Inventory of Reservoirs of Key Significance for Water Management in Poland—Evaluation of Changes in Their Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- ∆V—loss in the capacity of the dam reservoir in the balance period [million m3];
- Vi—initial capacity [million m3];
- Va—current capacity [million m3].
- S—mean annual siltation (sedimentation) [million m3];
- ∆V—loss in the capacity of the dam reservoir in the balance period [million m3];
- n—number of years of the reservoir’s operation.
- 50—loss of 50% of the initial capacity [years];
- Vi—initial capacity [million m3];
- S—mean annual siltation (sedimentation) [million m3];
- n—number of years of the reservoir’s operation.
3. Results
3.1. Capacity Change Analysis
- I—large loss of capacity—over 30%;
- II—a significant loss of capacity—10.1–30%;
- III—moderate loss of capacity—0.1–10%;
- IV—constant capacity;
- V—increase in capacity.
- approx. 1 million m3 in the years 1980–1981 in the region of Płock;
- 11.6 million m3 in the years 1983–1987 on the longer section of Płock–Duninów–Koralewo;
- 0.5 million m3 in 2002–2003 in the area of the so-called Kępa K-14 [53];
- 0.05 million m3 in 2021 in the Płock area and works on a larger scale are planned.
- Check dams—their task is, for example, to trap sediment before reaching the lower reservoir;
- Sediment traps—low dams located directly in front of the reservoir to catch sediments, especially coarse-grained fractions;
- Warping—directing flowing water to agricultural areas, designed to accumulate debris there [1].
3.2. Rate of Capacity Changes and Service Life Assessment
4. Discussion
5. Conclusions
- The primary function for most of them is flood protection, while retaining water resources necessary to counteract the effects of drought and for the needs of hydropower plants;
- The average service life of the reservoirs is 48 years. The oldest analyzed Łąka reservoir was commissioned in 1907, and the youngest Świnna Poręba 109 years later, i.e., in 2016;
- Since their commissioning until now, the total capacity at the maximum damming level has decreased by 192.656 million m3, i.e., by 5.2% (27 reservoirs showed a reduction in retention capacity, seven an increase, and no changes were observed for 13). The total starting capacity was 3677.751 million m3, while currently it is 3485,095 million m3;
- The average annual silting rate of reservoirs does not exceed 0.2% of the loss of their capacity;
- There are differences in terms of the degree of capacity changes in relation to the initial capacity—the Czchów reservoir has the highest percentage of lost volume (37.3%), while Włocławek lost the most, as much as 79.01 million m3 (approx. 15% of the capacity), the Domaniów reservoir increased its capacity by 11.4% compared to the initial capacity (1.475 million m3), while the Nysa reservoir increased by 11.050 million m3 (10.0%);
- The average annual silting for the Włocławek reservoir is 1.549 million m3, i.e., on average each year water resources decrease by 0.29% in relation to the initial parameters, which is mainly due to the intensive delivery and accumulation of bed load. The values would be higher if regular dredging works were not carried out, mainly aimed at ensuring appropriate conditions for winter flood protection;
- Assuming that the rate of silting of the Czchów reservoir would be analogous to the current one, it would lose half of its original volume in 25 years, and 80% in just 39 years—however, the regulatory works on its inflow limited the inflow of sediment. This shows the importance of the appropriate location of e.g., low head dams in order to reduce the transport of bed load and limit its delivery to the reservoir;
- Dredging works are carried out on selected reservoirs, but it seems reasonable to coordinate activities in this area in order to manage sediments, while taking into account activities in the catchments of reservoirs limiting the transport of bed load; the loss of capacity may have a significant impact on the proper management of water resources in reservoirs, including flood protection and counteracting the effects of drought, as well as energy functions;
