Application of Deep Learning for Quality of Service Enhancement in Internet of Things: A Review
Abstract
:1. Introduction
1.1. IoT Applications
1.2. Problem Statement
1.3. Related Previous Review Papers
1.4. Purpose of This Review
- (1)
- Based on the previous review papers, there is a lack of papers that explicitly focus on the application of Deep Learning for QoS guarantee in IoTs. Yet, DL has been applied in many data-driven domains, including IoT. This review paper’s objective is to address this gap.
- (2)
- Various research papers recommend future research for the application of DL-based techniques for intrusion detection [29,30] and resource allocation and management [31], which are the main factors that determine the QoS of IoT networks and systems. Therefore, this review takes up this recommendation to provide researchers with the application of DL to QoS enhancement in IoTs.
- (3)
- On top of providing the state-of-art, this research also discusses challenges hindering the application of DL techniques for QoS enhancement in IoTs. With challenges well-identified, future researchers about this topic can easily know where to focus.
1.5. Research Questions
- How are Deep Learning techniques being applied for QoS enhancement in IoTs?
- Which Deep Learning models are being applied in various aspects of QoS enhancement in IoT-based applications, and why those models in particular?
- Why have researchers opted for the use of Deep Learning techniques for QoS enhancement compared to the existing QoS enhancement approaches?
- What challenges are faced by developers when applying DL models for QoS enhancement for IoTs?
1.6. Research Methodology
1.7. Contributions of This Review
- (a)
- We review Quality of Service in the Internet of Things and various metrics of QoS.
- (b)
- We review the challenges of enhancing QoS using traditional methods (methods not related to DL) and show how DL techniques can be used to solve these challenges
- (c)
- We review how the various DL algorithms have been applied in enhancing QoS in IoT-based systems. We identify the research gaps for the application of DL techniques for QoS in IoT. More of the observations and contributions are explained in the discussion, Section 4.
2. An Overview of Quality of Service and Deep Learning Algorithms for Internet of Things
2.1. Quality of Service in Internet of Things
2.1.1. QoS of Communication
2.1.2. QoS of Things
2.1.3. QoS of Computing
2.2. Deep Learning Algorithms
2.2.1. Convolutional Neural Network (CNN)
2.2.2. Restricted Boltzmann Machine
2.2.3. Autoencoders (AE)
2.2.4. Recurrent Neural Networks (RNN)
2.2.5. Deep Reinforcement Learning (DRL)
2.2.6. Generative Adversarial Network
2.2.7. Deep Learning Frameworks
3. DL Application to QoS Guarantee in IoT
3.1. Data Processing, Analytics and Transmission
3.2. Deep Learning for IoT Security
3.2.1. Intrusion Detection in IoT
3.2.2. Defect Detection in IoT
3.3. DL for Resource Allocation and Management in IoT
3.3.1. Massive Simultaneous Channel Access
3.3.2. Power Allocation and Interference Management
3.3.3. Energy Consumption and Management
4. Discussion on the Application of DL to Enhance QoS in IoTs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Acronym | Description | Acronym | Description |
QoS | Quality of Service | GPU | Graphics Processing Unit |
DL | Deep Learning | DBN | Deep Belief Network |
IoT | Internet of Things | RL | Reinforcement Learning |
IDS | Intrusion Detection System | SOM | Self-Organizing Map algorithm |
RBF | Radial Basis Function | DRL | Deep Reinforcement Learning |
SOM | Self-organizing Map algorithm | MDP | Markov Decision Process |
CNN | Convolutional Neural Networks | FIFO | First In first Out |
TCNN | Temporal Convolutional Neural Networks | DQN | Deep Q Networks |
RNN | Recurrent Neural Network | QoE | Quality of Experience |
DOS | Denial-of-Service | AML | Adversarial Machine Learning |
DDOS | Distributed Denial-of-Services | DAE | Denoising autoencoders |
ICA | Imperialist Competitive Algorithm | ReLU | Rectified Linear Unit activation function |
MLP | Multilayer perceptron neural network | RLRA | Reinforcement Learning Resource Allocation Algorithm |
SAE | Sparse autoencoders | ANN | Artificial Neural Networks |
CAE | Contractive autoencoders | CSI | Channel State Information |
RLMT | Reinforcement Learning-based Mapping Table | ML | Machine Learning |
RQ | Research Question | ||
NFV | Network Function Virtualization | ||
MAB | Multi-Armed Bandit |
References
- Patel, K.K.; Patel, S.M. Internet of Things-IOT: Definition, characteristics, architecture, enabling technologies, application & future challenges. Int. J. Eng. Sci. Comput. 2016, 6, 6122–6131. [Google Scholar] [CrossRef]
- Wang, H.; Hu, J.; Deng, W. Face Feature Extraction: A Complete Review. IEEE Access 2018, 6, 6001–6039. [Google Scholar] [CrossRef]
- Al-Garadi, M.A.; Mohamed, A.; Al-Ali, A.K.; Du, X.; Ali, I.; Guizani, M. A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. IEEE Commun. Surv. Tutor. 2020, 22, 1646–1685. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming analytics: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 2018, 48, 144–156. [Google Scholar] [CrossRef]
