara, S.E.; Tchobanoglous, G. Municipal Solid Waste and the Environment: A Global Perspective. Ann. Rev. Environ. Resour. 2012, 37, 277–309. [Google Scholar] [CrossRef]
- Allesch, A.; Brunner, P.H. Assessment methods for solid waste management: A literature review. Waste Manag. Res. 2014, 32, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Stanisavljevic, N.; Brunner, P.H. Combination of material flow analysis and substance flow analysis: A powerful approach for decision support in waste management. Waste Manag. Res. 2014, 32, 733–744. [Google Scholar] [CrossRef]
- Makarichi, L.; Techato, K.; Jutidamrongphan, W. Material flow analysis as a support tool for multi-criteria analysis in solid waste management decision-making. Resour. Conserv. Recycl. 2018, 139, 351–365. [Google Scholar] [CrossRef]
- Millward-Hopkins, J.; Busch, J.; Purnell, P.; Zwirner, O.; Velis, C.A.; Brown, A.; Hahladakis, J.; Iacovidou, E. Fully integrated modeling for sustainability assessment of resource recovery from waste. Sci. Total Environ. 2018, 612, 613–624. [Google Scholar] [CrossRef]
- Ayvaz-Cavdaroglu, N.; Coban, A.; Firtina-Ertis, I. Municipal solid waste management via mathematical modeling: A case study in İstanbul, Turkey. J. Environ. Manag. 2019, 244, 362–369. [Google Scholar] [CrossRef]
- Ghiani, G.; Laganà, D.; Manni, E.; Musmanno, R.; Vigo, D. Operations research in solid waste management: A survey strategic and tactical issues. Comput. Oper. Res. 2014, 44, 22–32. [Google Scholar] [CrossRef]
- Ioppolo, G.; Cucurachi, S.; Salomone, R.; Shi, L.; Yigitcanlar, T. Integrating strategic environmental assessment and material flow accounting: A novel approach for moving towards sustainable urban futures. Int. J. Life Cycle Assess. 2019, 24, 1269–1284. [Google Scholar] [CrossRef]
- Schandl, H.; Miatto, A. Data on the domestic processed output, balancing items, and solid waste potential for five major world economies. Data Brief 2019, 22, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Solid waste management through the applications of mathematical models. Resour. Conserv. Recycl. 2019, 151, 104503. [Google Scholar] [CrossRef]
- de Man, R.; Friegem, H. Circular economy: European policy on shaky ground. Waste Manag. Res. 2016, 34, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Haupt, M.; Vadenbo, C.; Hellweg, S. Do we have the right performance indicators for the Circular Economy? Insight into the Swiss waste management system. J. Ind. Ecol. 2016, 21, 615–627. [Google Scholar] [CrossRef]
- Nelles, M.; Grünes, J.; Morscheck, G. Waste Management in Germany—Development to a Sustainable Circular Economy? Procedia Environ. Sci. 2016, 35, 6–14. [Google Scholar] [CrossRef]
- Cullen, J.M. Circular economy: Theoretical benchmark or perpetual motion machine? J. Ind. Ecol. 2017, 21, 483–486. [Google Scholar] [CrossRef]
- Huysman, S.; De Schaepmeester, J.; Ragaert, K.; Dewulf, J.; De Meester, S. Performance indicators for a circular economy: A case study on post-industrial plastic waste. Resour. Conserv. Recycl. 2017, 120, 46–54. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczynska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colon, J.; Ponsa, S.; Al-Mansour, F.; et al. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Saif, Y.; Rizwan, M.; Almansoori, A.; Elkamel, A. A circular economy solid waste supply chain management based approach under uncertainty. Energy Procedia 2017, 142, 2971–2976. [Google Scholar] [CrossRef]
- Tisserant, A.; Pauliuk, S.; Merciai, S.; Schmidt, J.; Fry, J.; Wood, R.; Tukker, A. Solid waste and the circular economy: A global analysis of waste treatment and waste footprints: Global analysis of solid waste and waste footprint. J. Ind. Ecol. 2017, 21, 628–640. [Google Scholar] [CrossRef] [Green Version]
- Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Ranta, V.; Aarikka-Stenroos, L.; Ritala, P.; Saku, J.; Mäkinen, S.J. Exploring institutional drivers and barriers of the circular economy: A cross-regional comparison of China, the US, and Europe. Resour. Conserv. Recycl. 2018, 135, 70–82. [Google Scholar] [CrossRef]
- Hidalgo, D.; Martín-Marroquin, J.M.; Corona, F. A multi-waste management concept as a basis towards a circular economy model. Renew. Sustain. Energy Rev. 2019, 111, 481–489. [Google Scholar] [CrossRef]
- Payne, J.; McKeown, P.; Jones, M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019, 165, 170–181. [Google Scholar] [CrossRef]
- Ragossnig, A.M.; Schneider, D.R. Circular economy, recycling and end-of-waste. Waste Manag. Res. 2019, 37, 109–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velenturf, A.P.M.; Archer, S.A.; Gomes, H.I.; Christgen, B.; Lag-Brotons, A.J.; Purnell, P. Circular economy and the matter of integrated resources. Sci. Total Environ. 2019, 689, 963–969. [Google Scholar] [CrossRef]
- Iacovidou, E.; Hahladakis, J.N.; Purnell, P. A systems thinking approach to understanding the challenges of achieving the circular economy. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a circular economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- de Sadeleer, I.; Brattebø, H.; Callewaert, P. Waste prevention, energy recovery or recycling—Directions for household food waste management in light of circular economy policy. Resour. Conserv. Recycl. 2020, 160, 104908. [Google Scholar] [CrossRef]
- EUR-Lex. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The RegionsCommunication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. In Towards a Circular Economy: A Zero Waste Programme for Europe; COM 398 Final; EUR-Lex: Brussels, Belgium, 2014. [Google Scholar]
- EUR-Lex. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. In Closing the Loop—An EU Action Plan for the Circular Economy; COM 614 Final; EUR-Lex: Brussels, Belgium, 2015. [Google Scholar]
- EUR-Lex. Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment; OJ. L 155; EUR-Lex: Brussels, Belgium, 2019; pp. 1–19. [Google Scholar]
- EUR-Lex. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2008/98/EC on Waste; OJ. L 150; EUR-Lex: Brussels, Belgium, 2018; pp. 109–140. [Google Scholar]
- EUR-Lex. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. In A New Circular Economy Action Plan. For a Cleaner and More Competitive Europe; COM 98 Final; EUR-Lex: Brussels, Belgium, 2020. [Google Scholar]
- EUR-Lex. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. In A New Industrial Strategy for Europe; COM 102 Final; EUR-Lex: Brussels, Belgium, 2020. [Google Scholar]
- EUR-Lex. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The RegionsCommunication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions. In The Role of Waste-to-Energy in Circular Economy; COM 34 Final; EUR-Lex: Brussels, Belgium, 2017. [Google Scholar]
- Archer, E.; Baddeley, A.; Klein, A.; Schwager, J.; Whiting, K. Mechanical-Biological-Treatment. A Guide for Decision Makers; Juniper Consultancy Services: London, UK, 2005. [Google Scholar]
- Szpadt, R. Prognoza zmian w zakresie gospodarki odpadami (Forecast of Changes in the Field of Waste Management); Ministerstwo Środowiska (Ministry of Environment): Warszawa, Poland, 2010.
- Krajowy Plan Gospodarki Odpadami (National Waste Management Plan); Rada Ministrów RP (Council of Ministers of the Republic of Poland): Warszawa, Poland, 2016.
- Prognoza ludności na lata 2014–2050 (Population Forecast for 2014–2050); Główny Urząd Statystyczny (Central Statistical Office): Warszawa, Poland, 2014.