- So far there is no national policy on reservoir capacity management and sediment management plans;
- Maintaining reservoir retention and its regular increase is one of the measures to counteract the effects of drought and floods, so it is an important factor in adapting to climate change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ID | Reservoir | River | Commissioning | Basin Area (km2) | Reservoir Area at Maximum Damming Level (MaxDL) (km2) | Hydraulic Resistance Time (Days−1) | Capacity during the Normal Damming Level (NDL) (Million m3) |
---|---|---|---|---|---|---|---|
1 | Besko | Wisłok | 1978 | 210 | 1.30 | 60.0 | 6.9 |
2 | Brody Iłżeckie | Kamienna | 1964 | 650 | 1.90 | 22.0 | 6.7 |
3 | Bukówka | Bóbr | 1987 | 22 | 2.00 | 194.0 | 12.8 |
4 | Chańcza | Czarna Staszowska | 1984 | 470 | 4.70 | 218.0 | 14.2 |
5 | Cieszanowice | Luciąża | 1998 | 80 | 2.20 | 106.0 | 5.7 |
6 | Czaniec | Soła | 1967 | 1150 | 0.46 | 1.0 | 1.3 |
7 | Czchów | Dunajec | 1949 | 5300 | 2.50 | 1.3 | 7.5 |
8 | Czorsztyn Niedzica | Dunajec | 1997 | 1200 | 12.30 | 116.0 | 176.5 |
9 | Dębe | Narew | 1973 | 69,000 | 33.00 | 8.2 | 90.0 |
10 | Dobczyce | Raba | 1986 | 900 | 10.70 | 146.0 | 92.7 |
11 | Dobromierz | Strzegomka | 1987 | 80 | 1.00 | 113.0 | 10.0 |
12 | Domaniów | Radomka | 2001 | 740 | 5.00 | 31.0 | 9.9 |
13 | Goczałkowice | Wisła | 1955 | 430 | 32.00 | 80.0 | 118.1 |
14 | Gopło | Noteć Wschodnia | 1970 | 1173 | 21.80 | N/D | 73.36 |
15 | Jeziorsko | Warta | 1991 | 8390 | 42.00 | 56.0 | 142.8 |
16 | Klimkówka | Ropa | 1994 | 180 | 3.10 | 148.0 | 32.0 |
17 | Kozielno | Nysa Kłodzka | 2002 | 2185 | 3.46 | N/D | 12.9 |
18 | Kuźnica Warężyńska | Przemsza | 2005 | 294 | 4.86 | N/D | 39.2 |
19 | Leśna | Kwisa | 1907 | 290 | 1.40 | 38.0 | 7.0 |
20 | Lubachów | Bystrzyca | 1917 | 145 | 0.50 | 55.0 | 4.9 |
21 | Łąka | Pszczynka | 1986 | 160 | 4.20 | 80.0 | 8.0 |
22 | Miedzna | Wąglanka | 1979 | 130 | 1.80 | 81.0 | 3.4 |
23 | Mietków | Bystrzyca | 1986 | 720 | 9.10 | 128.0 | 63.0 |
24 | Nielisz | Wieprz, Por | 2008 | 1260 | 8.30 | 107.0 | 20.6 |
25 | Nysa | Nysa Kłodzka | 1972 | 4000 | 21.00 | 59.0 | 66.3 |
26 | Otmuchów | Nysa Kłodzka | 1933 | 2360 | 21.00 | 61.0 | 59.0 |
27 | Pakość | Noteć Zachodnia, Mała Noteć | 1974 | 1581 | 13.02 | N/D | 80.18 |
28 | Pilchowice | Bóbr | 1912 | 1200 | 2.40 | 37.0 | 24.0 |
29 | Pogoria III | Pogoria | 1974 | 19 | 2.08 | N/D | 11.4 |
30 | Poraj | Warta | 1979 | 390 | 5.00 | 97.0 | 13.0 |
31 | Porąbka | Soła | 1936 | 1100 | 3.70 | 22.0 | 22.0 |
32 | Przeczyce | Przemsza | 1963 | 300 | 4.70 | 109.0 | 8.6 |
33 | Rożnów | Dunajec | 1942 | 4900 | 16.00 | 31.0 | 155.8 |
34 | Rybnik | Ruda | 1973 | 350 | 4.70 | 76.0 | 22.1 |
35 | Siemianówka | Narew | 1995 | 600 | 32.50 | 198.0 | 64.8 |
36 | Słup | Nysa Szalona | 1978 | 380 | 4.90 | 22.0 | 23.6 |
37 | Solina | San | 1968 | 1190 | 22.00 | 299.0 | 472.0 |
38 | Sosnówka | Czerwonka | 2002 | 100 | 1.80 | 162.0 | 10.9 |
39 | Sulejów | Pilica | 1973 | 4900 | 24.00 | 38.0 | 75.1 |
40 | Świnna Poręba | Skawa | 2016 | 802 | 10.35 | N/D | 100.8 |
41 | Topola | Nysa Kłodzka | 2002 | 2150 | 3.40 | 15.2 | 16.5 |
42 | Tresna | Soła | 1967 | 1100 | 10.00 | 90.0 | 53.9 |
43 | Turawa | Mała Panew | 1948 | 1500 | 21.00 | 115.0 | 80.0 |
44 | Wióry | Świślina | 2007 | 363 | 4.08 | N/D | 15.7 |
45 | Wisła Czarne | Wisła | 1973 | 29 | 0.41 | N/D | 2.3 |
46 | Włocławek | Wisła | 1970 | 168,900 | 75.00 | 4.5 | 369.9 |
47 | Złotniki | Kwisa | 1924 | 280 | 1.20 | 27.0 | 9.7 |
References
- Kondolf, M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Mahmood, K. Reservoir Sedimentation: Impact, Extent, Mitigation. World Bank Tech. Rep. 1987, 71. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1867120 (accessed on 10 June 2021).