- Suryadevara, N.K.; Mukhopadhyay, S.C. Smart Home Related Research. In Smart Homes: Design, Implementation and Issues; Springer International Publishing: Basel, Switzerland, 2015; Volume 14, pp. 11–51. ISBN 9783319135564. [Google Scholar]
- Jaihar, J.; Lingayat, N.; Vijaybhai, P.S.; Venkatesh, G.; Upla, K.P. Smart home automation using machine learning algorithms. In Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 8–11. [Google Scholar] [CrossRef]
- Islam, M.M.; Rahaman, A.; Islam, M.R. Development of Smart Healthcare Monitoring System in IoT Environment. SN Comput. Sci. 2020, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Budida, D.A.M.; Mangrulkar, R.S. Design and implementation of smart HealthCare system using IoT. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A review of machine learning and IoT in smart transportation. Future Internet 2019, 11, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ravi, D.; Wong, C.; Lo, B.; Yang, G.Z. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices. IEEE J. Biomed. Health Inform. 2017, 21, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Hossain, T.; Ahad, M.A.R.; Inoue, S. A method for sensor-based activity recognition in missing data scenario. Sensors 2020, 20, 3811. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, M.H.; Ali, R.; Rana, M.S.; Hong, E.K.; Kim, E.S.; Lee, S. Video-based human activity recognition using multilevel wavelet decomposition and stepwise linear discriminant analysis. Sensors 2014, 14, 6370–6392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Luo, H.; Wang, Q.; Zhao, F.; Ye, L.; Zhang, Y. A human activity recognition algorithm based on stacking denoising autoencoder and lightGBM. Sensors 2019, 19, 947. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [Green Version]
- Rahim, K.N.K.A.; Elamvazuthi, I.; Izhar, L.I.; Capi, G. Classification of human daily activities using ensemble methods based on smartphone inertial sensors. Sensors 2018, 18, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thapa, K.; Abdullah Al, Z.M.; Lamichhane, B.; Yang, S.H. A deep machine learning method for concurrent and interleaved human activity recognition. Sensors 2020, 20, 5770. [Google Scholar] [CrossRef]
- Chen, R.; Chu, T.; Liu, K.; Liu, J.; Chen, Y. Inferring human activity in mobile devices by computing multiple contexts. Sensors 2015, 15, 21219–21238. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhang, D.; Yao, L.; Guo, B.; Yu, Z.; Liu, Y. Deep learning for sensor-based human activity recognition: Overview, challenges and opportunities. arXiv 2020. Available online: http://arxiv.org/abs/2001.07416 (accessed on 12 May 2021).
- Wang, L. Recognition of human activities using continuous autoencoders with wearable sensors. Sensors 2016, 16, 189. [Google Scholar] [CrossRef] [PubMed]
- Moyne, J.; Iskandar, J. Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing. Processes 2017, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.J.; Ming, X.G.; Liu, Z.W.; Zhang, X.Y.; Hou, Z.T. Smart manufacturing systems: State of the art and future trends. Int. J. Adv. Manuf. Technol. 2019, 103, 3751–3768. [Google Scholar] [CrossRef]
- Mahdavi-Hezavehi, S.; Avgeriou, P.; Weyns, D. A Classification Framework of Uncertainty in Architecture-Based Self-Adaptive Systems With Multiple Quality Requirements. In Managing Trade-Offs in Adaptable Software Architectures; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–77. ISBN 9780128028551. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shafiullah, M.; Rahman, S.M.; Khondaker, A.N.; Amao, A.; Zahir, M.H. Soft computing applications in air quality modeling: Past, present, and future. Sustainability 2020, 12, 4045. [Google Scholar] [CrossRef]
- Lee, C.-N.; Huang, T.-H.; Wu, C.-M.; Tsai, M.-C. The Internet of Things and Its Applications. In Big Data Analytics for Sensor-Network Collected Intelligence; Elsevier: Amsterdam, The Netherlands, 2017; pp. 256–279. ISBN 9780128096253. [Google Scholar] [CrossRef]
- Andročec, D.; Vrček, N. Machine Learning for the Internet of Things Security: A Systematic Review. In Proceedings of the 13th International Conference on Software Technologies; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2018; pp. 563–570. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A review on IoT deep learning UAV systems for autonomous obstacle detection and collision avoidance. Remote Sens. 2019, 11, 2144. [Google Scholar] [CrossRef] [Green Version]
- Lateef, A.A.A.; Al-Janabi, S.T.F.; Al-Khateeb, B. Survey on intrusion detection systems based on deep learning. Period. Eng. Nat. Sci. 2019, 7, 1074–1095. [Google Scholar] [CrossRef] [Green Version]
- Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider, W.; Wahab, A. A review of intrusion detection systems using machine and deep learning in internet of things: Challenges, solutions and future directions. Electronics 2020, 9, 1177. [Google Scholar] [CrossRef]
- Hussain, F.; Hassan, S.A.; Hussain, R.; Hossain, E. Machine Learning for Resource Management in Cellular and IoT Networks: Potentials, Current Solutions, and Open Challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1251–1275. [Google Scholar] [CrossRef] [Green Version]
- Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data. Appl. Sci. 2021, 11, 5320. [Google Scholar] [CrossRef]
