On the Influence of Solar Radiation on Heat Delivered to Buildings for Heating
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Solar Radiation and Heat Power Supplied for Heating
3.2. Correction of the Outdoor Temperature Due to Solar Radiation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frattolillo, A.; Canale, L.; Ficco, G.; Mastino, C.C.; Dell’Isola, M. Potential for Building Façade-Integrated Solar Thermal Collectors in a Highly Urbanized Context. Energies 2020, 13, 5801. [Google Scholar] [CrossRef]
- Bianco, L.; Komerska, A.; Cascone, Y.; Serra, V.; Zinzi, M.; Carnielo, E.; Ksionek, D. Thermal and optical characterisation of dynamic shading systems with PCMs through laboratory experimental measurements. Energy Build. 2018, 163, 92–110. [Google Scholar] [CrossRef]
- Baccoli, R.; Frattolillo, A.; Mastino, C.; Curreli, S.; Ghiani, E. A comprehensive optimization model for flat solar collector coupled with a flat booster bottom reflector based on an exact finite length simulation model. Energy Convers. Manag. 2018, 164, 482–507. [Google Scholar] [CrossRef]
- Ménard, R.; Souviron, J. Passive solar heating through glazing: The limits and potential for climate change mitigation in the European building stock. Energy Build. 2020, 228, 110400. [Google Scholar] [CrossRef]
- Kumar, K.; Saboor, S.; Kumar, V.; Kim, K.H.; Babu, T.P.A. Experimental and theoretical studies of various solar control window glasses for the reduction of cooling and heating loads in buildings across different climatic regions. Energy Build. 2018, 173, 326–336. [Google Scholar]
- Porritt, S.M.; Cropper, P.C.; Shao, L.; Goodier, C.I. Ranking of interventions to reduce dwelling overheating during heat waves. Energy Build. 2012, 55, 16–27. [Google Scholar] [CrossRef]
- Fletcher, M.J.; Johnston, D.K.; Glew, D.W.; Parker, J.M. An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Build. Environ. 2017, 121, 106–118. [Google Scholar] [CrossRef]
- Gamero-Salinas, J.C.; Monge-Barrio, A.; Saanchez-Ostiz, A. Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate. Build. Environ. 2020, 171, 106664. [Google Scholar] [CrossRef]
- Brideau, S.; Beausoleil-Morrison, I.; Kummert, M. Collection and storage of solar gains incident on the floor in a house during the heating season. Energy Procedia 2015, 78, 2274–2279. [Google Scholar] [CrossRef] [Green Version]
- Stamp, S.; Altamirano-Medina, H.; Lowe, R. Measuring and accounting for solar gains in steady state whole building heat loss measurements. Energy Build. 2017, 153, 168–178. [Google Scholar] [CrossRef]
- Danov, S.; Carbonell, J.; Cipriano, J.; Marti-Herrero, J. Approaches to evaluate building energy performance from daily consumption data considering dynamic and solar gain effects. Energy Build. 2013, 57, 110–118. [Google Scholar] [CrossRef]