- den Boer, E. High Calorific Fraction for Energy Recovery in Poland—An Overview of the Current Situation. In Waste Management; Thomé-Kozmiensky, K.J., Thiel, S., Thomé-Kozmiensky, E., Winter, F., Juchelková, D., Eds.; TK: Neuruppin, Germany, 2017; Volume 7, pp. 301–314. [Google Scholar]
- Mapa Drogowa Transformacji w Kierunku Gospodarki o Obiegu Zamkniętym (Roadmap for Transformation towards a Circular Economy); Rada Ministrów RP (Council of Ministers of the Republic of Poland): Warszawa, Poland, 2019.
Types of Waste | 2008 | 2011 | 2014 | 2017 | 2020 | 2022 |
---|---|---|---|---|---|---|
Big cities (over 50,000 inhabitants) | 386 | 402 | 420 | 440 | 463 | 479 |
Small towns (less than 50,000 inhabitants) | 346 | 358 | 374 | 391 | 412 | 428 |
Rural areas | 234 | 243 | 253 | 265 | 280 | 291 |
Types of Waste | 2008 | 2011 | 2014 | 2017 | 2020 | 2022 |
---|---|---|---|---|---|---|
Paper | 19.09 | 19.33 | 19.71 | 20.25 | 20.48 | 20.56 |
Glass | 9.97 | 9.90 | 9.93 | 9.89 | 9.81 | 9.81 |
Metals | 2.67 | 2.64 | 2.57 | 2.48 | 2.35 | 2.28 |
Plastics | 15.17 | 15.34 | 15.52 | 15.56 | 15.88 | 16.16 |
Multi-material waste | 2.47 | 2.50 | 2.53 | 2.53 | 2.59 | 2.63 |
Kitchen and garden waste | 28.91 | 28.41 | 27.76 | 27.09 | 26.48 | 25.93 |
Mineral waste | 3.16 | 3.13 | 3.10 | 3.07 | 3.02 | 3.03 |
Fraction < 10 mm | 4.20 | 4.08 | 3.95 | 3.86 | 3.80 | 3.80 |
Textiles | 2.28 | 2.29 | 2.29 | 2.27 | 2.27 | 2.30 |
Wood | 0.23 | 0.30 | 0.36 | 0.41 | 0.45 | 0.50 |
Hazardous waste | 0.75 | 0.77 | 0.79 | 0.80 | 0.80 | 0.84 |
Other waste | 3.16 | 3.36 | 3.64 | 3.84 | 4.08 | 4.24 |
Bulky waste | 2.59 | 2.61 | 2.55 | 2.59 | 2.63 | 2.61 |
Waste from green areas | 5.34 | 5.35 | 5.31 | 5.36 | 5.36 | 5.32 |
Types of Waste | 2008 | 2011 | 2014 | 2017 | 2020 | 2022 |
---|---|---|---|---|---|---|
Paper | 9.60 | 9.74 | 9.96 | 10.27 | 10.38 | 10.46 |
Glass | 10.21 | 10.16 | 10.20 | 10.19 | 10.11 | 10.06 |
Metals | 1.54 | 1.51 | 1.47 | 1.43 | 1.36 | 1.31 |
Plastics | 10.98 | 11.13 | 11.30 | 11.34 | 11.61 | 11.79 |
Multi-material waste | 3.95 | 4.02 | 4.07 | 4.09 | 4.17 | 4.25 |
Kitchen and garden waste | 36.70 | 36.13 | 35.33 | 34.72 | 34.17 | 33.81 |
Mineral waste | 2.83 | 2.67 | 2.89 | 2.89 | 2.86 | 2.90 |
Fraction < 10 mm | 6.84 | 6.81 | 6.72 | 6.59 | 6.43 | 6.35 |
Textiles | 4.02 | 4.10 | 4.15 | 4.16 | 4.17 | 4.23 |
Wood | 0.29 | 0.31 | 0.32 | 0.33 | 0.34 | 0.35 |
Hazardous waste | 0.64 | 0.67 | 0.70 | 0.72 | 0.73 | 0.75 |
Other waste | 4.52 | 4.63 | 4.90 | 5.29 | 5.70 | 5.84 |
Bulky waste | 2.60 | 2.62 | 2.62 | 2.63 | 2.62 | 2.61 |
Waste from green areas | 5.29 | 5.30 | 5.35 | 5.34 | 5.33 | 5.30 |
Types of Waste | 2008 | 2011 | 2014 | 2017 | 2020 | 2022 |
---|---|---|---|---|---|---|
Paper | 4.98 | 5.03 | 5.14 | 5.31 | 5.36 | 5.39 |