- Alsoufi, M.A.; Razak, S.; Siraj, M.M.; Nafea, I.; Ghaleb, F.A.; Saeed, F.; Nasser, M. Anomaly-Based Intrusion Detection Systems in IoT Using Deep Learning: A Systematic Literature Review. Appl. Sci. 2021, 11, 8383. [Google Scholar] [CrossRef]
- Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R. A systematic review on Deep Learning approaches for IoT security. Comput. Sci. Rev. 2021, 40, 100389. [Google Scholar] [CrossRef]
- Clarke, R.I. Cataloging Research by Design: A Taxonomic Approach to Understanding Research Questions in Cataloging. Cat. Classif. Q. 2018, 56, 683–701. [Google Scholar] [CrossRef]
- Mathy, L.; Edwards, C.; Hutchison, D. Principles of QoS in group communications. Telecommun. Syst. 1999, 11, 59–84. [Google Scholar] [CrossRef]
- Singh, M.; Baranwal, G. Quality of Service (QoS) in Internet of Things. In Proceedings of the Proceedings—2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU 2018), Bhimtal, India, 23–24 February 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bernard, M.S.; Pei, T.; Nasser, K. QoS Strategies for Wireless Multimedia Sensor Networks in the Context of IoT at the MAC Layer, Application Layer, and Cross-Layer Algorithms. J. Comput. Netw. Commun. 2019, 2019, 9651915. [Google Scholar] [CrossRef] [Green Version]
- Tanganelli, G.; Vallati, C.; Mingozzi, E. Ensuring quality of service in the internet of things. Stud. Comput. Intell. 2018, 715, 139–163. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Li, Y.F.; Shen, X.F.; Zhang, S.M.; Zhao, M.; Tan, X.H. QoS enhancement in space data communication: A network coding approach. Int. J. Electron. 2017, 104, 34–46. [Google Scholar] [CrossRef]
- Verizon.com. “Bandwidth”, Verizon.com. 2010. Available online: https://www.verizon.com/info/definitions/bandwidth/ (accessed on 2 February 2021).
- Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020, 10, 4102. [Google Scholar] [CrossRef]
- Verma, A.; Ranga, V. Machine Learning Based Intrusion Detection Systems for IoT Applications. Wirel. Pers. Commun. 2020, 111, 2287–2310. [Google Scholar] [CrossRef]
- Mahmoud, R.; Yousuf, T.; Aloul, F.; Zualkernan, I. Internet of things (IoT) security: Current status, challenges and prospective measures. In Proceedings of the 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), London, UK, 14–16 December 2015; pp. 336–341. [Google Scholar] [CrossRef]
- HaddadPajouh, H.; Khayami, R.; Dehghantanha, A.; Choo, K.K.R.; Parizi, R.M. AI4SAFE-IoT: An AI-powered secure architecture for edge layer of Internet of things. Neural Comput. Appl. 2020, 32, 16119–16133. [Google Scholar] [CrossRef]
- Chana, I.; Singh, S. Quality of Service and Service Level Agreements for Cloud Environments: Issues and Challenges. In Cloud Computing: Challenges, Limitations and R&D Solutions; Mahmood, Z., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 51–72. [Google Scholar] [CrossRef]
- Anawar, M.R.; Wang, S.; Azam Zia, M.; Jadoon, A.K.; Akram, U.; Raza, S. Fog Computing: An Overview of Big IoT Data Analytics. Wirel. Commun. Mob. Comput. 2018, 2018. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, W.; Huang, J.; Yang, C.; Lu, J.; Tan, H. Artificial Intelligence for Securing IoT Services in Edge Computing: A Survey. Secur. Commun. Netw. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Behdad, S.; Wang, B. The evolution and future of manufacturing: A review. J. Manuf. Syst. 2016, 39, 79–100. [Google Scholar] [CrossRef]
- Vazan, P.; Janikova, D.; Tanuska, P.; Kebisek, M.; Cervenanska, Z. Using data mining methods for manufacturing process control. IFAC-PapersOnLine 2017, 50, 6178–6183. [Google Scholar] [CrossRef]
- Rashid, M.M.; Kamruzzaman, J.; Hassan, M.M.; Imam, T.; Gordon, S. Cyberattacks detection in iot-based smart city applications using machine learning techniques. Int. J. Environ. Res. Public Health 2020, 17, 9347. [Google Scholar] [CrossRef] [PubMed]
- Vindya, N.D.; Vedamurthy, H.K. Machine Learning Algorithm in Smart Farming for Crop Identification. In Computational Vision and Bio-Inspired Computing; Smys, S., Tavares, J.M.R.S., Balas, V.E., Iliyasu, A.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 19–25. ISBN 978-3-030-37218-7. [Google Scholar] [CrossRef]
- Balducci, F.; Impedovo, D.; Pirlo, G. Machine learning applications on agricultural datasets for smart farm enhancement. Machines 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Artificial Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020, 10, 3835. [Google Scholar] [CrossRef]
- Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical human activity recognition using wearable sensors. Sensors 2015, 15, 31314–31338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.M.R.; Kwak, D.; Kabir, H.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care : A Comprehensive Survey. Access IEEE 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Ferre, M.; Batista, E.; Solanas, A.; Martínez-Ballesté, A. Smart Health-Enhanced Early Mobilisation in Intensive Care Units. Sensors 2021, 21, 5408. [Google Scholar] [CrossRef] [PubMed]
- Internetofbusiness.com. Athens International Airport Turns to IoT for Environmental Monitoring. Internet of Business News. 2020. Available online: https://internetofbusiness.com/athens-international-airport-turns-to-iot-for-environmental-monitoring/ (accessed on 3 April 2021).
