Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
COP | Coefficient of performance |
SCP | Specific cooling power |
Cu | Copper |
Al | Aluminum |
SG | Silica gel |
CNT | Carbon nanotubes |
References
- Sztekler, K.; Kalawa, W.; Stefanski, S.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Nowak, W.; Makowski, M. Using adsorption chillers for utilising waste heat from power plants. Therm. Sci. 2019, 23, S1143–S1151. [Google Scholar] [CrossRef]
- Zarei, M.; Davarpanah, A.; Mokhtarian, N.; Farahbod, F. Integrated feasibility experimental investigation of hydrodynamic, geometrical and, operational characterization of methanol conversion to formaldehyde. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 89–103. [Google Scholar] [CrossRef]
- Pan, Q.; Peng, J.; Wang, R. Experimental study of an adsorption chiller for extra low temperature waste heat utilization. Appl. Therm. Eng. 2019, 163, 114341. [Google Scholar] [CrossRef]
- Younes, M.M.; El-Sharkawy, I.I.; Kabeel, A.E.; Saha, B.B. A review on adsorbent-adsorbate pairs for cooling applications. Appl. Therm. Eng. 2017, 114, 394–414. [Google Scholar] [CrossRef]
- Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P. An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Appl. Energy 2013, 104, 554–567. [Google Scholar] [CrossRef]
- Jeremias, F.; Fröhlich, D.; Janiak, C.; Henninger, S.K. Water and methanol adsorption on MOFs for cycling heat transformation processes. New J. Chem. 2014, 38, 1846–1852. [Google Scholar] [CrossRef]
- Alizadeh, S.M.; Ghazanfari, A.; Ehyaei, M.A.; Ahmadi, A.; Jamali, D.H.; Nedaei, N.; Davarpanah, A. Investigation the integration of heliostat solar receiver to gas and combined cycles by energy, exergy, and economic point of views. Appl. Sci. 2020, 10, 307. [Google Scholar] [CrossRef]
- Esfandi, S.; Baloochzadeh, S.; Asayesh, M.; Ehyaei, M.A.; Ahmadi, A.; Rabanian, A.A.; Das, B.; Costa, V.A.F.; Davarpanah, A. Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas. Energies 2020, 13, 6453. [Google Scholar] [CrossRef]
- Li, T.; Wang, R.; Wang, L. High-efficient thermochemical sorption refrigeration driven by low-grade thermal energy. Chinese Sci. Bull. 2009, 54, 885–905. [Google Scholar] [CrossRef]
- Shabir, F.; Sultan, M.; Miyazaki, T.; Saha, B.B.; Askalany, A.; Ali, I.; Zhou, Y.; Ahmad, R.; Shamshiri, R.R. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew. Sustain. Energy Rev. 2020, 119, 109630. [Google Scholar] [CrossRef]
- Bu, X.; Wang, L.; Huang, Y. Effect of pore size on the performance of composite adsorbent. Adsorption 2013, 19, 929–935. [Google Scholar] [CrossRef]
- Zeng, T.; Huang, H.; Kobayashi, N.; Li, J. Performance of an Activated Carbon-Ammonia Adsorption Refrigeration System. Nat. Resour. 2017, 08, 611–631. [Google Scholar] [CrossRef][Green Version]
- Li, A.; Ismail, A.B.; Thu, K.; Ng, K.C.; Loh, W.S. Performance evaluation of a zeolite—Water adsorption chiller with entropy analysis of thermodynamic insight. Appl. Energy 2014, 130, 702–711. [Google Scholar] [CrossRef]
- Entezari, A.; Ge, T.S.; Wang, R.Z. Water adsorption on the coated aluminum sheets by composite materials (LiCl + LiBr)/silica gel. Energy 2018, 160, 64–71. [Google Scholar] [CrossRef]
- Goyal, P.; Baredar, P.; Mittal, A.; Siddiqui, A.R. Adsorption refrigeration technology—An overview of theory and its solar energy applications. Renew. Sustain. Energy Rev. 2016, 53, 1389–1410. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F. Review and future trends of solar adsorption refrigeration systems. Renew. Sustain. Energy Rev. 2014, 39, 102–123. [Google Scholar] [CrossRef]
- Shmroukh, A.N.; Hamza, A.; Ali, H.; Ookawara, S. Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact. Renew. Sustain. Energy Rev. 2015, 50, 445–456. [Google Scholar] [CrossRef]
