Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method
Abstract
:1. Introduction
2. Theoretical Formulation
2.1. Models for Two-Phase Flow in Porous Media
2.2. Kinetic Model of Hydrate Decomposition
2.3. Energy Conservation Equation
2.4. Mechanical Models
3. Verification of the Theoretical Model
3.1. Model Description
3.2. Boundary Condition and Initial Values
3.3. Comparison of Simulation and Experimental Results
4. Interaction Effects between Reservoir Deformation and Hydrate Dissociation
4.1. Gas Production Characteristics
4.2. Pore Pressure Change Characteristics
4.3. System Temperature Changing Characteristics
4.4. NGH Decomposition Rate Characteristics
4.5. Effective Porosity and Absolute Permeability Changing Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvenvolden, K.A. Gas Hydrates-Geological Perspective and Global Change. Rev. Geophys. 1993, 31, 173–187. [Google Scholar] [CrossRef]
- Sloan, E.D. Gas hydrates: Review of physical/chemical properties. Energy Fuels 1998, 12, 191–196. [Google Scholar] [CrossRef]
- Makogon, Y.F. Natural gas hydrates—A promising source of energy. J. Nat. Gas. Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.; Dallimore, S.; Frye, M. Geohazards Associated with Naturally-occurring Gas Hydrate. Fire Ice Methane Hydrate Newsl. 2012, 12, 1. [Google Scholar]
- Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential. SPE Reserv. Eval. Eng. 2009, 12, 745–771. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Ahmadi, G.; Smith, D.H. Natural gas production from hydrate decomposition by depressurization. Chem. Eng. Sci. 2001, 56, 5801–5814. [Google Scholar] [CrossRef]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Liu, Y.; Song, Y. The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization. Energy 2019, 185, 837–846. [Google Scholar] [CrossRef]
- Ye, J.; Qin, X.; Qiu, H.; Liang, Q.; Dong, Y.; Wei, J.; Lu, H.-L.; Lu, J.-A.; Shi, Y.-H.; Zhong, C.; et al. Preliminary results of environmental monitoring of the natural gas hydrate production test in the South China Sea. China Geol. 2018, 1, 202–209. [Google Scholar] [CrossRef]
- Arata, N.; Nagakubo, S.; Yamamoto, K.; Yabe, I.; Kobayashi, H. Environmental impact: Environmental impact assessment studies on japan’s methane hydrate R&D program. In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, UK, 17–21 July 2011; Volume 55, pp. 1–8. [Google Scholar]
- Priest, J.A.; Hayley, J.L.; Smith, W.E.; Schultheiss, P.; Roberts, J. PCATS triaxial testing: Geomechanical properties of sediments from pressure cores recovered from the Bay of Bengal during expedition NGHP-02. Mar. Pet. Geol. 2019, 108, 424–438. [Google Scholar] [CrossRef]
- Yoneda, J.; Kida, M.; Konno, Y.; Jin, Y.; Morita, S.; Tenma, N. In Situ Mechanical Properties of Shallow Gas Hydrate Deposits in the Deep Seabed. Geophys. Res. Lett. 2019, 46, 14459–14468. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Guo, Z.; Ning, F.; Ma, S. Permeability of hydrate-bearing sediments. Earth-Sci. Rev. 2020, 202, 103100. [Google Scholar] [CrossRef]
- Masui, A.; Haneda, H.; Ogata, Y.; Aoki, K. Mechanical properties of sandy sediment containing marine gas hydrates in deep sea offshore Japan. In Proceedings of the Seventh ISOPE Ocean Mining Symposium, Lisbon, Portugal, 1–6 July 2007; pp. 53–56. [Google Scholar]
- Masui, A.; Haneda, H.; Ogata, Y.; Aoki, K. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments. In Proceedings of the Fifteenth International Offshore and Polar Engineering Conference, Seoul, Korea, 19–24 June 2005; pp. 364–369. [Google Scholar]
- Hyodo, M.; Kajiyama, S.; Yoshimoto, N.; Nakata, Y. Triaxial behaviour of methane hydrate bearing sand. In Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium, Szczecin, Poland, 22–26 September 2013; pp. 126–131. [Google Scholar]
- Hyodo, M.; Li, Y.; Yoneda, J.; Nakata, Y.; Yoshimoto, N.; Nishimura, A.; Song, Y. Mechanical behavior of gas-saturated methane hydrate-bearing sediments. J. Geophys. Res. Solid Earth 2013, 118, 5185–5194. [Google Scholar] [CrossRef] [Green Version]
- Hyodo, M.; Wu, Y.; Nakashima, K.; Kajiyama, S.; Nakata, Y. Influence of Fines Content on the Mechanical Behavior of Methane Hydrate-Bearing Sediments. J. Geophys. Res. Solid Earth 2017, 122, 7511–7524. [Google Scholar] [CrossRef]