- Oskouei, R.J.; MousaviLou, Z.; Bakhtiari, Z.; Jalbani, K.B. IoT-Based Healthcare Support System for Alzheimer’s Patients. Wirel. Commun. Mob. Comput. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Ball, J.E.; Anderson, D.T.; Chan, C.S. A comprehensive survey of deep learning in remote sensing: Theories, tools and challenges for the community. J. Appl. Remote Sens. 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirasawa, K.; Ohbayashi, M.; Koga, M.; Harada, M. Forward propagation universal learning network. In Proceedings of the International Conference on Neural Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; Volume 1, pp. 353–358. [Google Scholar] [CrossRef]
- Kim, P. Convolutional Neural Network. In MATLAB Deep Learning; Apress: Berkeley, CA, USA, 2017; pp. 121–147. [Google Scholar]
- Abdel-Hamid, O.; Mohamed, A.R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition. IEEE Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Passricha, V.; Kumar Aggarwal, R. Convolutional Neural Networks for Raw Speech Recognition. In From Natural to Artificial Intelligence—Algorithms and Applications; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.A.; Verma, A.; Alex, J.S.R.; Venkatesan, N. Experimental Evaluation of CNN Architecture for Speech Recognition. In First International Conference on Sustainable Technologies for Computational Intelligence. Advances in Intelligent Systems and Computing; Luhach, A., Kosa, J., Poonia, R., Gao, X.Z., Eds.; Springer: Singapore, 2020; pp. 507–514. ISBN 978-981-15-0028-2. [Google Scholar] [CrossRef]
- Wang, W.; Gang, J. Application of Convolutional Neural Network in Natural Language Processing. In Proceedings of the 2018 International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 6–8 July 2018; pp. 64–70. [Google Scholar] [CrossRef]
- Fesseha, A.; Xiong, S.; Emiru, E.D.; Diallo, M.; Dahou, A. Text Classification Based on Convolutional Neural Networks and Word Embedding for Low-Resource Languages: Tigrinya. Information 2021, 12, 52. [Google Scholar] [CrossRef]
- Oppermann, A. Deep Learning Meets Physics: Restricted Boltzmann Machines. 2018. Available online: https://towardsdatascience.com/deep-learning-meets-physics-restricted-boltzmann-machines-part-i-6df5c4918c15 (accessed on 4 April 2021).
- Kishore, D.R.; Kaur, T. Backpropagation Algorithm: An Artificial Neural Network Approach for Pattern Recognition. Int. J. Sci. Eng. Res. 2012, 3, 6–9. [Google Scholar]
- Autoencoders. UFLDL Tutorial. Available online: http://ufldl.stanford.edu/tutorial/unsupervised/Autoencoders (accessed on 4 April 2021).
- Jordan, J. Introduction to Autoencoders. Jordan, Jeremy Website. 2018. Available online: https://www.jeremyjordan.me/autoencoders/ (accessed on 4 April 2021).
- Dertat, A. Applied Deep Learning: Autoencoders. 2017. Available online: https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798 (accessed on 4 April 2021).
