Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
COP | Coefficient of performance |
SCP | Specific cooling power |
Cu | Copper |
Al | Aluminum |
SG | Silica gel |
CNT | Carbon nanotubes |
References
- Sztekler, K.; Kalawa, W.; Stefanski, S.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Nowak, W.; Makowski, M. Using adsorption chillers for utilising waste heat from power plants. Therm. Sci. 2019, 23, S1143–S1151. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Davarpanah, A.; Mokhtarian, N.; Farahbod, F. Integrated feasibility experimental investigation of hydrodynamic, geometrical and, operational characterization of methanol conversion to formaldehyde. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 89–103. [Google Scholar] [CrossRef]
- Pan, Q.; Peng, J.; Wang, R. Experimental study of an adsorption chiller for extra low temperature waste heat utilization. Appl. Therm. Eng. 2019, 163, 114341. [Google Scholar] [CrossRef]
- Younes, M.M.; El-Sharkawy, I.I.; Kabeel, A.E.; Saha, B.B. A review on adsorbent-adsorbate pairs for cooling applications. Appl. Therm. Eng. 2017, 114, 394–414. [Google Scholar] [CrossRef]
- Choudhury, B.; Saha, B.B.; Chatterjee, P.K.; Sarkar, J.P. An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling. Appl. Energy 2013, 104, 554–567. [Google Scholar] [CrossRef]
- Jeremias, F.; Fröhlich, D.; Janiak, C.; Henninger, S.K. Water and methanol adsorption on MOFs for cycling heat transformation processes. New J. Chem. 2014, 38, 1846–1852. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, S.M.; Ghazanfari, A.; Ehyaei, M.A.; Ahmadi, A.; Jamali, D.H.; Nedaei, N.; Davarpanah, A. Investigation the integration of heliostat solar receiver to gas and combined cycles by energy, exergy, and economic point of views. Appl. Sci. 2020, 10, 307. [Google Scholar] [CrossRef]
- Esfandi, S.; Baloochzadeh, S.; Asayesh, M.; Ehyaei, M.A.; Ahmadi, A.; Rabanian, A.A.; Das, B.; Costa, V.A.F.; Davarpanah, A. Energy, Exergy, Economic, and Exergoenvironmental Analyses of a Novel Hybrid System to Produce Electricity, Cooling, and Syngas. Energies 2020, 13, 6453. [Google Scholar] [CrossRef]
- Li, T.; Wang, R.; Wang, L. High-efficient thermochemical sorption refrigeration driven by low-grade thermal energy. Chinese Sci. Bull. 2009, 54, 885–905. [Google Scholar] [CrossRef] [Green Version]
- Shabir, F.; Sultan, M.; Miyazaki, T.; Saha, B.B.; Askalany, A.; Ali, I.; Zhou, Y.; Ahmad, R.; Shamshiri, R.R. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew. Sustain. Energy Rev. 2020, 119, 109630. [Google Scholar] [CrossRef]
- Bu, X.; Wang, L.; Huang, Y. Effect of pore size on the performance of composite adsorbent. Adsorption 2013, 19, 929–935. [Google Scholar] [CrossRef]
- Zeng, T.; Huang, H.; Kobayashi, N.; Li, J. Performance of an Activated Carbon-Ammonia Adsorption Refrigeration System. Nat. Resour. 2017, 08, 611–631. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Ismail, A.B.; Thu, K.; Ng, K.C.; Loh, W.S. Performance evaluation of a zeolite—Water adsorption chiller with entropy analysis of thermodynamic insight. Appl. Energy 2014, 130, 702–711. [Google Scholar] [CrossRef]
- Entezari, A.; Ge, T.S.; Wang, R.Z. Water adsorption on the coated aluminum sheets by composite materials (LiCl + LiBr)/silica gel. Energy 2018, 160, 64–71. [Google Scholar] [CrossRef]
- Goyal, P.; Baredar, P.; Mittal, A.; Siddiqui, A.R. Adsorption refrigeration technology—An overview of theory and its solar energy applications. Renew. Sustain. Energy Rev. 2016, 53, 1389–1410. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F. Review and future trends of solar adsorption refrigeration systems. Renew. Sustain. Energy Rev. 2014, 39, 102–123. [Google Scholar] [CrossRef]
- Shmroukh, A.N.; Hamza, A.; Ali, H.; Ookawara, S. Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact. Renew. Sustain. Energy Rev. 2015, 50, 445–456. [Google Scholar] [CrossRef]
