# Grid Forming Stator Flux Control of Doubly-Fed Induction Generator

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Stator Flux Control

#### 2.1. Control of Frequency and Magnitude

#### 2.1.1. Frequency Control

#### 2.1.2. Stator Flux Magnitude Control

## 3. Experimental Validation of the Control Scheme

## 4. Simulation of 3-Node Grid

^{®}.

## 5. Conclusions and Future Work

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Hansen, A.D.; Hansen, L.H. Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy
**2007**, 10, 81–97. [Google Scholar] [CrossRef] - De Brabandere, K.; Bolsens, B.; Van den Keybus, J.; Woyte, A.; Driesen, J.; Belmans, R. A Voltage and Frequency Droop Control Method for Parallel Inverters. IEEE Trans. Power Electron.
**2007**, 22, 1107–1115. [Google Scholar] [CrossRef] - Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining control strategies for MicroGrids islanded operation. IEEE Trans. Power Syst.
**2006**, 21, 916–924. [Google Scholar] [CrossRef] [Green Version] - Yao, W.; Chen, M.; Matas, J.; Guerrero, J.M.; Qian, Z. Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing. IEEE Trans. Ind. Electron.
**2011**, 58, 576–588. [Google Scholar] [CrossRef] - Engler, A.; Soultanis, N. Droop control in LV-grids. In Proceedings of the 2005 International Conference on Future Power Systems, Amsterdam, The Netherlands, 18 November 2005. [Google Scholar]
- Vazquez Hernandez, C.; Telsnig, T.; Villalba Pradas, A. JRC Wind Energy Status Report: 2016 Edition; Technical Report; Publications Office of the European Union: Luxembourg, 2017. [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron.
**2006**, 53, 1398–1409. [Google Scholar] [CrossRef] [Green Version] - Cortajarena, J.A.; De Marcos, J.; Alkorta, P.; Barambones, O.; Cortajarena, J. DFIG wind turbine grid connected for frequency and amplitude control in a smart grid. In Proceedings of the 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Hamilton, New Zealand, 31 January–2 February 2018; pp. 362–369. [Google Scholar] [CrossRef]
- Cortajarena, J.A.; Barambones, O.; Alkorta, P.; Cortajarena, J. Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid. Mathematics
**2021**, 9, 143. [Google Scholar] [CrossRef] - Yan, Y.; Wang, M.; Song, Z.F.; Xia, C.L. Proportional-Resonant Control of Doubly-Fed Induction Generator Wind Turbines for Low-Voltage Ride-Through Enhancement. Energies
**2012**, 5, 4758–4778. [Google Scholar] [CrossRef] [Green Version] - Busada, C.A.; Jorge, S.G.; Solsona, J.A. Resonant Current Controller With Enhanced Transient Response for Grid-Tied Inverters. IEEE Trans. Ind. Electron.
**2018**, 65, 2935–2944. [Google Scholar] [CrossRef] - Schiesser, M.; Wasterlain, S.; Marchesoni, M.; Carpita, M. A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter. Energies
**2018**, 11, 609. [Google Scholar] [CrossRef] [Green Version] - Pena, R.; Clare, J.C.; Asher, G.M. A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine. IEE Proc. Electr. Power Appl.
**1996**, 143, 380–387. [Google Scholar] [CrossRef] - Shukla, R.D.; Tripathi, R.K. A novel voltage and frequency controller for standalone DFIG based Wind Energy Conversion System. Renew. Sustain. Energy Rev.
**2014**, 37, 69–89. [Google Scholar] [CrossRef] - Ataji, A.B.; Miura, Y.; Ise, T.; Tanaka, H. Direct Voltage Control With Slip Angle Estimation to Extend the Range of Supported Asymmetric Loads for Stand-Alone DFIG. IEEE Trans. Power Electron.
**2016**, 31, 1015–1025. [Google Scholar] [CrossRef] - Arnaltes, S.; Rodriguez-Amenedo, J.L.; Montilla-DJesus, M.E. Control of Variable Speed Wind Turbines with Doubly Fed Asynchronous Generators for Stand-Alone Applications. Energies
**2018**, 11, 26. [Google Scholar] [CrossRef] [Green Version] - Fazeli, M.; Asher, G.M.; Klumpner, C.; Yao, L. Novel Integration of DFIG-Based Wind Generators Within Microgrids. IEEE Trans. Energy Convers.
**2011**, 26, 840–850. [Google Scholar] [CrossRef] - Shahabi, M.; Haghifam, M.R.; Mohamadian, M.; Nabavi-Niaki, S.A. Microgrid Dynamic Performance Improvement Using a Doubly Fed Induction Wind Generator. IEEE Trans. Energy Convers.
**2009**, 24, 137–145. [Google Scholar] [CrossRef] - Zhang, Y.; Ooi, B. DFIG based wind farm with autonomous frequency control on island operation. In Proceedings of the 2015 IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Han, Y.; Ha, J.I. Droop Control Using Impedance of Grid-Integrated DFIG within Microgrid. IEEE Trans. Energy Convers.
**2019**, 34, 88–97. [Google Scholar] [CrossRef] - Yang, J.; Dorrell, D.G.; Fletcher, J.E. Fault ride-through of doubly-fed induction generator with converter protection schemes. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; pp. 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Naderi, S.B.; Davari, P.; Zhou, D.; Negnevitsky, M.; Blaabjerg, F. A Review on Fault Current Limiting Devices to Enhance the Fault Ride-Through Capability of the Doubly-Fed Induction Generator Based Wind Turbine. Appl. Sci.
**2018**, 8, 2059. [Google Scholar] [CrossRef] [Green Version] - Fletcher, J.; Yang, J. Introduction to the Doubly-Fed Induction Generator for Wind Power Applications; Intech Open: London, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Kadri, A.; Marzougui, H.; Bacha, F. Implementation of direct power control based on stator flux estimation using low-pass filter estimator for doubly fed induction generator-wind energy conversion system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
**2019**, 233, 764–778. [Google Scholar] [CrossRef] - D’Arco, S.; Suul, J.A. Equivalence of Virtual Synchronous Machines and Frequency-Droops for Converter-Based MicroGrids. IEEE Trans. Smart Grid
**2014**, 5, 394–395. [Google Scholar] [CrossRef] - Engler, A. Device for Equal-Rated Parallel Operation of Single-Or Three-Phase Voltage Sources. U.S. Patent 6693809, 17 February 2004. [Google Scholar]
- Strauss, P.; Engler, A. AC coupled PV hybrid systems and microgrids-state of the art and future trends. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; Volume 3, pp. 2129–2134. [Google Scholar]
- Klaes, N.; Goldschmidt, N.; Fortmann, J. Voltage Fed Control of Distributed Power Generation Inverters with Inherent Service to Grid Stability. Energies
**2020**, 13, 2579. [Google Scholar] [CrossRef] - Kisser, A.; Engel, M.; Rezai, L.; Andrejewski, M.; Fortmann, J.; Schulte, H. A Test-bed System for Validation of Ancillary Services of Wind Power Plants under Realistic Conditions. In Proceedings of the 16th Int’l Wind Integration Workshop, Berlin, Germany, 25–27 October 2017. [Google Scholar]