- Mazhar, N.; Mirza, A.I.; Abbas, S.; Akram, M.A.N.; Ali, M.; Javid, K. Effects of climatic factors on the sedimentation trends of Tarbela Reservoir, Pakistan. SN Appl. Sci. 2021, 3, 122. [Google Scholar] [CrossRef]
- International Commision on Large Dams Data. Available online: https://www.icold-cigb.org/GB/world_register/general_synthesis.asp (accessed on 10 July 2021).
- Hosseinjanzadeh, H.; Hosseini, K.; Kaveh, K.; Mousavi, S.F. New proposed method for prediction of reservoir sedimentation distribution. Int. J. Sediment Res. 2015, 30, 235–240. [Google Scholar] [CrossRef]
- Beuselinck, L.; Govers, G.; Hairsine, P.B.; Sander, G.C.; Breynaert, M. The influence of rainfall on sediment transport by overland flow over areas of net deposition. J. Hydrol. 2002, 25, 145–163. [Google Scholar] [CrossRef]
- Łajczak, A. Współczesny transport i sedymentacja materiały unoszonego w Wiśle i jej dopływach. Monogr. Kom. Gospod. Wodnej PAN 1999, 15, 215. [Google Scholar]
- Rzętała, M. Funkcjonowanie Zbiorników Wodnych oraz Przebieg Procesów Limnicznych w Warunkach Zróżnicowanej Antropopresji na Przykładzie Regionu Górnośląskiego; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2008; Available online: https://www.researchgate.net/publication/322068561_Funkcjonowanie_zbiornikow_wodnych_oraz_przebieg_procesow_limnicznych_w_warunkach_zroznicowanej_antropopresji_na_przykladzie_regionu_gornoslaskiego (accessed on 10 June 2021).
- Matysik, M.; Absalon, D.; Habel, M.; Maerker, M. Surface water quality analysis using CORINE data: An application to assess reservoirs in Poland. Remote Sens. 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Absalon, D.; Matysik, M.; Woźnica, A.; Łozowski, B.; Jarosz, W.; Ulańczyk, R.; Babczyńska, A.; Pasierbiński, A. Multi-Faceted Environmental Analysis to Improve the Quality of Anthropogenic Water Reservoirs (Paprocany Reservoir Case Study). Sensors 2020, 20, 2626. [Google Scholar] [CrossRef] [PubMed]
- Ulańczyk, R.; Łozowski, B.; Woźnica, A.; Absalon, D.; Kolada, A. Water Quality and Ecosystem Modelling: Practical Application on Lakes and Reservoirs. In Quality of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Hassan, M.; Shamim, M.A.; Sikandar, A.; Mehmood, I.; Ahmed, I.; Ashiq, S.Z.; Khitab, A. Development of sediment load estimation models by using artificial neural networking techniques. Environ. Monit. Assess. 2015, 187, 686. [Google Scholar] [CrossRef]
- Habel, M.; Szatten, D.; Babiński, Z.; Nadolny, G. Sediment Management in River Basins: An Essential Element of the River Basin Management Plans. In Quality of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Absalon, D.; Matysik, M.; Habel, M. Water Quality in Main Dam Reservoirs in Poland. In Quality of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Ericson, C.L. An artificial landscape-scale fishery in the Bolivian Amazon. Nature 2000, 408, 190–193. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Garcia de Leaniz, C. Weir Removal in Salmonid Streams: Implications, Challenges and Practicalities. Hydrobiologia 2008, 609, 83–96. [Google Scholar] [CrossRef]
- Beames, P.; Lehner, B.; Anand, M. Global Reservoir and Dams Database—Technical Documentation 2019, Version 1.3. Available online: http://globaldamwatch.org/grand/ (accessed on 10 July 2021).