- Valizadeh, K.; Davarpanah, A. Environmental Effects Design and construction of a micro-photo bioreactor in order to dairy wastewater treatment by micro-algae: Parametric study. Energy Sources, Part A Recover. Util. Environ. Eff. 2020, 42, 611–624. [Google Scholar] [CrossRef]
- Davarpanah, A.; Zarei, M.; Valizadeh, K.; Mirshekari, B. CFD design and simulation of ethylene dichloride (EDC) thermal cracking reactor. Energy Sources Part A Recover. Util. Environ. Eff. 2019, 41, 1573–1587. [Google Scholar] [CrossRef]
- Grabowska, K.; Krzywanski, J.; Nowak, W.; Wesolowska, M. Construction of an innovative adsorbent bed configuration in the adsorption chiller—Selection criteria for effective sorbent-glue pair. Energy 2018, 151, 317–323. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Gradziel, S.; Krzywanski, J.; Radomska, E. Experimental Study of Three-Bed Adsorption Chiller with Desalination Function. Energies 2020, 13, 5827. [Google Scholar] [CrossRef]
- Askalany, A.A.; Henninger, S.K.; Ghazy, M.; Saha, B.B. Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system. Appl. Therm. Eng. 2017, 110, 695–702. [Google Scholar] [CrossRef]
- Bahrehmand, H.; Khajehpour, M.; Bahrami, M. Finding optimal conductive additive content to enhance the performance of coated sorption beds: An experimental study. Appl. Therm. Eng. 2018, 143, 308–315. [Google Scholar] [CrossRef]
- Vodianitskaia, P.J.; Soares, J.J.; Melo, H.; Gurgel, J.M. Experimental chiller with silica gel: Adsorption kinetics analysis and performance evaluation. Energy Convers. Manag. 2017, 132, 172–179. [Google Scholar] [CrossRef]
- Tso, C.Y.; Chan, K.C.; Chao, C.Y.H.; Wu, C.L. Experimental performance analysis on an adsorption cooling system using zeolite 13X/CaCl2 adsorbent with various operation sequences. Int. J. Heat Mass Transf. 2015, 85, 343–355. [Google Scholar] [CrossRef]
- Krzywanski, J.; Grabowska, K.; Herman, F.; Pyrka, P.; Sosnowski, M.; Prauzner, T.; Nowak, W. Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks. Energy Convers. Manag. 2017, 153, 313–322. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Nowak, W.; Mika, L.; Grabowska, K.; Krzywanski, J.; Sosnowski, M.; Al-Harbi, A.A. Performance evaluation of a single-stage two-bed adsorption chiller with desalination function. J. Energy Resour. Technol. 2020. [Google Scholar] [CrossRef]
- Chang, K.S.; Chen, M.T.; Chung, T.W. Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems. Appl. Therm. Eng. 2005, 25, 2330–2340. [Google Scholar] [CrossRef]
- Sztekler, K.; Kalawa, W.; Medrala, A.M.; Nowak, W.; Mika, Ł.; Krzywanski, J.; Grabowska, K.; Sosnowski, M.; Debniak, M. The Effect of Adhesive Additives on Silica Gel Water Sorption Properties. Entropy 2020, 22, 327. [Google Scholar] [CrossRef] [Green Version]
- Demir, H.; Mobedi, M.; Ülkü, S. The use of metal piece additives to enhance heat transfer rate through an unconsolidated adsorbent bed. Int. J. Refrig. 2010. [Google Scholar] [CrossRef] [Green Version]
- Rezk, A.; Al-Dadah, R.K.; Mahmoud, S.; Elsayed, A. Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Appl. Therm. Eng. 2013, 53, 278–284. [Google Scholar] [CrossRef]
- Wu, H.; Al-Rashed, A.A.A.A.; Barzinjy, A.A.; Shahsavar, A.; Karimi, A.; Talebizadehsardari, P. Curve-fitting on experimental thermal conductivity of motor oil under influence of hybrid nano additives containing multi-walled carbon nanotubes and zinc oxide. Phys. A Stat. Mech. Appl. 2019. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Motahari, K.; Sanatizadeh, E.; Afrand, M.; Rostamian, H.; Reza Hassani Ahangar, M. Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int. Commun. Heat Mass Transf. 2016. [Google Scholar] [CrossRef]
- Kulakowska, A.; Pajdak, A.; Krzywanski, J.; Grabowska, K.; Zylka, A.; Sosnowski, M.; Wesolowska, M.; Sztekler, K.; Nowak, W. Effect of metal and carbon nanotube additives on the thermal diffusivity of a silica-gel-based adsorption bed. Energies 2020, 16, 1391. [Google Scholar] [CrossRef] [Green Version]
- Surface Measurement Systems Company Materials. Operating Manual of DVS Vacuum, Book 2019.