Glass | 9.99 | 9.93 | 9.96 | 9.95 | 9.86 | 9.79 |
Metals | 2.43 | 2.39 | 2.33 | 2.26 | 2.14 | 2.06 |
Plastics | 10.26 | 10.39 | 10.55 | 10.59 | 10.82 | 10.96 |
Multi-material waste | 4.09 | 4.12 | 4.19 | 4.22 | 4.29 | 4.36 |
Kitchen and garden waste | 33.09 | 32.56 | 31.85 | 31.24 | 30.68 | 30.33 |
Mineral waste | 5.92 | 6.48 | 6.80 | 7.23 | 7.75 | 8.11 |
Fraction < 10 mm | 16.85 | 16.65 | 16.63 | 16.50 | 16.39 | 16.21 |
Textiles | 2.14 | 2.14 | 2.13 | 2.11 | 2.07 | 2.06 |
Wood | 0.65 | 0.66 | 0.67 | 0.68 | 0.68 | 0.69 |
Hazardous waste | 0.81 | 0.82 | 0.87 | 0.94 | 1.00 | 1.03 |
Other waste | 4.90 | 4.99 | 4.98 | 5.05 | 5.07 | 5.12 |
Bulky waste | 1.28 | 1.28 | 1.30 | 1.28 | 1.29 | 1.27 |
Waste from green areas | 2.61 | 2.60 | 2.61 | 2.64 | 2.61 | 2.61 |
Population of Poland | 38,411,148 |
Cities, total | 23,094,970 |
Cities with more than 50,000 inhabitants | 13,824,254 |
Cities with less than 50,000 inhabitants | 9,270,716 |
Rural areas | 15,316,178 |
Types of Waste | Big Cities (kg/M/year) | Small Town (kg/M/year) | Rural Area (kg/M/year) | Big Cities (Mg) | Small Town (Mg) | Rural Area (Mg) | Total (Mg) | Percent (%) |
---|---|---|---|---|---|---|---|---|
Paper | 94.8 | 42.8 | 15.0 | 1,310,849 | 396,853 | 229,865 | 1,937,567 | 13.35 |
Glass | 45.4 | 41.7 | 27.6 | 627,902 | 386,530 | 422,849 | 1,437,281 | 9.90 |
Metals | 10.9 | 5.6 | 6.0 | 150,415 | 51,996 | 91,775 | 294,185 | 2.03 |
Plastics | 73.5 | 47.9 | 30.3 | 1,016,420 | 443,879 | 464,019 | 1,924,317 | 13.26 |
Multi-material waste | 12.0 | 17.2 | 12.0 | 165,776 | 159,429 | 183,978 | 509,183 | 3.51 |
Kitchen and garden waste | 122.6 | 140.9 | 85.9 | 1,694,887 | 1,306,402 | 1,315,721 | 4,317,010 | 29.75 |
Mineral waste | 14.0 | 11.8 | 21.7 | 193,299 | 109,345 | 332,361 | 635,005 | 4.38 |
Fraction < 10 mm | 17.6 | 26.5 | 45.9 | 243,224 | 245,835 | 702,890 | 1,191,949 | 8.21 |
Textiles | 10.5 | 17.2 | 5.8 | 145,294 | 159,429 | 88,773 | 393,496 | 2.71 |
Wood | 2.1 | 1.4 | 1.9 | 28,803 | 12,999 | 29,162 | 70,964 | 0.49 |
Hazardous waste | 3.7 | 3.0 | 2.8 | 51,205 | 27,910 | 42,885 | 122,000 | 0.84 |
Other waste | 18.9 | 23.5 | 14.2 | 261,146 | 217,925 | 217,428 | 696,499 | 4.80 |
Bulky waste | 12.2 | 10.8 | 3.6 | 168,337 | 100,169 | 55,322 | 323,828 | 2.23 |
Waste from green areas | 24.8 | 22.0 | 7.3 | 343,074 | 203,779 | 111,931 | 658,783 | 4.54 |
Total | 463.0 | 412.3 | 280.0 | 6,400,630 | 3,822,479 | 4,288,959 | 14,512,067 | 100.00 |
Province | According to CSO for 2018 | Data based on the Balance | ||||||
---|---|---|---|---|---|---|---|---|
Number of Inhabitants | Amount of Municipal waste | Quantity Collected Selectively | Amount of Residual Waste | Calculated Amount of Municipal Waste 2018 | Calculated Amount of Municipal Waste 2025 | Calculated Amount of RDF 2018 | Calculated Amount of RDF 2025 | |