- Fox, G.A.; Sheshukov, A.; Cruse, R.; Kolar, R.L.; Guertault, L.; Gesch, K.R.; Dutnell, R.C. Reservoir Sedimentation and Upstream Sediment Sources: Perspectives and Future Research Needs on Streambank and Gully Erosion. Environ. Manag. 2016, 57, 945–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habel, M.; Mechkin, K.; Podgorska, K.; Saunes, M.; Babiński, Z.; Chalov, S.; Absalon, D.; Podgórski, Z.; Obolewski, K. Dam and reservoir removal projects: A mix of social-ecological trends and cost-cutting attitudes. Sci. Rep. 2020, 10, 19210. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, N.; Vörösmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Reservoir operations under climate change: Storage capacity options to mitigate risk. J. Hydrol. 2017, 555, 435–446. [Google Scholar] [CrossRef]
- Paredes-Beltran, B.; Sordo-Ward, A.; de-Lama, B.; Garrote, L. A Continental Assessment of Reservoir Storage and Water Availability in South America. Water 2021, 13, 1992. [Google Scholar] [CrossRef]
- Döll, P.; Fiedler, K.; Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 2009, 13, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Bekri, E.S.; Economou, P.; Yannopoulos, P.C.; Demetracopoulos, A.C. Reassessing Existing Reservoir Supply Capacity and Management Resilience under Climate Change and Sediment Deposition. Water 2021, 13, 1819. [Google Scholar] [CrossRef]
- Sarakinos, H.; Johns, S.E. Social perspectives on dam removal. In Dam Removal Research: Status and Prospects; Graf, W.L., Ed.; The Heinz Center’s Dam Removal Research Workshop: Washington, DC, USA, 2002; Available online: http://user.engineering.uiowa.edu/~cee_171/handouts/Dam_Research_Full_Report.pdf (accessed on 10 June 2021).
- Morris, G.L. Classification of Management Alternatives to Combat Reservoir Sedimentation. Water 2020, 12, 861. [Google Scholar] [CrossRef] [Green Version]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060 (accessed on 10 July 2021).
- Communication from the Commission to the European Parliament and the Council Addressing the Challenge of Water Scarcity and Droughts in the European Union. 2007. Available online: https://www.europarl.europa.eu/RegData/docs_autres_institutions/commission_europeenne/com/2007/0414/COM_COM(2007)0414_EN.pdf (accessed on 10 July 2021).
- Projekt Rozporządzenia Ministra Infrastruktury w Sprawie Przyjęcie Planu Przeciwdziałania Skutkom Suszy z Dnia 1 April 2021 r. Available online: https://legislacja.rcl.gov.pl/projekt/12342551 (accessed on 10 July 2021).
- Journal of Law 2016 Item 1911 [Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Przyjęcia Planu Zarządzania Ryzykiem Powodziowym dla Obszaru Dorzecza Wisły]. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001911 (accessed on 10 July 2021).
- Regional Water Management Authority in Gliwice, State Water Holding Polish Waters Data—E-mail dated 2 April 2021.
- University of Warmia and Mazury in Olsztyn Data. Available online: http://www.uwm.edu.pl/kolektory/energia-wody/elekwodne.html (accessed on 10 July 2021).
- Regional Water Management Authority in Rzeszów, State Water Holding Polish Waters data—E-mail dated 24 March 2021 and 25 March 2021.
- TAURON Ekoenergia Ltd.—E-mail dated 28 April 2021.
- Regional Water Management Authority in Poznań, State Water Holding Polish Waters data—E-mail dated 26 March 2021 and 26 March 2021.
- Łajczak, A. Retencja rumowiska w zbiornikach zaporowych karpackiego dorzecza Wisły. Czas. Geogr. 1986, 1, 47–77. [Google Scholar]
- Mapa Podziału Hydrograficznego Polski w Skali 1:10,000. Available online: https://dane.gov.pl/pl/dataset/2167,mapa-podzialu-hydrograficznego-polski-w-skali-110 (accessed on 10 July 2021).
- Regional Water Management Authority in Wrocław, State Water Holding Polish Waters data—E-mail dated 31 March 2021.
- Regional Water Management Authority in Lublin, State Water Holding Polish Waters data—E-mail dated 19 March 2021.
- Regional Water Management Authority in Warszawa, State Water Holding Polish Waters data—E-mail dated 26 March 2021 and 26 March 2021.
- Regional Water Management Authority in Białystok, State Water Holding Polish Waters data—E-mail dated 19 March 2021.
- Regional Water Management Authority in Bydgoszcz, State Water Holding Polish Waters data—E-mail dated 18 March 2021, 26 March 2021 and 26 March 2021.
- Regional Water Management Authority in Kraków, State Water Holding Polish Waters data—E-mail dated 26 March 2021, 26 March 2021 and 9 April 2021.
- Journal of Law 2019 Item 1725 [Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 21 Sierpnia 2019 r. w Sprawie Zakresu Instrukcji Gospodarowania Wodą]. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001725/O/D20191725.pdf (accessed on 10 July 2021).