- Valizadeh, K.; Davarpanah, A. Environmental Effects Design and construction of a micro-photo bioreactor in order to dairy wastewater treatment by micro-algae: Parametric study. Energy Sources, Part A Recover. Util. Environ. Eff. 2020, 42, 611–624. [Google Scholar] [CrossRef]
- Davarpanah, A.; Zarei, M.; Valizadeh, K.; Mirshekari, B. CFD design and simulation of ethylene dichloride (EDC) thermal cracking reactor. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1573–1587. [Google Scholar] [CrossRef]
- Grabowska, K.; Krzywanski, J.; Nowak, W.; Wesolowska, M. Construction of an innovative adsorbent bed configuration in the adsorption chiller—Selection criteria for effective sorbent-glue pair. Energy 2018, 151, 317–323. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Gradziel, S.; Krzywanski, J.; Radomska, E. Experimental Study of Three-Bed Adsorption Chiller with Desalination Function. Energies 2020, 13, 5827. [Google Scholar] [CrossRef]
- Askalany, A.A.; Henninger, S.K.; Ghazy, M.; Saha, B.B. Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system. Appl. Therm. Eng. 2017, 110, 695–702. [Google Scholar] [CrossRef]
- Bahrehmand, H.; Khajehpour, M.; Bahrami, M. Finding optimal conductive additive content to enhance the performance of coated sorption beds: An experimental study. Appl. Therm. Eng. 2018, 143, 308–315. [Google Scholar] [CrossRef]
- Vodianitskaia, P.J.; Soares, J.J.; Melo, H.; Gurgel, J.M. Experimental chiller with silica gel: Adsorption kinetics analysis and performance evaluation. Energy Convers. Manag. 2017, 132, 172–179. [Google Scholar] [CrossRef]
- Tso, C.Y.; Chan, K.C.; Chao, C.Y.H.; Wu, C.L. Experimental performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences. Int. J. Heat Mass Transf. 2015, 85, 343–355. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Herman, F.; Pyrka, P.; Sosnowski, M.; Prauzner, T.; Nowak, W. Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks. Energy Convers. Manag. 2017, 153, 313–322. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Grabowska, K.; Krzywanski, J.; Sosnowski, M.; Al-Harbi, A.A. Performance evaluation of a single-stage two-bed adsorption chiller with desalination function. J. Energy Resour. Technol. 2020. [Google Scholar] [CrossRef]
- Chang, K.S.; Chen, M.T.; Chung, T.W. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems. Appl. Therm. Eng. 2005, 25, 2330–2340. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Medrala, A.M.; Nowak, W.; Mika, Ł.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Debniak, M. The Effect of Adhesive Additives on Silica Gel Water Sorption Properties. Entropy 2020, 22, 327. [Google Scholar] [CrossRef]
- Demir, H.; Mobedi, M.; Ülkü, S. The use of metal piece additives to enhance heat transfer rate through an unconsolidated adsorbent bed. Int. J. Refrig. 2010. [Google Scholar] [CrossRef]
- Rezk, A.; Al-Dadah, R.K.; Mahmoud, S.; Elsayed, A. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Appl. Therm. Eng. 2013, 53, 278–284. [Google Scholar] [CrossRef]
- Wu, H.; Al-Rashed, A.A.A.A.; Barzinjy, A.A.; Shahsavar, A.; Karimi, A.; Talebizadehsardari, P. Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide. Phys. A Stat. Mech. Appl. 2019. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Motahari, K.; Sanatizadeh, E.; Afrand, M.; Rostamian, H.; Reza Hassani Ahangar, M. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int. Commun. Heat Mass Transf. 2016. [Google Scholar] [CrossRef]
- Kulakowska, A.; Pajdak, A.; Krzywanski, J.; Grabowska, K.; Zylka, A.; Sosnowski, M.; Wesolowska, M.; Sztekler, K.; Nowak, W. Effect of metal and carbon nanotube additives on the thermal diffusivity of a silica-gel-based adsorption bed. Energies 2020, 16, 1391. [Google Scholar] [CrossRef]
- Surface Measurement Systems Company Materials. Operating Manual of DVS Vacuum, Book 2019.