- Knudsen, M.D.; Petersen, S. Economic model predictive control of space heating and dynamic solar shading. Energy Build. 2020, 209, 109661. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F. Theory and applications of HVAC control systems—A review of model predictive control (MPC). Build. Environ. 2014, 72, 343–355. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges. Appl. Energy 2020, 269, 115036. [Google Scholar] [CrossRef]
- Bilous, I.; Deshko, V.; Sukhodub, I. Parametric analysis of external and internal factors influence on building energy performance using non-linear multivariate regression models. J. Build. Eng. 2018, 20, 327–336. [Google Scholar] [CrossRef]
- Hong, T.; Wang, Z.; Luo, X.; Zhang, W. State-of-the-art on research and applications of machine learning in the building life cycle. Energy Build. 2020, 212, 109831. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Lu, S.; Feng, W. A novel improved model for building energy consumption prediction based on model integration. Appl. Energy 2020, 262, 114561. [Google Scholar] [CrossRef]
- D’Amico, A.; Ciulla, G.; Tupenaite, L.; Kaklauskas, A. Multiple criteria assessment of methods for forecasting building thermal energy demand. Energy Build. 2020, 224, 110220. [Google Scholar] [CrossRef]
- Turski, M.; Sekret, R. Buildings and a District Heating Network as Thermal Energy Storages in the District Heating System. Energy Build. 2018, 179, 49–56. [Google Scholar] [CrossRef]
- Cholewa, T.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Anasiewicz, R.; Balaras, C.A. A simple building energy model in form of an equivalent outdoor temperature. Energy Build. 2021, in press. [Google Scholar] [CrossRef]
Building | Building Type | Heated Floor Area (m2) |
---|---|---|
B1 | multifamily | 4195 |
B2 | multifamily | 3970 |
B3 | multifamily | 2910 |
B4 | multifamily | 1845 |
B5 | multifamily | 4264 |
B6 | public–courthouse | 9248 |
B7 | public–shop | 280 |
External Factor | Ranges of External Factor | Ranges of Wind Speed | Hourly Ranges |
---|---|---|---|
solar insolation (S_insol) (J/cm2) | 0–35; 35–100; 100–200; > 200; | v < 3 m/s; 3 ≤ v < 6 m/s; V > 6 m/s; | 6 am–6 pm; 10 am–2 pm; |
cloudiness (Cloud_1) (%) | 0–20; 20–40; 40–60; 60–80; 80–100; | v < 3 m/s; 3 ≤ v < 6 m/s; V > 6 m/s; | 6 am–6 pm; 10 am–2 pm; |
cloudiness (Cloud_2) (octants) | 0–2; 3–5; 6–7; 8; | v < 3 m/s; 3 ≤ v < 6 m/s; V > 6 m/s; | 6 am–6 pm; 10 am–2 pm; |
Parameter | Wind Speed | v < 3 m/s | 3–6 m/s | v ≥ 6 m/s |
---|---|---|---|---|
0–2 octants | average | 0.9013 (0.9083) | 0.8431 (0.7886) | - (-) |
maximum | 0.9548 (0.9741) | 0.9125 (0.9186) | 0.8593 (0.8782) | |
3–5 octants | average | 0.8212 (0.8466) | 0.7675 (0.8303) | 1 (1) |
maximum | 0.8363 (0.8131) | 0.7960 (0.8082) | 0.8026 (0.8579) | |