- Banach, M. Główne procesy a osady w strefie brzegowej zbiornika Włocławek. Przegląd Geogr. 1988, 60, 267–299. [Google Scholar]
- Łajczak, A. Studium nad zamulaniem wybranych zbiorników zaporowych w dorzeczu Wisły. Monogr. Kom. Gospod. Wodnej PAN 1995, 8, 106. [Google Scholar]
- Faleńczyk-Koziróg, K.; Skubała, P.; Habel, M.; Waldon-Rudzionek, B.; Szatten, D. River islands as habitats for soil mites (Acari). River Res. Appl. 2019, 35, 736–748. [Google Scholar] [CrossRef]
- Gierszewski, P.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total Environ. 2020, 710, 136202. [Google Scholar] [CrossRef] [PubMed]
- Radecki-Pawlik, A.; Kuboń, P.; Radecki-Pawlik, B.; Plesiński, K. Bed-Load Transport in Two Different-Sized Mountain Catchments: Mlynne and Lososina Streams, Polish Carpathians. Water 2019, 11, 272. [Google Scholar] [CrossRef] [Green Version]
- Dojlido, J.; Gromiec, M. Rzeka Bug–Zasoby Wodne i Przyrodnicze; IMGW, Wyższa Szkoła Ekologii i Zarządzania: Warszawa, Poland, 2002. [Google Scholar]
- Magnuszewski, A.S. Procesy korytowe w Jeziorze Zegrzyńskim. Monogr. Kom. Gospod. Wodnej 2014, 20, 299–306. [Google Scholar]
- Website Inzynieriabudownictwa.pl Data. Available online: https://inzynierbudownictwa.pl/modernizacja-zbiornika-wodnego-nysa/ (accessed on 10 June 2021).
- Majewski, W. Powódź zatorowa na Wiśle w rejonie Płock-Włocławek w grudniu 1982 r. Próba wyjaśnienia zjawisk hydrauliczno-lodowych związanych z powodzią 1982 r. Gospod. Wodna 2009, 2, 64–72. [Google Scholar]
- Tang, Q.; Duncan, J.M.; Guo, L.; Lin, H.; Xiao, D.; Eissenstat, D.M. On the controls of preferential flow in soils of different hillslope position and lithological origin. Hydrol. Process. 2020, 34, 4295–4306. [Google Scholar] [CrossRef]
- Babiński, Z.; Chalov, S.R. Udział rumowiska unoszonego i wleczonego w transporcie fluwianym. Promot. Geogr. Bydgostiensia 2005, 3, 9–34. [Google Scholar]
- Babiński, Z. Wpływ Zapór na Procesy Korytowe rzek Aluwialnych ze Szczególnym Uwzględnieniem Zbiornika Włocławskiego; Wyd. Akademii Bydgoskiej im. Kazimierza Wielkiego: Bydgoszcz, Poland, 2002. [Google Scholar]
- Babiński, Z. Współczesne procesy korytowe dolnej Wisły. Pr. Geogr. 1992, 157, 171. [Google Scholar]
- Gierszewski, P.; Szmańda, J.B. Ocena Wpływu Zbiornika Włocławskiego na Transport Zawiesiny Wisłą. Wyd. Inst. Geogr. i Gosp; Przestrzennej UJ: Kraków, Poland, 2005. [Google Scholar]
- Babiński, Z.; Habel, M. Impact of a single dam on sediment transport continuity in large lowland rivers. In River Sedimentation, Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 19–22 September 2016; Wieprecht, S., Haun, S., Weber, K., Noack, M., Terheiden, K., Eds.; CRC Press: London, UK, 2017. [Google Scholar] [CrossRef]
- Habel, M.; Babiński, Z.; Szatten, D. Problem odnowy rumowiska wleczonego poniżej zapór. Ocena możliwości sztucznego uzupełniania rumowiska poniżej stopnia wodnego we Włocławku. Gospod. Wodna 2017, 11, 353–356. [Google Scholar]
- Ardor. Instrukcja gospodarowania wodą dla zbiorników Gopło i Pakość wraz z urządzeniami hydrotechnicznymi. 2006. Unpublished Work.
- Grobelska, H. Aktualny stan strefy brzegowej zbiornika Pakoskiego. In Proceedings of the Konferencji Naukowo-Technicznej, Eksploatacja i Oddziaływanie Dużych Zbiorników Nizinnych (na Przykładzie Zbiornika Jeziorsko), Stow. In Proceedings of the Inż. i Techn. Wodnych i Melioracyjnych, Zarząd Główny, Zarząd Oddziału w Poznaniu, Uniejów, Poland, 20–21 May 1999; pp. 195–211. [Google Scholar]
- Kubiak-Wójcicka, K.; Szczęch, L. Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland. Energies 2021, 14, 3427. [Google Scholar] [CrossRef]
- Wiejaczka, Ł. Zbiorniki retencyjne w polskich Karpatach. Aura Sigma-Not 2010, 10, 7–9. [Google Scholar]
- Gierszewski, P. Hydromorfologiczne uwarunkowania funkcjonowania geoekosystemu Zbiornika Włocławskiego. Pr. Geogr. 2018, 268. Available online: https://www.rcin.org.pl/dlibra/publication/91047/edition/69674/content (accessed on 15 June 2021).