- Lu, M.; Mou, Y. Bearing defect classification algorithm based on autoencoder neural network. Adv. Civ. Eng. 2020, 2020, 1DUMM. [Google Scholar] [CrossRef]
- Rosati, S.; Balestra, G.; Knaflitz, M. Comparison of different sets of features for human activity recognition by wearable sensors. Sensors 2018, 18, 4189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Ye, L.; Luo, H.; Men, A.; Zhao, F.; Huang, Y. Pedestrian stride-length estimation based on LSTM and denoising autoencoders. Sensors 2019, 19, 840. [Google Scholar] [CrossRef] [Green Version]
- Eklund, A.; Dufort, P.; Forsberg, D.; LaConte, S.M. Medical image processing on the GPU—Past, present and future. Med. Image Anal. 2013, 17, 1073–1094. [Google Scholar] [CrossRef] [Green Version]
- Kandel, I.; Castelli, M. Transfer learning with convolutional neural networks for diabetic retinopathy image classification. A review. Appl. Sci. 2020, 10, 2021. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.; Silva, S.; Abelha, A.; Machado, J. Recommendation system using autoencoders. Appl. Sci. 2020, 10, 5510. [Google Scholar] [CrossRef]
- Barbieri, J.; Alvim, L.G.M.; Braida, F.; Zimbrão, G. Autoencoders and recommender systems: COFILS approach. Expert Syst. Appl. 2017, 89, 81–90. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Khan, M.S.; He, J. A novel deep hybrid recommender system based on auto-encoder with neural collaborative filtering. Big Data Min. Anal. 2018, 1, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Amidi, A.; Amidi, S. “Recurrent Neural Networks Cheatsheet”, Stanford University. Available online: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks (accessed on 12 May 2021).
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, Y. Neural Network Methods for Natural Language Processing. Synth. Lect. Hum. Lang. Technol. 2017, 10, 1–311. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, G.; Qie, W.; Zhang, Y. Deep Reinforcement Learning for Joint Channel Selection and Power Allocation in Cognitive Internet of Things. In Human Centered Computing; Milošević, D., Tang, Y., Zu, Q., Eds.; Springer: Cham, Switzerland, 2019; pp. 683–692. [Google Scholar] [CrossRef]
- Di Felice, M.; Bedogni, L.; Bononi, L. Reinforcement Learning-Based Spectrum Management for Cognitive Radio Networks: A Literature Review and Case Study. In Handbook of Cognitive Radio; Zhang, W., Ed.; Springer: Singapore, 2018; pp. 1–38. [Google Scholar]
- Yau, K.-L.A.; Poh, G.-S.; Chien, S.F.; Al-Rawi, H.A.A. Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms. Sci. World J. 2014, 2014, 209810. [Google Scholar] [CrossRef] [PubMed]
- Preferred Networks, Inc. Chainer. Available online: https://chainer.org/ (accessed on 3 March 2021).
- Berkeley AI Research. Caffe. Available online: https://caffe.berkeleyvision.org/ (accessed on 3 March 2021).
- Microsoft. CNTK. Available online: https://docs.microsoft.com/en-us/cognitive-toolkit/ (accessed on 3 March 2021).
- The Apache Software Foundation (ASF). MXNet. Available online: https://mxnet.apache.org/versions/1.8.0/ (accessed on 3 March 2021).
- Konduit. DeepLearning4j. Available online: https://deeplearning4j.org/ (accessed on 3 March 2021).
- Chollet, F.; Rahman, F.; Zhu, Q.C.; Lee, T.; De Marmiesse, G.; Zabluda, O.; Pumperla, M.; Santana, E.; McColgan, T.; Snelgrove, X.; et al. Keras. Available online: https://keras.io/Keras (accessed on 3 March 2021).
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G. Pytorch. Available online: https://pytorch.org/ (accessed on 3 March 2021).
- Google. Tensor Flow. Available online: https://www.tensorflow.org/ (accessed on 3 March 2021).
- Hope, T.; Resheff, Y.S.; Lieder, I. Learning TensorFlow: A Guide to Building Deep Learning Systems, 1st ed; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; ISBN 9781491978511. [Google Scholar]
- Liang, S.D. Smart and Fast Data Processing for Deep Learning in Internet of Things: Less is More. IEEE Internet Things J. 2019, 6, 5981–5989. [Google Scholar] [CrossRef]
- Kok, I.; Corak, B.H.; Yavanoglu, U.; Ozdemir, S. Deep Learning based Delay and Bandwidth Efficient Data Transmission in IoT. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 2327–2333. [Google Scholar] [CrossRef]
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef] [Green Version]
- Sai Kiran, K.V.V.N.L.; Devisetty, R.N.K.; Kalyan, N.P.; Mukundini, K.; Karthi, R. Building a Intrusion Detection System for IoT Environment using Machine Learning Techniques. In Procedia Computer Science; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 171, pp. 2372–2379. [Google Scholar] [CrossRef]
- Susilo, B.; Riri, F.S. Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information 2020, 11, 279. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, Y.; Yang, Q. Deep Learning for IoT Intrusion Detection based on LSTMs-AE. In Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture; ACM: New York, NY, USA, 2020; pp. 64–68. [Google Scholar] [CrossRef]
- Ashfaq Khan, M.; Kim, Y. Deep Learning-Based Hybrid Intelligent Intrusion Detection System. Comput. Mater. Contin. 2021, 68, 671–687. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network Traffic Classifier with Convolutional and Recurrent Neural Networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. [Google Scholar] [CrossRef]
- Putchala, M.K. Deep Learning Approach for Intrusion Detection System (Ids) in the Internet of Things (Iot) Network Using Gated Recurrent Neural Networks (Gru). Master’s Thesis, Wright State University, Dayton, OH, USA, 2017; pp. 1188–1197. Available online: https://corescholar.libraries.wright.edu/etd_all/1848/ (accessed on 12 May 2021).