6–7 octants | average | 0.8307 (0.8600) | 0.8011 (0.8201) | 0.9911 (1) |
maximum | 0.8238 (0.8628) | 0.8329 (0.8538) | 0.8062 (0.8304) | |
8 octants | average | 0.8585 (1.000) | 0.8342 (-) | 0.9647 (-) |
maximum | 0.8496 (-) | 0.855 (-) | 0.8866 (-) | |
0–20% | average | 0.9094 (0.9083) | 0.7674 (0.7886) | - (-) |
maximum | 0.951 (0.9741) | 0.9192 (0.9186) | 0.8796 (0.9022) | |
20–40% | average | 0.8055 (0.8526) | 0.8116 (0.8526) | - (-) |
maximum | 0.8612 (0.9118) | 0.7787 (0.8008) | 0.8039 (0.8648) | |
40–60% | average | 0.8673 (0.7428) | 0.5918 (0.6515) | 1 (1) |
maximum | 0.9016 (-) | 0.9306 (0.8934) | 0.5852 (0.8069) | |
60–80% | average | 0.7985 (0.8323) | 0.7565 (0.7698) | 0.9911 (1) |
maximum | 0.7337 (0.8737) | 0.8218 (0.8360) | 0.7438 (0.7687) | |
80–100% | average | 0.8501 (0.8655) | 0.8124 (0.8661) | 0.964 (-) |
maximum | 0.858 (0.8772) | - (-) | 0.8529 (0.8821) | |
0–35 J/cm2 | average | 0.8450 (0.8458) | 0.8034 (0.8324) | 0.9385 (1.0000) |
maximum | 0.8562 (0.8847) | 0.8331 (0.8254) | 0.8339 (0.8514) | |
35–100 J/cm2 | average | 0.9051 (0.9051) | 0.7859 (0.8355) | 0.9858 (1.0000) |
maximum | 0.9329 (0.8662) | 0.8964 (0.8920) | 0.8522 (0.8673) | |
100–200 J/cm2 | average | 0.9085 (0.9162) | 0.7832 (0.7975) | - (-) |
maximum | 0.9750 (0.9718) | 0.8879 (0.9068) | 0.8831 (0.8806) | |
>200 J/cm2 | average | 0.8172 (0.7841) | 0.8086 (0.6992) | - (-) |
maximum | - (-) | 0.9061 (0.8759) | 0.7424 (0.7472) |
Solar Insolation (J/cm2) | ||||
---|---|---|---|---|
0–35 | 35–100 | 100–200 | >200 | |
Outdoor Temperature (°C) | y = −3.0363x + 51.569 | y = −2.6536x + 49.119 | y = −2.572x + 46.783 | y = −1.8021x + 39.18 |
10 | 21.206 | 22.583 | 21.063 | 21.159 |
9 | 24.2423 | 25.2366 | 23.635 | 22.9611 |
8 | 27.2786 | 27.8902 | 26.207 | 24.7632 |
7 | 30.3149 | 30.5438 | 28.779 | 26.5653 |
6 | 33.3512 | 33.1974 | 31.351 | 28.3674 |
5 | 36.3875 | 35.851 | 33.923 | 30.1695 |
4 | 39.4238 | 38.5046 | 36.495 | 31.9716 |
3 | 42.4601 | 41.1582 | 39.067 | 33.7737 |
2 | 45.4964 | 43.8118 | 41.639 | 35.5758 |
1 | 48.5327 | 46.4654 | 44.211 | 37.3779 |
0 | 51.569 | 49.119 | 46.783 | 39.18 |
−1 | 54.6053 | 51.7726 | 49.355 | 40.9821 |
−2 | 57.6416 | 54.4262 | 51.927 | 42.7842 |
−3 | 60.6779 | 57.0798 | 54.499 | 44.5863 |
−4 | 63.7142 | 59.7334 | 57.071 | 46.3884 |
−5 | 66.7505 | 62.387 | 59.643 | 48.1905 |
−6 | 69.7868 | 65.0406 | 62.215 | 49.9926 |
−7 | 72.8231 | 67.6942 | 64.787 | 51.7947 |
−8 | 75.8594 | 70.3478 | 67.359 | 53.5968 |
−9 | 78.8957 | 73.0014 | 69.931 | 55.3989 |
−10 | 81.932 | 75.655 | 72.503 | 57.201 |
−11 | 84.9683 | 78.3086 | 75.075 | 59.0031 |
−12 | 88.0046 | 80.9622 | 77.647 | 60.8052 |
−13 | 91.0409 | 83.6158 | 80.219 | 62.6073 |
−14 | 94.0772 | 86.2694 | 82.791 | 64.4094 |
−15 | 97.1135 | 88.923 | 85.363 | 66.2115 |
−16 | 100.1498 | 91.5766 | 87.935 | 68.0136 |