Sample | Basic Ingredient | Additional Ingredient | Mass share of Additional Component (%) | The Total Mass of the Sample (mg) |
---|---|---|---|---|
SG + 5% Al | Silica gel | Aluminum | 5 | 50 |
SG + 15% Al | Silica gel | Aluminum | 15 | 50 |
SG + 25% Al | Silica gel | Aluminum | 25 | 50 |
SG + 5% CNT | Silica gel | Carbon nanotubes | 5 | 50 |
SG + 15% CNT | Silica gel | Carbon nanotubes | 15 | 50 |
SG + 25% CNT | Silica gel | Carbon nanotubes | 25 | 50 |
SG + 5% Cu | Silica gel | Copper | 5 | 50 |
SG + 15% Cu | Silica gel | Copper | 15 | 50 |
Sample Designation | Temperature (°C) | Reference Mass Change (Sorption Capacity) (%) | Difference in Sample Mass Change Towards to the Reference Sample Tested at the Same Temperature (pp) | Time from Obtaining Reference Mass to Achieving a 20% Change in Reference Mass of the Sample for Adsorption Process (min) | Time from the Start of the Desorption Process Until Obtaining a 20% Change in Reference Mass of the Sample for Desorption Process (min) |
---|---|---|---|---|---|
SG | 25 | 34.35 | - | 98.55 | 194.19 |
SG | 40 | 34.21 | - | 86.07 | 193.80 |
SG | 60 | 33.79 | - | 97.18 | 176.20 |
SG + 5% Al | 25 | 32.50 | 1.79 | 96.04 | 192.65 |
SG + 5% Al | 40 | 32.63 | 1.57 | 86.65 | 191.16 |
SG + 5% Al | 60 | 34.31 | 0.47 | 93.32 | 168.35 |
SG + 15% Al | 25 | 29.77 | 4.53 | 93.02 | 160.16 |
SG + 15% Al | 40 | 29.67 | 4.51 | 85.34 | 160.15 |
SG + 15% Al | 60 | 29.29 | 4.42 | 93.50 | 145.11 |
SG + 25% Al | 25 | 25.01 | 9.29 | 110.40 | 146.39 |
SG + 25% Al | 40 | 25.11 | 9.15 | 104.25 | 146.54 |
SG + 25% Al | 60 | 24.98 | 8.78 | 109.61 | 130.88 |
SG + 5% CNT | 25 | 33.74 | 0.56 | 83.10 | 170.06 |
SG + 5% CNT | 40 | 32.92 | 1.27 | 75.67 | 166.52 |
SG + 5% CNT | 60 | 33.21 | 0.60 | 84.64 | 152.03 |
SG + 15% CNT | 25 | 30.17 | 4.13 | 95.78 | 165.98 |
SG + 15% CNT | 40 | 30.76 | 3.43 | 84.84 | 166.03 |
SG + 15% CNT | 60 | 30.85 | 2.96 | 91.78 | 149.03 |
SG + 25% CNT | 25 | 25.63 | 8.67 | 110.63 | 152.91 |
SG + 25% CNT | 40 | 25.91 | 8.28 | 102.86 | 154.84 |
SG + 25% CNT | 60 | 26.19 | 7.62 | 107.75 | 144.33 |
SG + 5% Cu | 25 | 31.43 | 2.87 | 83.44 | 166.69 |
SG + 5% Cu | 40 | 32.76 | 1.43 | 81.14 | 166.40 |
SG + 5% Cu | 60 | 33.26 | 0.55 | 86.39 | 150.31 |
SG + 15% Cu | 25 | 28.34 | 5.96 | 92.43 | 164.00 |
SG + 15% Cu | 40 | 29.52 | 4.67 | 100.14 | 185.87 |
SG + 15% Cu | 60 | 29.51 | 4.30 | 108.68 | 169.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sztekler, K.; Kalawa, W.; Mika, Ł.; Mlonka-Medrala, A.; Sowa, M.; Nowak, W. Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies 2021, 14, 1083. https://doi.org/10.3390/en14041083
Sztekler K, Kalawa W, Mika Ł, Mlonka-Medrala A, Sowa M, Nowak W. Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies. 2021; 14(4):1083. https://doi.org/10.3390/en14041083
Chicago/Turabian StyleSztekler, Karol, Wojciech Kalawa, Łukasz Mika, Agata Mlonka-Medrala, Marcin Sowa, and Wojciech Nowak. 2021. "Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller" Energies 14, no. 4: 1083. https://doi.org/10.3390/en14041083
APA StyleSztekler, K., Kalawa, W., Mika, Ł., Mlonka-Medrala, A., Sowa, M., & Nowak, W. (2021). Effect of Additives on the Sorption Kinetics of a Silica Gel Bed in Adsorption Chiller. Energies, 14(4), 1083. https://doi.org/10.3390/en14041083