**Figure 14.**Simulation results of grid-forming operation in a 3-node grid: (

**a**) active power. (

**b**) reactive power, (

**c**) voltage magnitudes and (

**d**) frequency.

Symbol | Parameter | Value | Units |
---|---|---|---|

f | Grid frequency | 50 | Hz |

${S}_{N}$ | Nominal apparent power | 10 | kVA |

${f}_{T}$ | Switching frequency | 1950 | Hz |

${T}_{pfil}$ | Filter time constant for active power | 100 | ms |

${T}_{qfil}$ | Filter time constant for reactive power | 100 | ms |

${k}_{f}$ | Frequency droop | 4% | |

${k}_{\varphi}$ | Phase intervention gain | 0.4 | rad/pu |

${k}_{\psi}$ | Stator flux droop | 1 | |

${f}_{LP}$ | Cut off frequency of flux estimator | 5 | Hz |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Klaes, N.; Pöschke, F.; Schulte, H.
Grid Forming Stator Flux Control of Doubly-Fed Induction Generator. *Energies* **2021**, *14*, 6766.
https://doi.org/10.3390/en14206766

**AMA Style**

Klaes N, Pöschke F, Schulte H.
Grid Forming Stator Flux Control of Doubly-Fed Induction Generator. *Energies*. 2021; 14(20):6766.
https://doi.org/10.3390/en14206766

**Chicago/Turabian Style**

Klaes, Norbert, Florian Pöschke, and Horst Schulte.
2021. "Grid Forming Stator Flux Control of Doubly-Fed Induction Generator" *Energies* 14, no. 20: 6766.
https://doi.org/10.3390/en14206766