−17 | 103.1861 | 94.2302 | 90.507 | 69.8157 |
−18 | 106.2224 | 96.8838 | 93.079 | 71.6178 |
−19 | 109.2587 | 99.5374 | 95.651 | 73.4199 |
−20 | 112.295 | 102.191 | 98.223 | 75.222 |
Solar Insolation (J/cm2) | ||||
---|---|---|---|---|
0–35 | 35–100 | 100–200 | >200 | |
Outdoor Temperature (°C) | y = −3.0363x + 51.569 | y = −2.6536x + 49.119 | y = −2.572x + 46.783 | y = −1.8021x + 39.18 |
6 | 0.050653756 | 0.695809466 | 1.160031104 | |
5 | 0.17669532 | 0.726560145 | 1.45937014 | |
4 | 0.302736884 | 0.757310823 | 1.758709176 | |
3 | 0.428778447 | 0.788061501 | 2.058048212 | |
2 | 0.554820011 | 0.81881218 | 2.357387247 | |
1 | 0.680861575 | 0.849562858 | 2.656726283 | |
0 | 0.806903139 | 0.880313536 | 2.956065319 | |
−1 | 0.932944702 | 0.911064215 | 3.255404355 | |
−2 | 1.058986266 | 0.941814893 | 3.55474339 | |
−3 | 1.18502783 | 0.972565571 | 3.854082426 | |
−4 | 1.311069394 | 1.00331625 | 4.153421462 | |
−5 | 1.437110957 | 1.034066928 | 4.452760498 | |
−6 | 1.563152521 | 1.064817606 | 4.752099533 | |
−7 | 1.689194085 | 1.095568285 | 5.051438569 | |
−8 | 1.815235649 | 1.126318963 | 5.350777605 | |
−9 | 1.941277212 | 1.157069641 | 5.650116641 | |
−10 | 2.067318776 | 1.18782032 | 5.949455677 | |
−11 | 2.19336034 | 1.218570998 | 6.248794712 | |
−12 | 2.319401904 | 1.249321676 | 6.548133748 | |
−13 | 2.445443467 | 1.280072355 | 6.847472784 | |
−14 | 2.571485031 | 1.310823033 | 7.14681182 | |
−15 | 2.697526595 | 1.341573711 | 7.446150855 | |
−16 | 2.823568159 | 1.37232439 | 7.745489891 | |
−17 | 2.949609722 | 1.403075068 | 8.044828927 | |
−18 | 3.075651286 | 1.433825746 | 8.344167963 | |
−19 | 3.20169285 | 1.464576424 | 8.643506998 | |
−20 | 3.327734414 | 1.495327103 | 8.942846034 |
Mean Solar Insolation (J/cm2) | ||||
---|---|---|---|---|
Outdoor Temperature (°C) | 16.24 | 62.68 | 148.31 | 266.52 |
6 | 0.050654 | 0.746463 | 1.906494 | |
5 | 0.176695 | 0.903255 | 2.362626 | |
4 | 0.302737 | 1.060048 | 2.818757 | |
3 | 0.428778 | 1.21684 | 3.274888 | |
2 | 0.554820 | 1.373632 | 3.731019 | |
1 | 0.680862 | 1.530424 | 4.187151 | |
0 | 0.806903 | 1.687217 | 4.643282 | |
−1 | 0.932945 | 1.844009 | 5.099413 | |
−2 | 1.058986 | 2.000801 | 5.555545 | |
−3 | 1.185028 | 2.157593 | 6.011676 | |
−4 | 1.311069 | 2.314386 | 6.467807 | |
−5 | 1.437111 | 2.471178 | 6.923938 | |
−6 | 1.563153 | 2.62797 | 7.38007 | |
−7 | 1.689194 | 2.784762 | 7.836201 | |
−8 | 1.815236 | 2.941555 | 8.292332 | |
−9 | 1.941277 | 3.098347 | 8.748463 | |
−10 | 2.067319 | 3.255139 | 9.204595 | |
−11 | 2.193360 | 3.411931 | 9.660726 | |
−12 | 2.319402 | 3.568724 | 10.11686 | |
−13 | 2.445443 | 3.725516 | 10.57299 | |
−14 | 2.571485 | 3.882308 | 11.02912 | |
−15 | 2.697527 | 4.0391 | 11.48525 | |
−16 | 2.823568 | 4.195893 | 11.94138 | |
−17 | 2.949610 | 4.352685 | 12.39751 | |