- Miyazaki, K.; Masui, A.; Sakamoto, Y.; Aoki, K.; Tenma, N.; Yamaguchi, T. Triaxial compressive properties of artificial methane-hydrate-bearing sediment. J. Geophys. Res. Solid Earth 2011, 116, 1–11. [Google Scholar] [CrossRef]
- Yoneda, J.; Hyodo, M.; Yoshimoto, N.; Nakata, Y.; Kato, A. Development of high-pressure low-temperature plane strain testing apparatus for methane hydrate-bearing sand. Soils Found. 2013, 53, 774–783. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.S.; Santamarina, C.J.; Ruppel, C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J. Geophys. Res. Solid Earth 2007, 112, 1–13. [Google Scholar] [CrossRef]
- Hyodo, M.; Yoneda, J.; Yoshimoto, N.; Nakata, Y. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found. 2013, 53, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Rutqvist, J.; Moridis, G.J.; Grover, T.; Silpngarmlert, S.; Collett, T.S.; Holdich, S.A. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments. J. Pet. Sci. Eng. 2012, 92, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Freij-Ayoub, R.; Tan, C.; Clennell, B.; Tohidi, B.; Yang, J. A wellbore stability model for hydrate bearing sediments. J. Pet. Sci. Eng. 2007, 57, 209–220. [Google Scholar] [CrossRef]
- Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. J. Pet. Sci. Eng. 2009, 67, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, Y.; Komai, T.; Miyazaki, K.; Tenma, N.; Yamaguchi, T.; Zyvoloski, G. Laboratory-Scale Experiments of the Methane Hydrate Dissociation Process in a Porous Media and Numerical Study for the Estimation of Permeability in Methane Hydrate Reservoir. J. Thermodyn. 2010, 2010, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Daigle, H.; Dugan, B. Extending NMR data for permeability estimation in fine-grained sediments. Mar. Pet. Geol. 2009, 26, 1419–1427. [Google Scholar] [CrossRef]
- Saito, H.; Yokoyama, T.; Uchiyama, S. Seafloor Stability Monitoring by Displacements Calculated from Acceleration Waveforms Obtained by a 3-Component Servo-Accelerometer System. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–6. [Google Scholar]
- Lee, J.Y.; Chun, J.; Kim, S.J. The Seafloor deformation and well bore stability monitoring during gas production in unconsolidated reservoirs. In Proceedings of the 2013 World Conference on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, 8–12 September 2013; pp. 703–707. [Google Scholar]
- Woolsey, J.R.; McGee, T.; Lutken, C.; Stidham, E. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project; University of Mississippi: Oxford, MS, USA, 2008; pp. 1–55. [Google Scholar]
- Sun, Z.; Cao, H.; Geng, W.; Zhang, L.; Zhang, X.; Xu, C.; Li, X.; Guo, J.-W. A three-dimensional environmental monitoring system for the production of marine gas hydrates. China Geol. 2018, 1, 570–571. [Google Scholar] [CrossRef]
- Li, J.-F.; Ye, J.-L.; Qin, X.-W.; Qiu, H.-J.; Wu, N.-Y.; Lu, H.-L.; Xie, W.-W.; Lu, J.-A.; Peng, F.; Xu, Z.-Q.; et al. The first offshore natural gas hydrate production test in South China Sea. China Geol. 2018, 1, 5–16. [Google Scholar] [CrossRef]
- Makogon, Y.F.; Omelchenko, R.Y. Commercial gas production from Messoyakha deposit in hydrate conditions. J. Nat. Gas Sci. Eng. 2013, 11, 1–6. [Google Scholar] [CrossRef]
- George, J.; Michael, B.K.; Karsten, P. TOUGH+HYDRATE v 1.0 Users manual. Lawrence Berkeley Natl Lab—Earth Sci Div Berkeley, CA Rep LBNL-149E. 2008. [Google Scholar]
- Moridis, G.J.; Kowalsky, M.B. Depressurization-induced gas production from class-1 hydrate deposits. SPE Annu. Tech. Conf. Exhib. 2005, 10, 458–481. [Google Scholar]
- Moridis, G.J.; Reagan, M.T. Strategies for Gas Production from Oceanic Class 3 Hydrate Accumulations; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Moridis, G.J.; Reagan, M.T. Gas production from oceanic class 2 hydrate accumulations. J. Pet. Technol. 2007, 59, 69–73. [Google Scholar] [CrossRef]
- Reagan, M.T.; Moridis, G.J.; Johnson, J.; Pan, L.; Freeman, C.M.; Boyle, K.L.; Keen, N.D.; Husebo, J. Field-Scale Simulation of Production from Oceanic Gas Hydrate Deposits. Transp. Porous Media 2015, 108, 151–169. [Google Scholar] [CrossRef]
- Itasca. FLAC3D Version 3.1-Users Guide, Third Edition. Itasca Consult Group, Inc.: Minneapolis, MI, USA.