- Dawoud, A.; Sianaki, O.A.; Shahristani, S.; Raun, C. Internet of Things Intrusion Detection: A Deep Learning Approach. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December 2020; pp. 1516–1522. [Google Scholar] [CrossRef]
- Roy, B.; Cheung, H. A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-Directional Long Short-Term Memory Recurrent Neural Network. In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 2018, 82, 761–768. [Google Scholar] [CrossRef]
- Roopak, M.; Yun Tian, G.; Chambers, J. Deep Learning Models for Cyber Security in IoT Networks. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 452–457. [Google Scholar] [CrossRef]
- Thamilarasu, G.; Chawla, S. Towards deep-learning-driven intrusion detection for the internet of things. Sensors 2019, 19, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, S.; Amiri, F. An Efficient Hybrid Self-Learning Intrusion Detection System Based on Neural Networks. Int. J. Comput. Intell. Appl. 2019, 18, 1950001. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Maglaras, L. DeepCoin: A Novel Deep Learning and Blockchain-Based Energy Exchange Framework for Smart Grids. IEEE Trans. Eng. Manag. 2020, 67, 1285–1297. [Google Scholar] [CrossRef] [Green Version]
- Alsamiri, J.; Alsubhi, K. Internet of things cyber attacks detection using machine learning. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Aldhaheri, S.; Alghazzawi, D.; Cheng, L.; Alzahrani, B.; Al-Barakati, A. DeepDCA: Novel Network-Based Detection of IoT Attacks Using Artificial Immune System. Appl. Sci. 2020, 10, 1909. [Google Scholar] [CrossRef] [Green Version]
- Greensmith, J.; Aickelin, U.; Cayzer, S. Detecting Danger: The Dendritic Cell Algorithm. 2010. Available online: http://arxiv.org/abs/1006.5008 (accessed on 12 May 2021).
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. 2017. Available online: http://arxiv.org/abs/1706.02515 (accessed on 12 May 2021).
- Soe, Y.N.; Santosa, P.I.; Hartanto, R. DDoS Attack Detection Based on Simple ANN with SMOTE for IoT Environment. In Proceedings of the 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, 16–17 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Ge, M.; Fu, X.; Syed, N.; Baig, Z.; Teo, G.; Robles-Kelly, A. Deep Learning-Based Intrusion Detection for IoT Networks. In Proceedings of the 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC), Kyoto, Japan, 1–3 December 2019; pp. 256–25609. [Google Scholar] [CrossRef]
- AL-Hawawreh, M.; Moustafa, N.; Sitnikova, E. Identification of malicious activities in industrial internet of things based on deep learning models. J. Inf. Secur. Appl. 2018, 41, 1–11. [Google Scholar] [CrossRef]
- Tan, Z.; Jamdagni, A.; He, X.; Nanda, P.; Liu, R.P.; Hu, J. Detection of Denial-of-Service Attacks Based on Computer Vision Techniques. IEEE Trans. Comput. 2015, 64, 2519–2533. [Google Scholar] [CrossRef]
- Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-F.; Lin, C.-Y. A triangle area based nearest neighbors approach to intrusion detection. Pattern Recognit. 2010, 43, 222–229. [Google Scholar] [CrossRef]
- Moustafa, N.; Creech, G.; Slay, J. Big Data Analytics for Intrusion Detection System: Statistical Decision-Making Using Finite Dirichlet Mixture Models. In Data Analytics and Decision Support for Cybersecurity: Trends, Methodologies and Applications; Palomares Carrascosa, I., Kalutarage, H.K., Huang, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 127–156. ISBN 978-3-319-59439-2. [Google Scholar]
- Lopes, N.; Ribeiro, B. Deep Belief Networks (DBNs). In Machine Learning for Adaptive Many-Core Machines—A Practical Approach; Springer: Cham, Switzerland, 2015; pp. 155–186. ISBN 978-3-319-06938-8. [Google Scholar]
- Zhong, M.; Zhou, Y.; Chen, G. Sequential model based intrusion detection system for iot servers using deep learning methods. Sensors 2021, 21, 1113. [Google Scholar] [CrossRef]
- Ibitoye, O.; Shafiq, O.; Matrawy, A. Analyzing Adversarial Attacks against Deep Learning for Intrusion Detection in IoT Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Salman, O.; Elhajj, I.H.; Chehab, A.; Kayssi, A. A machine learning based framework for IoT device identification and abnormal traffic detection. Trans. Emerg. Telecommun. Technol. 2019. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, X.; Liu, J.; He, J.; Liu, G. Deep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion Status. J. Control Sci. Eng. 2018, 2018, 8676387. [Google Scholar] [CrossRef]