Dolnośląskie | 2,899,986 | 1,142,084 | 277,000 | 865,084 | 982,359 | 1,132,140 | 352,577 | 425,139 |
Kujawsko-Pomorskie | 2,074,517 | 665,785 | 190,000 | 475,785 | 680,956 | 784,817 | 241,919 | 291,072 |
Lubelskie | 2,112,216 | 470,198 | 153,000 | 317,198 | 648,642 | 747,778 | 220,280 | 264,360 |
Lubuskie | 1,013,031 | 366,596 | 86,000 | 280,596 | 333,238 | 384,112 | 116,593 | 140,565 |
Łódzkie | 2,460,170 | 788,497 | 241,000 | 547,497 | 815,547 | 942,757 | 291,463 | 351,808 |
Małopolskie | 3,404,863 | 1,073,430 | 348,000 | 725,430 | 1,057,968 | 1,219,591 | 362,772 | 435,510 |
Mazowieckie | 5,411,446 | 1,811,834 | 479,000 | 1,332,834 | 1,819,082 | 2,096,376 | 654,535 | 788,372 |
Opolskie | 984,345 | 322,621 | 106,000 | 216,621 | 307,591 | 354,608 | 104,499 | 125,670 |
Podkarpackie | 2,127,462 | 497,523 | 136,000 | 361,523 | 634,350 | 731,399 | 210,636 | 252,489 |
Podlaskie | 1,179,430 | 298,958 | 80,000 | 218,958 | 387,819 | 446,983 | 137,315 | 165,310 |
Pomorskie | 2,337,769 | 826,652 | 239,000 | 587,652 | 776,651 | 895,113 | 276,206 | 332,719 |
Śląskie | 4,524,091 | 1,664,060 | 650,000 | 1,014,060 | 1,614,282 | 1,859,939 | 601,709 | 726,085 |
Świętokrzyskie | 1,237,369 | 250,085 | 70,000 | 180,085 | 376,660 | 434,249 | 126,857 | 152,219 |
Warmińsko-Mazurskie | 1,425,967 | 441,392 | 86,000 | 355,392 | 458,847 | 528,926 | 158,902 | 191,328 |
Wielkopolskie | 3,495,470 | 1,223,725 | 316,000 | 907,725 | 1,109,755 | 1,279,238 | 383,832 | 461,509 |
Zachodnio-Pomorskie | 1,698,344 | 641,987 | 148,000 | 493,987 | 571,491 | 658,663 | 203,496 | 245,431 |
Total | 38,386,476 | 12,485,425 | 3,605,000 | 8,880,425 | 12,575,237 | 14,496,688 | 4,443,593 | 5,349,583 |
Types of Waste | Heat of Combustion (kJ/kg) | Moisture Content (%) | Ash Content (%) |
---|---|---|---|
Paper/cardboard | 12,300 | 19.00 | 12.00 |
Plastics | 31,500 | 9.00 | 8.00 |
Rubber/Leather | 23,300 | 9.00 | 20.00 |
Wood | 16,300 | 19.00 | 5.00 |
Textiles | 15,900 | 22.00 | 7.00 |
Organic waste | 4300 | 65.00 | 11.00 |
Kitchen waste | 10,700 | 40.00 | 9.00 |
Garden waste | 9500 | 50.00 | 5.00 |
Fine fraction (below 10 mm) | 5000 | 20.00 | 50.00 |
Metals | 0 | 5.00 | 93.00 |
Inert waste | 0 | 2.00 | 98.00 |
Other waste | 6700 | 30.00 | 30.00 |
Types of Waste | Variant I | Variant II | Variant III |
---|---|---|---|
Paper | 85 | 85 | 95 |
Glass | 75 | 90 | 99 |
Metals | 65 | 70 | 80 |
Plastics | 55 | 80 | 90 |
Multi-material waste | 50 | 50 | 60 |
Kitchen and garden waste | 70 | 80 | 90 |
Mineral waste | - | - | - |
Fraction < 10 mm | - | - | - |
Textiles | 70 | 70 | 80 |
Wood | 30 | 70 | 80 |
Hazardous waste | - | - | - |
Other waste | - | - | - |
Bulky waste | 70 | 80 | 90 |
Waste from green areas | 70 | 80 | 90 |