- Gamwo, I.K.; Liu, Y. Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Ind. Eng. Chem. Res. 2010, 49, 5231–5245. [Google Scholar] [CrossRef]
- Civan, F. Scale effect on porosity and permeability: Kinetics, model, and correlation. AIChE J. 2001, 47, 271–287. [Google Scholar] [CrossRef]
- Moridis, G.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.H.; Santamarina, C.; Boswell, R.; Kneafsey, T.J.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; et al. Challenges, Uncertainties, and Issues Facing Gas Production From Gas-Hydrate Deposits. SPE Reserv. Eval. Eng. 2011, 14, 76–112. [Google Scholar] [CrossRef] [Green Version]
- White, M.; Kneafsey, T.; Seol, Y.; Waite, W.; Uchida, S.; Lin, J.; Myshakin, E.; Gai, X.; Gupta, S.; Reagan, M.; et al. Gas hydrate dissociations in Mallik hydrate bearing zones A, B, and C by depressurization: Effect of salinity and hydration number in hydrate dissociation. J. Nat. Gas. Sci. Eng. 2014, 21, 40–63. [Google Scholar] [CrossRef]
- White, M.; Kneafsey, T.; Seol, Y.; Waite, W.; Uchida, S.; Lin, J.; Myshakin, E.; Gai, X.; Gupta, S.; Reagan, M.; et al. An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments. Mar. Pet. Geol. 2020, 120, 104566. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-form Equation for Predicting the Hydratulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, D. Travaux et Mémoires du Bureau international des Poids et Mesures—Tome XIII (Paris: Gauthier-Villars, 1907). Ann. Phys. Chem. Wiedemanns Ann. 1899, 69, 685. [Google Scholar]
- Amyx, J.W.; Bass, M.D. Petroleum Reservoir Engineering Physical Properites; McGRAW-HILL: New York, NY, USA, 1960. [Google Scholar]
- Yousif, M.H.; Abass, H.H.; Selim, M.S.; Sloan, E.D. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reserv. Eng. 1991, 6, 69–76. [Google Scholar] [CrossRef]
- Luckner, L.; Van Genuchten, M.T.; Nielsen, D.R. A Consistent Set of Parametric Models for the Two-Phase Flow of Immiscible Fluids in the Subsurface. Water Resour. Res. 1989, 10, 2187–2193. [Google Scholar] [CrossRef]
- Kim, H.; Bishnoi, P.; Heidemann, R.; Rizvi, S. Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 1987, 42, 1645–4653. [Google Scholar] [CrossRef]
- Hardwick, J.S.; Simon, A. Masuda’s sandstone core hydrate dissociation experiment revisited. Chem. Eng. Sci. 2018, 175, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Clarke, M.; Bishnoi, P.R. Determination of the activation energy and intrinsic rate constant of methane gas hydrate decomposition. Can. J. Chem. Eng. 2001, 79, 143–147. [Google Scholar] [CrossRef]
- Kamath, V.A. A perspective on gas production from hydrate. In Proceedings of the JNOC’s Methane Hydrate International Symposium, Chiba City, Japan, 20–22 October 1998; pp. 20–22. [Google Scholar]
- Deng, X.; Feng, J.; Pan, S.; Wang, Z.; Zhang, J.; Chen, W. An improved model for the migration of fluids caused by hydrate dissociation in porous media. J. Pet. Sci. Eng. 2020, 188, 106876. [Google Scholar] [CrossRef]
- Klar, A.; Soga, K.; Ng, M. Coupled deformation-flow analysis for methane hydrate extraction. Geotechnique 2010, 60, 765–776. [Google Scholar] [CrossRef]