- Kim, M.; Kang, D.; Lee, N. Feature Extraction from Oriental Painting for Wellness Contents Recommendation Services. IEEE Access 2019, 7, 59263–59270. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, M.-J.; Lou, Y.-Y.; Shih, Y.-Y.; Chiang, M. Internet of Things Session Management Over LTE—Balancing Signal Load, Power, and Delay. IEEE Internet Things J. 2016, 3, 339–353. [Google Scholar] [CrossRef]
- Na, W.; Jang, S.; Lee, Y.; Park, L.; Dao, N.-N.; Cho, S. Frequency Resource Allocation and Interference Management in Mobile Edge Computing for an Internet of Things System. IEEE Internet Things J. 2019, 6, 4910–4920. [Google Scholar] [CrossRef]
- Muwonge, B.S.; Pei, T.; Otim, J.S.; Mayambala, F. A joint power, delay and rate optimization model for secondary users in cognitive radio sensor networks. Sensors 2020, 20, 4907. [Google Scholar] [CrossRef]
- Munaye, Y.Y.; Juang, R.-T.; Lin, H.-P.; Tarekegn, G.B.; Lin, D.-B. Deep Reinforcement Learning Based Resource Management in UAV-Assisted IoT Networks. Appl. Sci. 2021, 11, 2163. [Google Scholar] [CrossRef]
- Bashir, H.; Lee, S.; Kim, K.H. Resource allocation through logistic regression and multicriteria decision making method in IoT fog computing. Trans. Emerg. Telecommun. Technol. 2019. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, D.; Haixia, P.; Wu, W.; Quan, W.; Zhang, H.; Shen, X. Deep Reinforcement Learning Based Resource Management for DNN Inference in Industrial IoT. IEEE Trans. Veh. Technol. 2021, 70. [Google Scholar] [CrossRef]
- Deng, S.; Xiang, Z.; Zhao, P.; Taheri, J.; Gao, H.; Yin, J.; Zomaya, A.Y. Dynamical Resource Allocation in Edge for Trustable Internet-of-Things Systems: A Reinforcement Learning Method. IEEE Trans. Ind. Inform. 2020, 16, 6103–6113. [Google Scholar] [CrossRef]
- Gai, K.; Qiu, M. Optimal resource allocation using reinforcement learning for IoT content-centric services. Appl. Soft Comput. 2018, 70, 12–21. [Google Scholar] [CrossRef]
- Shah, H.A.; Zhao, L. Multiagent Deep-Reinforcement-Learning-Based Virtual Resource Allocation through Network Function Virtualization in Internet of Things. IEEE Internet Things J. 2021, 8, 3410–3421. [Google Scholar] [CrossRef]
- Ma, J.; Nagatsuma, T.; Kim, S.-J.; Hasegawa, M. A Machine-Learning-Based Channel Assignment Algorithm for IoT. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11–13 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Jiao, J.; Wu, S.; Zhang, Q. Deep Learning-Based Long-Term Power Allocation Scheme for NOMA Downlink System in S-IoT. IEEE Access 2019, 7, 86288–86296. [Google Scholar] [CrossRef]
- Lynggaard, P. Using Machine Learning for Adaptive Interference Suppression in Wireless Sensor Networks. IEEE Sens. J. 2018, 18, 8820–8826. [Google Scholar] [CrossRef]
- Zekić-Sušac, M.; Mitrović, S.; Has, A. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. Int. J. Inf. Manag. 2021, 58, 102074. [Google Scholar] [CrossRef]
- Machorro-Cano, I.; Alor-Hernández, G.; Paredes-Valverde, M.A.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L.; Olmedo-Aguirre, J.O. HEMS-IoT: A big data and machine learning-based smart home system for energy saving. Energies 2020, 13, 1097. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, S.W. An Efficient Deep Learning Framework for Intelligent Energy Management in IoT Networks. IEEE Internet Things J. 2021, 8, 3170–3179. [Google Scholar] [CrossRef]
- Xiong, X.; Zheng, K.; Lei, L.; Hou, L. Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE J. Sel. Areas Commun. 2020, 38, 1133–1146. [Google Scholar] [CrossRef]
- Elgendy, I.A.; Muthanna, A.; Hammoudeh, M.; Shaiba, H.; Unal, D.; Khayyat, M. Advanced Deep Learning for Resource Allocation and Security Aware Data Offloading in Industrial Mobile Edge Computing. Big Data 2021, 9, 265–278. [Google Scholar] [CrossRef] [PubMed]
Year | Review Paper Reference | QoS Enhancement Factor |
---|---|---|
2015 | No paper | |
2016 | No paper | |
2017 | No paper | |
2018 | D. Andročec and N. Vrček [27] | IoT security |
2019 | P. Fraga-Lamas et al. [28] | Obstacle detection and Collision Avoidance |
A. Lateef et al. [29] | Intrusion Detection | |
2020 | J. Asharf et al. | Intrusion Detection |
F. Hussain et al. [31] | Resource management | |
2021 | R. Al-amri et al. [32], M. A. Alsoufi et al. [33] | Anomaly Detection |
L. Aversano et al. [34] | IoT Security |
DL Framework | Description | Type |
---|---|---|
Chainer [88] | Dynamic, intuitive, and highly powerful tool that is based on python. Chainer is mainly deployed in machine recognition, speech recognition, and sentiment analysis. | Open source |