−18 | 3.075651 | 4.509477 | 12.85364 | |
−19 | 3.201693 | 4.666269 | 13.30978 | |
−20 | 3.327734 | 4.823062 | 13.76591 | |
Average | 1.689194 | 2.784762 | 7.836201 |
Building | Parameter | Wind Speed | Equation |
---|---|---|---|
B1 | solar insolation (J/cm2) | average | te + (0.0162n + 0.097) |
maximum | te + (0.0277n − 0.7383) | ||
cloudiness (%) | average | te + (−0.0364z + 4.1243) | |
maximum | te + (−0.0533z + 6.1008) | ||
B2 | solar insolation (J/cm2) | average | te + (0.0311n − 1.411) |
maximum | te + (0.0133n − 0.1827) | ||
cloudiness (%) | average | te + (−0.0489z + 5.2973) | |
maximum | te + (−0.0671z + 6.7361) | ||
B3 | solar insolation (J/cm2) | average | te + (0.0269n − 1.0419) |
maximum | te + (0.0102n − 0.1478) | ||
cloudiness (%) | average | te + (−0.0891z + 8.5884) | |
maximum | te + (−0.0832z + 6.7708) | ||
B4 | solar insolation (J/cm2) | average | te + (0.0209n − 0.7183) |
maximum | te + (0.0377n − 2.2845) | ||
cloudiness (%) | average | te + (−0.0169z + 1.8574) | |
maximum | te + (−0.0694z + 5.7688) | ||
B5 | solar insolation (J/cm2) | average | te + (0.0309n − 0.8192) |
maximum | te + (0.0205n − 0.1347) | ||
cloudiness (%) | average | te + (−0.0257z + 2.4261) | |
maximum | te + (−0.096z + 7.024) | ||
B6 | solar insolation (J/cm2) | average | te + (0.0302n − 4.5632) |
maximum | te + (0.007n − 0.0983) | ||
cloudiness (%) | average | te + (−0.0055z + 0.4776) | |
maximum | te + (−0.0258z + 1.9022) | ||
B7 | solar insolation (J/cm2) | average | te + (0.105n − 16.683) |
maximum | te + (0.0033n − 0.0499) | ||
cloudiness (%) | average | te + (−0.1532z + 13.66) | |
maximum | te + (−0.0816z + 8.0567) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cholewa, T.; Malec, A.; Siuta-Olcha, A.; Smolarz, A.; Muryjas, P.; Wolszczak, P.; Guz, Ł.; Dudzińska, M.R.; Łygas, K. On the Influence of Solar Radiation on Heat Delivered to Buildings for Heating. Energies 2021, 14, 851. https://doi.org/10.3390/en14040851
Cholewa T, Malec A, Siuta-Olcha A, Smolarz A, Muryjas P, Wolszczak P, Guz Ł, Dudzińska MR, Łygas K. On the Influence of Solar Radiation on Heat Delivered to Buildings for Heating. Energies. 2021; 14(4):851. https://doi.org/10.3390/en14040851
Chicago/Turabian StyleCholewa, Tomasz, Agnieszka Malec, Alicja Siuta-Olcha, Andrzej Smolarz, Piotr Muryjas, Piotr Wolszczak, Łukasz Guz, Marzenna R. Dudzińska, and Krystian Łygas. 2021. "On the Influence of Solar Radiation on Heat Delivered to Buildings for Heating" Energies 14, no. 4: 851. https://doi.org/10.3390/en14040851
APA StyleCholewa, T., Malec, A., Siuta-Olcha, A., Smolarz, A., Muryjas, P., Wolszczak, P., Guz, Ł., Dudzińska, M. R., & Łygas, K. (2021). On the Influence of Solar Radiation on Heat Delivered to Buildings for Heating. Energies, 14(4), 851. https://doi.org/10.3390/en14040851