- Journal of Law 2019 Item 92 [Uchwała nr 92 Rady Ministrów z dnia 10 Września 2019 r. w Sprawie Przyjęcia Założeń do Programu Przeciwdziałania Niedoborowi Wody na Lata 2021–2027 z Perspektywą do Roku 2030]. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WMP20190000941 (accessed on 15 June 2021).
- Gutry-Korycka, M.; Sadurski, A.; Kundzewicz, Z.W.; Pociask-Karteczka, J.; Skrzypczyk, L. Zasoby wodne a ich wykorzystanie. Nauka 2014, 1, 77–98. Available online: https://journals.pan.pl/dlibra/publication/106379/edition/92153/content (accessed on 20 June 2021).
- Morris, G.L.; Annandale, G.W.; Hotchkiss, R.H. Reservoir sedimentation. Sedimentation Engineering-Processes, Measurements, Modeling, and Practice. ASCE Man. Rep. Eng. Pract. 2008, 110, 579–612. [Google Scholar]
- Halcrow, W. 2001 Sedimentation in Storage Reservoirs, Final Report—Department of the Environment, British Dam Society, Wiltshire. Available online: https://britishdams.org/assets/documents/defra-reports/200102Sedimentation%20in%20storage%20reservoirs.pdf (accessed on 4 June 2021).
- Froehlich, D.; Narayan, P.; Kumar, M. Estimating Reservoir Capacity Loss from Sedimentation. In Proceedings of the Third National Dam Safety Conference, Roorkee, India, 18–19 February 2017; pp. 1–16. [Google Scholar]
- De Araujo, J.C.; Guntner, A.; Bronstert, A. Loss of reservoir volume by sediment deposition and its impact on water availability in semiarid Brazil. Hydrol. Sci. J. 2006, 51, 157–170. [Google Scholar] [CrossRef]
- Habel, M.; Pieron, Ł. Impact of large scale hydro-projects on the changes of hydrological regime—Illustrated by the example of the lower Vistula. In Human Impact on the Fluvial Processes of Eurasian Rivers; Habel, M., Ed.; Kazimierz Wielki University: Bydgoszcz, Poland, 2012; Available online: https://www.researchgate.net/publication/256456633 (accessed on 5 June 2021).
- Journal of Law 2017 Item 1566 [Ustawa z Dnia 20 Lipca 2017 r.—Prawo Wodne]. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 5 June 2021).
- Szatten, D.; Habel, M.; Pellegrini, L.; Maerker, M. Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas. Water 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Valent, P.; Výleta, R.; Danáčová, M. A Joint Sedimentation-Flood Retention Assessment of a Small Water Reservoir in Slovakia: A New Hope for Old Reservoirs? Geosciences 2019, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Fuska, J.; Kubinský, D.; Weis, K.; Lackóová, L.; Pokrývková, J.; Leitmanová, M.; Panagopoulos, T. Area-storage capacity curve of historic artifical water reservoir Ottergund, Slovakia-assessment of the historical data with the use of GIS tools. J. Ecol. Eng. 2017, 18, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Dostál, T.; Krasa, J.; Vrana, K.; Dockal, M.; Koudelka, P.; David, V.; Vokurka, A. Sediment transport and water quality in Máchovo Lake (Czech Republic). Ann. Wars. Univ. Life Sci.-SGGW Land Reclam. 2010, 42, 139–148. [Google Scholar] [CrossRef]
- Strategiczny Plan Adaptacji dla Sektorów i Obszarów Wrażliwych na Zmiany Klimatu do Roku 2020 z Perspektywą do Roku 2030. Available online: https://klimada2.ios.gov.pl/adaptacja/ (accessed on 2 June 2021).
- COP26: Climate and Sediment Management Pledge 2021. Available online: https://sednet.org/category/news/ (accessed on 2 June 2021).
- IPCC Special Report on Global Warming of 1.5 °C, above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Available online: https://www.ipcc.ch/sr15 (accessed on 30 June 2021).