Caffe [89] | Supported by c, c++, python, and Matlab. It is popularly used for vision recognition. Caffe does not provide support for fine granularity network layers as compared to tensor flow or CNTK. Caffe’s biggest bragging right is its speed. However, sometimes it may require usage of low-level language, which many users do not like. Caffe is also open source. | Open source |
CNTK [90] | Known as the Microsoft cognitive tool. It supports C++ and python. It provides high scalability in terms of training a CNN and Generative Adversarial Networks (GAN) especially for images, speech of any text-based data. Mainly deployed in handwriting recognition and speech recognition. It is easy to train, and above all, open source. | Open source |
MXNet [91] | Provides the users the ability to code in a variety of different programming languages, including python, C++, R, Scala, Julia. Designed for high efficiency, high flexibility, and high productivity. Mainly used in Natural language processing and speech recognition, as well as forecasting. Mxnet is the certified DL reference library for Amazon. | Open Source |
DeepLearning4j [92] | Deep Learning for java (DL4J). Java is one of the most widely used programming languages; DL4J development was a respite for java programmers. DL4J provides parallel training though iterative modules and micro service architectures option coupled with distributed CPUs and GPUs. Binds together the whole java ecosystem to implement Deep Learning. Can be administered on top of hadoop and Apache spark. DL4J supports LSTM Networks, CNN, RNN, RBM, and DBN among other Deep Learning algorithms. Deployed for image recognition and fraud detection. | Open Source |
Keras [93] | Official high-level API of TensorFlow. Supports both convolutional and Recurrent Neural Networks. Keras can run on top of Theano, Tensorflow, or CNTK. Keras is modular, and building models is as simple as stacking layers and connecting graphs. Keras is open source, actively developed by contributors across the globe, and has a good amount of documentation. | Open source |
Pytorch [94] | PyTorch is an optimized tensor library for Deep Learning using GPUs and CPUs. Provides support for both python and c++. It is also an open source framework with a lot of support from the developers the world over. | Open source |
Tensorflow [95] | TensorFlow is an open source machine-learning platform that features a robust ecosystem of tools, libraries, and community resources that enable researchers to advance the state-of-the-art in Machine Learning and developers to quickly build and deploy Machine Learning powered apps [96]. | Open Source |
QoS Measurement Factor | Application Scenarios | Learning Model | Reference |
---|---|---|---|
Security and Privacy | Attack classification | SVM | [100] |
Decision Trees | [100] | ||
Naïve Bayes | [100] | ||
Random Forest | [101] | ||
Intrusion Detection | CNN | [99,101,104,118] | |
RNN | [104,107,112] | ||
Autoencoders | [119] | ||
Restricted Boltzmann machine | [106] | ||
Self-normalizing Neural Network (SNN) | [114,126] | ||
Multilayer perceptron (MLP) neural network | [101,109,111] | ||
LSTMs-AE | [102,103] | ||
LSTM | [109] | ||
Gated Recurrent Neural Networks | [105] | ||
Deep Neural Network (DNN) | [108] | ||
Random Forest | [127] | ||
Deep Belief Network (DBN) | [110] | ||
Defect Detection | SDPN-stacked-deep polynomial network | [127] | |
Resource Allocation and management | Task scheduling and resource distribution | Deep Reinforcement Learning | [136,137,138,145,146] |
DNN | [135] | ||
Power allocation and interference detection | Deep Neural Networks-DNN | [31] | |
Massive channel access | Linear Regression | [139] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimbugwe, N.; Pei, T.; Kyebambe, M.N. Application of Deep Learning for Quality of Service Enhancement in Internet of Things: A Review. Energies 2021, 14, 6384. https://doi.org/10.3390/en14196384
Kimbugwe N, Pei T, Kyebambe MN. Application of Deep Learning for Quality of Service Enhancement in Internet of Things: A Review. Energies. 2021; 14(19):6384. https://doi.org/10.3390/en14196384
Chicago/Turabian StyleKimbugwe, Nasser, Tingrui Pei, and Moses Ntanda Kyebambe. 2021. "Application of Deep Learning for Quality of Service Enhancement in Internet of Things: A Review" Energies 14, no. 19: 6384. https://doi.org/10.3390/en14196384
APA StyleKimbugwe, N., Pei, T., & Kyebambe, M. N. (2021). Application of Deep Learning for Quality of Service Enhancement in Internet of Things: A Review. Energies, 14(19), 6384. https://doi.org/10.3390/en14196384