Sample | Basic Ingredient | Additional Ingredient | Mass share of Additional Component (%) | The Total Mass of the Sample (mg) |
---|---|---|---|---|
SG + 5% Al | Silica gel | Aluminum | 5 | 50 |
SG + 15% Al | Silica gel | Aluminum | 15 | 50 |
SG + 25% Al | Silica gel | Aluminum | 25 | 50 |
SG + 5% CNT | Silica gel | Carbon nanotubes | 5 | 50 |
SG + 15% CNT | Silica gel | Carbon nanotubes | 15 | 50 |
SG + 25% CNT | Silica gel | Carbon nanotubes | 25 | 50 |
SG + 5% Cu | Silica gel | Copper | 5 | 50 |
SG + 15% Cu | Silica gel | Copper | 15 | 50 |
Sample Designation | Temperature (°C) | Reference Mass Change (Sorption Capacity) (%) | Difference in Sample Mass Change Towards to the Reference Sample Tested at the Same Temperature (pp) | Time from Obtaining Reference Mass to Achieving a 20% Change in Reference Mass of the Sample for Adsorption Process (min) | Time from the Start of the Desorption Process Until Obtaining a 20% Change in Reference Mass of the Sample for Desorption Process (min) |
---|---|---|---|---|---|
SG | 25 | 34.35 | - | 98.55 | 194.19 |
SG | 40 | 34.21 | - | 86.07 | 193.80 |
SG | 60 | 33.79 | - | 97.18 | 176.20 |
SG + 5% Al | 25 | 32.50 | 1.79 | 96.04 | 192.65 |
SG + 5% Al | 40 | 32.63 | 1.57 | 86.65 | 191.16 |
SG + 5% Al | 60 | 34.31 | 0.47 | 93.32 | 168.35 |
SG + 15% Al | 25 | 29.77 | 4.53 | 93.02 | 160.16 |
SG + 15% Al | 40 | 29.67 | 4.51 | 85.34 | 160.15 |
SG + 15% Al | 60 | 29.29 | 4.42 | 93.50 | 145.11 |
SG + 25% Al | 25 | 25.01 | 9.29 | 110.40 | 146.39 |
SG + 25% Al | 40 | 25.11 | 9.15 | 104.25 | 146.54 |
SG + 25% Al | 60 | 24.98 | 8.78 | 109.61 | 130.88 |
SG + 5% CNT | 25 | 33.74 | 0.56 | 83.10 | 170.06 |
SG + 5% CNT | 40 | 32.92 | 1.27 | 75.67 | 166.52 |
SG + 5% CNT | 60 | 33.21 | 0.60 | 84.64 | 152.03 |
SG + 15% CNT | 25 | 30.17 | 4.13 | 95.78 | 165.98 |
SG + 15% CNT | 40 | 30.76 | 3.43 | 84.84 | 166.03 |
SG + 15% CNT | 60 | 30.85 | 2.96 | 91.78 | 149.03 |
SG + 25% CNT | 25 | 25.63 | 8.67 | 110.63 | 152.91 |
SG + 25% CNT | 40 | 25.91 | 8.28 | 102.86 | 154.84 |
SG + 25% CNT | 60 | 26.19 | 7.62 | 107.75 | 144.33 |
SG + 5% Cu | 25 | 31.43 | 2.87 | 83.44 | 166.69 |
SG + 5% Cu | 40 | 32.76 | 1.43 | 81.14 | 166.40 |
SG + 5% Cu | 60 | 33.26 | 0.55 | 86.39 | 150.31 |
SG + 15% Cu | 25 | 28.34 | 5.96 | 92.43 | 164.00 |
SG + 15% Cu | 40 | 29.52 | 4.67 | 100.14 | 185.87 |
SG + 15% Cu | 60 | 29.51 | 4.30 | 108.68 | 169.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztekler, K.; Kalawa, W.; Mika, Ł.; Mlonka-Medrala, A.; Sowa, M.; Nowak, W. Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies 2021, 14, 1083. https://doi.org/10.3390/en14041083
Sztekler K, Kalawa W, Mika Ł, Mlonka-Medrala A, Sowa M, Nowak W. Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies. 2021; 14(4):1083. https://doi.org/10.3390/en14041083
Chicago/Turabian StyleSztekler, Karol, Wojciech Kalawa, Łukasz Mika, Agata Mlonka-Medrala, Marcin Sowa, and Wojciech Nowak. 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller" Energies 14, no. 4: 1083. https://doi.org/10.3390/en14041083
APA StyleSztekler, K., Kalawa, W., Mika, Ł., Mlonka-Medrala, A., Sowa, M., & Nowak, W. (2021). Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies, 14(4), 1083. https://doi.org/10.3390/en14041083