- Shrestha, B.; Maskey, S.; Babel, M.S.; van Griensven, A.; Uhlenbrook, S. Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: A case study of the Nam Ou Basin, Lao PDR. Clim. Chang. 2018, 149, 13–27. [Google Scholar] [CrossRef]
- Kasza, H. Zbiorniki Zaporowe—Eutrofizacja—Ochrona; Wyd. Akademii Techniczno-Humanistycznej: Bielsko Biała, Poland, 2009. [Google Scholar]
ID | Reservoir | River | Capacity [Million m3] | Capacity Changes | ||
---|---|---|---|---|---|---|
Initial | Current | [Million m3] | % | |||
1. | Besko | Wisłok | 16.000 | 13.210 | −2.790 | −17.4 |
2. | Brody Iłżeckie | Kamienna | 7.590 | 7.010 | −0.580 | −7.6 |
3. | Bukówka | Bóbr | 16.790 | 16.660 | −0.130 | −0.8 |
4. | Chańcza | Czarna Staszowska | 24.220 | 23.780 | −0.440 | −1.8 |
5. | Cieszanowice | Luciąża | 9.100 | 9.100 | 0.000 | 0.0 |
6. | Czaniec | Soła | 1.300 | 1.300 | 0.000 | 0.0 |
7. | Czchów | Dunajec | 12.000 | 7.530 | −4.470 | −37.3 |
8. | Czorsztyn Niedzica | Dunajec | 231.900 | 238.553 | 6.653 | 2.9 |
9. | Dębe | Narew | 94.300 | 95.980 | 1.680 | 1.8 |
10. | Dobczyce | Raba | 141.740 | 137.720 | −4.020 | −2.8 |
11. | Dobromierz | Strzegomka | 11.350 | 11.350 | 0.000 | 0.0 |
12. | Domaniów | Radomka | 12.895 | 14.370 | 1.475 | 11.4 |
13. | Goczałkowice | Wisła | 163.100 | 161.300 | −1.800 | −1.1 |
14. | Gopło | Noteć Wschodnia | 88.640 | 88.640 | 0.000 | 0.0 |
15. | Jeziorsko | Warta | 203.000 | 202.037 | −0.963 | −0.5 |
16. | Klimkówka | Ropa | 43.500 | 41.950 | −1.550 | −3.6 |
17. | Kozielno | Nysa Kłodzka | 16.400 | 16.302 | −0.098 | −0.6 |
18. | Kuźnica Warężyńska | Przemsza | 46.280 | 46.280 | 0.000 | 0.0 |
19. | Leśna | Kwisa | 16.800 | 16.800 | 0.000 | 0.0 |
20. | Lubachów | Bystrzyca | 8.000 | 6.807 | −1.193 | −14.9 |
21. | Łąka | Pszczynka | 11.150 | 11.150 | 0.000 | 0.0 |
22. | Miedzna | Wąglanka | 3.802 | 3.802 | 0.000 | 0.0 |
23. | Mietków | Bystrzyca | 71.800 | 77.220 | 5.420 | 7.5 |
24. | Nielisz | Wieprz, Por | 27.140 | 28.471 | 1.331 | 4.9 |
25. | Nysa | Nysa Kłodzka | 111.000 | 122.050 | 11.050 | 10.0 |
26. | Otmuchów | Nysa Kłodzka | 142.650 | 129.460 | −13.190 | −9.2 |
27. | Pakość | Noteć Zachodnia, Mała Noteć | 86.460 | 86.460 | 0.000 | 0.0 |
28. | Pilchowice | Bóbr | 53.500 | 50.000 | −3.500 | −6.5 |
29. | Pogoria III | Pogoria | 12.033 | 12.033 | 0.000 | 0.0 |
30. | Poraj | Warta | 25.100 | 20.802 | −4.298 | −17.1 |
31. | Porąbka | Soła | 32.200 | 26.540 | −5.660 | −17.6 |
32. | Przeczyce | Przemsza | 20.740 | 20.352 | −0.388 | −1.9 |
33. | Rożnów | Dunajec | 228.7 | 155.770 | −72.930 | −31.9 |
34. | Rybnik | Ruda | 24.000 | 23.322 | −0.678 | −2.8 |
35. | Siemianówka | Narew | 79.500 | 79.500 | 0.000 | 0.0 |
36. | Słup | Nysa Szalona | 38.600 | 38.050 | −0.550 | −1.4 |
37. | Solina | San | 474.500 | 472.040 | −2.460 | −0.5 |
38. | Sosnówka | Czerwonka | 14.000 | 14.840 | 0.840 | 6.0 |
39. | Sulejów | Pilica | 86.594 | 84.330 | −2.264 | −2.6 |
40. | Świnna Poręba | Skawa | 160.844 | 160.844 | 0.000 | 0.0 |
41. | Topola | Nysa Kłodzka | 26.500 | 21.676 | −4.824 | −18.2 |