- Soga, K.; Klar, A. Coupled deformation-flow analysis for methane hydrate production by depressurized wells. In Proceedings of the 3rd International Biot Conference on Poromechanics, Norman, OK, USA, 24–27 May 2005; pp. 25–27. [Google Scholar] [CrossRef]
- Klar, A.; Uchida, S.; Soga, K.; Yamamoto, K. Explicitly Coupled Thermal Flow Mechanical Formulation for Gas-hydrte sediments. In Proceedings of the 3rd International Biot Conference on Poromechanics, Norman, OK, USA, 24–27 May 2005; pp. 25–27. [Google Scholar] [CrossRef]
- Masuda, Y.; Fujinaga, Y.; Naganawa, S.; Fujita, K.; Sato, K.; Hayashi, Y. Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores. In Proceedings of the Third International Gas Hydrate Conference, Salt Lake City, UT, USA, 18–22 July 1999; pp. 18–22. [Google Scholar]
- Deng, X.; Pan, S.; Zhang, J.; Wang, Z.; Jiang, Z. Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel 2020, 271, 117679. [Google Scholar] [CrossRef]
- Takeya, S.; Yoneyama, A.; Ueda, K.; Hyodo, K.; Takeda, T.; Mimachi, H.; Takahashi, M.; Iwasaki, T.; Sano, K.; Yamawaki, H.; et al. Nondestructive Imaging of Anomalously Preserved Methane Clathrate Hydrate by Phase Contrast X-ray Imaging. J. Phys. Chem. C 2011, 115, 16193–16199. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Initial reservoir temperature/ | 275.4 K | Viscosity of CH4/ | 1.81 × 10−5 Pa·s |
Initial reservoir pressure/ | 3.57 MPa | Viscosity of water/ | 1 × 10−3 Pa·s |
Initial NGH saturation/ | 0.425 | Thermal conductivity of NGH/ | 0.7 W/(m·K) |
Initial water saturation/ | 0.348 | Thermal conductivity of CH4/ | 0.033 W/(m·K) |
Production pressure/ | 2.99 MPa | Thermal conductivity of water/ | 0.6 W/(m·K) |
Absolute porosity/n | 0.182 | Thermal conductivity of sand/ | 1.35 W/(m·K) |
Specific heat of NGH/ | 2170 J/(kg·K) | Density of NGH/ | 913 kg/m3 |
Specific heat of water/ | 4186 J/(kg·K) | Density of water/ | 1000 kg/m3 |
Specific heat of CH4/ | 2191 J/(kg·K) | Density of sand/ | 2000 kg/m3 |
Specific heat of sand/ | 800 J/(kg·K) | Hydration number | 5.75 |
Joule–Thomson coefficient/ | −1.5 × 10−4 J/(kg·K) | Rate constant of dissociation/ | 3.6 × 104 mol/(m2·Pa·s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, X.; Wang, Y.; Qin, C.; Li, B.; Luo, Y.; Feng, J. Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method. Energies 2021, 14, 548. https://doi.org/10.3390/en14030548
Li L, Li X, Wang Y, Qin C, Li B, Luo Y, Feng J. Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method. Energies. 2021; 14(3):548. https://doi.org/10.3390/en14030548
Chicago/Turabian StyleLi, Lijia, Xiaosen Li, Yi Wang, Chaozhong Qin, Bo Li, Yongjiang Luo, and Jingchun Feng. 2021. "Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method" Energies 14, no. 3: 548. https://doi.org/10.3390/en14030548
APA StyleLi, L., Li, X., Wang, Y., Qin, C., Li, B., Luo, Y., & Feng, J. (2021). Investigating the Interaction Effects between Reservoir Deformation and Hydrate Dissociation in Hydrate-Bearing Sediment by Depressurization Method. Energies, 14(3), 548. https://doi.org/10.3390/en14030548