Simulation for 2025 (Approx. 14.5 million Mg/year) Variant | Recycling Rate of All Waste (%) | Amount of Residual Waste (Mg/year) | Calorific Value (MJ/kg) | Amount of RDF from MBT Installation (Mg/year) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Variant I—target recycling of individual fractions of municipal waste according to the Circular Economy Package | 56.74 | 6,271,697 | 7.0 | 2,953,323 | 13.1 |
Variant II—target recycling of 65% of municipal waste according to circular economy assumptions | 65.49 | 5,003,463 | 5.8 | 2,182,253 | 11.2 |
Variant III—target recycling of 65% of municipal waste, including about 90% use of waste collected selectively | 73.56 | 3,832,634 | 4.9 | 1,508,587 | 10.2 |
Simulation for 2025 (Approx. 14.5 million Mg/year) Variant | Recycling Rate of All Waste (%) | Amount of Residual Waste (Mg/year) | Calorific Value (MJ/kg) | Amount of RDF from MBT Installation (Mg/year) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Variant I—target recycling of individual fractions of municipal waste according to Circular Economy Package | 56.74 | 6,271,697 | 7.0 | 2,953,323 | 13.1 |
Variant Ia1—with a 25% reduction in the amount of plastics in municipal waste | 56.80 | 6,055,553 | 6.3 | 2,737,180 | 12.0 |
Variant Ia2—with a 50% reduction in the amount of plastics in municipal waste | 56.86 | 5,839,409 | 5.6 | 2,521,036 | 10.7 |
Variant Ia3—with a 75% reduction in the amount of plastics in municipal waste | 56.93 | 5,623,265 | 4.8 | 2,304,892 | 9.2 |
Simulation for 2025 (Approx. 14.5 million Mg/year) Variant | Recycling Rate of All Waste (%) | Amount of Residual Waste (Mg/year) | Calorific Value (MJ/kg) | Amount of RDF from MBT Installation (Mg/year) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Variant I—target recycling of individual fractions of municipal waste according to Circular Economy Package | 56.74 | 6,271,697 | 7.0 | 2,953,323 | 13.1 |
Variant Ia1—with a 25% reduction in the amount of plastics in municipal waste | 56.27 | 6,181,959 | 7.1 | 2,863,586 | 13.5 |
Variant Ia2—with a 50% reduction in the amount of plastics in municipal waste | 55.79 | 6,092,222 | 7.1 | 2,773,848 | 13.8 |
Variant Ia3—with a 75% reduction in the amount of plastics in municipal waste | 56.27 | 6,002,484 | 7.2 | 2,684,111 | 14.2 |
Simulation for 2025 (Approx. 14.5 million Mg/year) Variant | Recycling Rate of All Waste (%) | Amount of Residual Waste (Mg/year) | Calorific Value (MJ/kg) | Amount of RDF from MBT Installation (Mg/year) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Variant I—target recycling of individual fractions of municipal waste according to Circular Economy Package | 56.74 | 6,271,697 | 7.0 | 2,953,323 | 13.1 |
Variant Ic1—with a 50% reduction of glass and 25% reduction of plastics in municipal waste (bottle deposit system) | 55.81 | 5,876,078 | 6.5 | 2,557,705 | 12.7 |