42. | Tresna | Soła | 102.000 | 92.700 | −9.300 | −9.1 |
43. | Turawa | Mała Panew | 95.500 | 92.610 | −2.890 | −3.0 |
44. | Wióry | Świślina | 35.333 | 34.660 | −0.673 | −1.9 |
45. | Wisła Czarne | Wisła | 4.500 | 4.044 | −0.456 | −10.1 |
46. | Włocławek | Wisła | 532.600 | 453.590 | −79.010 | −14.8 |
47. | Złotniki | Kwisa | 12.100 | 12.100 | 0.000 | 0.0 |
ID | Reservoir | River | Average Annual Rate of Capacity Loss | Time to 50% Loss from Initial Capacity [Years] | Time to 80% Loss from Initial Capacity [Years] | |
---|---|---|---|---|---|---|
Million m3 | % | |||||
1. | Besko | Wisłok | 0.065 | 0.41 | 80 | 128 |
2. | Brody Iłżeckie | Kamienna | 0.010 | 0.13 | 316 | 506 |
3. | Bukówka | Bóbr | 0.004 | 0.02 | 2162 | 3459 |
4. | Chańcza | Czarna Staszowska | 0.012 | 0.05 | 981 | 1570 |
7. | Czchów | Dunajec | 0.062 | 0.52 | 25 | 39 |
10. | Dobczyce | Raba | 0.115 | 0.08 | 582 | 931 |
13. | Goczałkowice | Wisła | 0.027 | 0.02 | 2924 | 4679 |
15. | Jeziorsko | Warta | 0.032 | 0.02 | 3132 | 5011 |
16. | Klimkówka | Ropa | 0.057 | 0.13 | 352 | 563 |
17. | Kozielno | Nysa Kłodzka | 0.005 | 0.03 | 1571 | 2513 |
20. | Lubachów | Bystrzyca | 0.011 | 0.14 | 245 | 392 |
26. | Otmuchów | Nysa Kłodzka | 0.150 | 0.11 | 388 | 621 |
28. | Pilchowice | Bóbr | 0.032 | 0.06 | 724 | 1159 |
30. | Poraj | Warta | 0.102 | 0.41 | 81 | 129 |
31. | Porąbka | Soła | 0.067 | 0.21 | 157 | 251 |
32. | Przeczyce | Przemsza | 0.007 | 0.03 | 1492 | 2387 |
33. | Rożnów | Dunajec | 0.923 | 0.40 | 45 | 72 |
34. | Rybnik | Ruda | 0.014 | 0.06 | 802 | 1282 |
36. | Słup | Nysa Szalona | 0.013 | 0.03 | 1466 | 2345 |
37. | Solina | San | 0.046 | 0.01 | 5058 | 8094 |
39. | Sulejów | Pilica | 0.047 | 0.05 | 870 | 1392 |
41. | Topola | Nysa Kłodzka | 0.254 | 0.96 | 33 | 53 |
42. | Tresna | Soła | 0.172 | 0.17 | 242 | 387 |
43. | Turawa | Mała Panew | 0.040 | 0.04 | 1133 | 1813 |
44. | Wióry | Świślina | 0.048 | 0.14 | 354 | 566 |
45. | Wisła Czarne | Wisła | 0.010 | 0.21 | 189 | 302 |
46. | Włocławek | Wisła | 1.549 | 0.29 | 121 | 193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieron, Ł.; Absalon, D.; Habel, M.; Matysik, M. Inventory of Reservoirs of Key Significance for Water Management in Poland—Evaluation of Changes in Their Capacity. Energies 2021, 14, 7951. https://doi.org/10.3390/en14237951
Pieron Ł, Absalon D, Habel M, Matysik M. Inventory of Reservoirs of Key Significance for Water Management in Poland—Evaluation of Changes in Their Capacity. Energies. 2021; 14(23):7951. https://doi.org/10.3390/en14237951
Chicago/Turabian StylePieron, Łukasz, Damian Absalon, Michał Habel, and Magdalena Matysik. 2021. "Inventory of Reservoirs of Key Significance for Water Management in Poland—Evaluation of Changes in Their Capacity" Energies 14, no. 23: 7951. https://doi.org/10.3390/en14237951
APA StylePieron, Ł., Absalon, D., Habel, M., & Matysik, M. (2021). Inventory of Reservoirs of Key Significance for Water Management in Poland—Evaluation of Changes in Their Capacity. Energies, 14(23), 7951. https://doi.org/10.3390/en14237951