Variant Ic2—with a 75% reduction of glass and 50% reduction of plastics in municipal waste (bottle deposit system) | 55.29 | 5,889,002 | 5.8 | 2,551,823 | 11.7 |
Simulation for 2025 (Approx. 14.5 million Mg/year) Variant | Recycling Rate of All Waste (%) | Amount of Residual Waste (Mg/year) | Calorific Value (MJ/kg) | Amount of RDF from MBT Installation (Mg/year) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Variant I—target recycling of individual fractions of municipal waste according to Circular Economy Package | 56.74 | 6,271,697 | 7.0 | 2,953,323 | 13.1 |
Variant Id1—with approx. 25% selective collection of ash | 58.58 | 5,814,976 | 7.4 | 2,953,323 | 13.1 |
Variant Id2—with approx. 50% selective collection of ash | 60.55 | 5,358,255 | 7.9 | 2,953,323 | 13.1 |
Variant Id3—with approx. 75% selective collection of ash | 62.66 | 4,901,534 | 8.4 | 2,953,323 | 13.1 |
Variant Id4—with approx. 50% selective collection of ash and its recycling | 63.04 | 5,358,255 | 7.9 | 2,953,323 | 13.1 |
Variant Id5—with approx. 75% selective collection of ash and its recycling | 66.19 | 4,901,534 | 8.4 | 2,953,323 | 13.1 |
Simulation for 2025 (Approx. 14.5 million Mg/year) Variant | Recycling Rate of All Waste (%) | Amount of Residual Waste (Mg/year) | Calorific Value (MJ/kg) | Amount of RDF from MBT Installation (Mg/year) | Calorific Value (MJ/kg) |
---|---|---|---|---|---|
Variant I—target recycling of individual fractions of municipal waste according to Circular Economy Package | 56.74 | 6,271,697 | 7.0 | 2,953,323 | 13.1 |
Variant If1—with a 50% reduction in the amount of glass and 25% in the amount of plastics in municipal waste (bottle deposit) and a selective collection of approx. 50% of bottom ash from household stoves | 59.93 | 4,962,363 | 7.3 | 2,557,705 | 12.7 |
Variant If2—with a 75% reduction in the amount of glass and 50% in the amount of plastics in municipal waste (bottle deposit) and a selective collection of approx. 75% of bottom ash from household stoves | 62.12 | 4,200,033 | 7.0 | 2,851,823 | 11.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wielgosiński, G.; Czerwińska, J.; Szufa, S. Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept. Energies 2021, 14, 1811. https://doi.org/10.3390/en14071811
Wielgosiński G, Czerwińska J, Szufa S. Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept. Energies. 2021; 14(7):1811. https://doi.org/10.3390/en14071811
Chicago/Turabian StyleWielgosiński, Grzegorz, Justyna Czerwińska, and Szymon Szufa. 2021. "Municipal Solid Waste Mass Balance as a Tool for Calculation of the Possibility of Implementing the Circular Economy Concept" Energies 14, no. 7: 1811. https://doi.org/10.3390/en14071811