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Abstract: The role of the Internet of Things (IoT) networks and systems in our daily life cannot be
underestimated. IoT is among the fastest evolving innovative technologies that are digitizing and
interconnecting many domains. Most life-critical and finance-critical systems are now IoT-based. It
is, therefore, paramount that the Quality of Service (QoS) of IoTs is guaranteed. Traditionally, IoTs
use heuristic, game theory approaches and optimization techniques for QoS guarantee. However,
these methods and approaches have challenges whenever the number of users and devices increases
or when multicellular situations are considered. Moreover, IoTs receive and generate huge amounts
of data that cannot be effectively handled by the traditional methods for QoS assurance, especially in
extracting useful features from this data. Deep Learning (DL) approaches have been suggested as a
potential candidate in solving and handling the above-mentioned challenges in order to enhance and
guarantee QoS in IoT. In this paper, we provide an extensive review of how DL techniques have been
applied to enhance QoS in IoT. From the papers reviewed, we note that QoS in IoT-based systems is
breached when the security and privacy of the systems are compromised or when the IoT resources
are not properly managed. Therefore, this paper aims at finding out how Deep Learning has been
applied to enhance QoS in IoT by preventing security and privacy breaches of the IoT-based systems
and ensuring the proper and efficient allocation and management of IoT resources. We identify
Deep Learning models and technologies described in state-of-the-art research and review papers and
identify those that are most used in handling IoT QoS issues. We provide a detailed explanation of
QoS in IoT and an overview of commonly used DL-based algorithms in enhancing QoS. Then, we
provide a comprehensive discussion of how various DL techniques have been applied for enhancing
QoS. We conclude the paper by highlighting the emerging areas of research around Deep Learning
and its applicability in IoT QoS enhancement, future trends, and the associated challenges in the
application of Deep Learning for QoS in IoT.

Keywords: internet of things; quality of service; machine learning; deep learning

1. Introduction

Computers, smartphones, systems, wireless sensors, actuators, and virtually every
single automated device are connected together through the internet, creating the “Internet
of Things (IoT)”, as shown in Figure 1. The communication can be either through long-
range mobile networks, such as WiMAX, GSM, GRPS, and cellular networks, such as LTE,
3G, 4G, and 5G, or through short-range technologies, such as Bluetooth, Wi-Fi, and ZigBee.
Because of the massive usage of IoT networks, applications, and services in all aspects of
our daily life, guaranteeing high levels of Quality of Service is very critical.

Our daily life is massively dependent on the IoT in many aspects. Almost every
device currently has internet capabilities, and it is estimated that by 2040 the number
of connected devices on the internet will exceed 75 billion, generating over 100 trillion
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GB of data [1]. With the huge amounts of data, IoT has a great potential for the future
smart world. However, the deployment of IoT on a considerably larger scale comes
with many challenges, which include security and privacy challenges, resource allocation,
and management challenges, all of which directly impact the Quality of Service (QoS).
Because many of our critical daily life applications depend on IoT, it is important that
the QoS of IoT networks and applications is guaranteed. Data-driven Machine Learning
(ML) and Deep Learning (DL) methods can exploit IoT data to enhance the QoS of the
automated IoT services and applications. As a way of ensuring high QoS, IoT applications
sometimes require real-time responses or actions after processing data [1]. For example,
object recognition and identification by security cameras require very little detection latency
to capture and respond to specific events. This is becoming increasingly impossible using
traditional means due to gigantic multimedia data generated. DL techniques have the
capability of extracting meaningful information from this multimedia data [2]; and for this
reason, Deep Learning models have been applied in different domains to revolutionize
Information Technology (IT). As such, researchers in the IoT domain started exploring the
application of DL to transform various aspects of IoT [3–5]. However, it is not yet clear
how DL has been applied to enhance the QoS of various IoT-based systems and services.
The review aims at addressing these gaps by providing researchers with; an overview of
commonly used DL techniques that have been applied for enhancing QoS, future trends,
and the associated challenges in the application of Deep Learning of QoS in IoT.

Figure 1. Internet of Things framework.

1.1. IoT Applications

Smart home: Home appliances, such as washing machines, dishwashers, lights,
fridges, televisions, and radios, through a network, especially the internet, can be controlled
remotely by authorized owners or users [6]. This offers better monitoring and management,
hence saving resources, such as power. Control and monitoring are done using mobile
phones, tablets, or computers. With the help of smart technologies, smart automatic doors,
and smart human recognition sensors have also been incorporated as elements of smart
homes to enhance home security [7].

Smart health: IoT has transformed health care services, from the traditional face-
to-face consultations to telemedicine [8]. Wearable smart sensors and implants [9] that
collect an array of health-related information, such as heartbeat rates, blood pressure,
oxygen levels, blood sugar level, and body temperature [10], have been developed. Human
activity recognition [11–20] technologies for health purposes have also been enhanced by
the advancement of IoT and Deep Learning technologies.

Smart manufacturing: Smart manufacturing involves the application of innovative
data processing and analytic techniques to improve decision making and performance
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within manufacturing systems [5,21]. Using IoT, Machine Learning, and Deep Learning,
many manufacturing companies are applying more intelligent techniques in the manu-
facturing process [22]. Manufacturing enterprise systems are now able to be self-sensing,
self-adaptive, and self-deciding. Self-sensing, in this case, means that the systems can
obtain data from the environment by themselves and carry out processing depending on
the obtained data. Self-adaptive means systems have the ability to adjust their run-time be-
havior in order to realize system goals. During irregular conditions, such as modifications
in the settings of the system, system errors, or change of requirements, the systems are able
to trigger self-adaptive functions in order for the system to continue being operational [23].

Smart Transportation and Smart cities: Smart transportation is a general term that
refers to deciding the best route in terms of time and distance, optimization of park-
ing space, streetlights, avoidance of accidents, and road anomalies [10,24]. Sensors are
embedded into the vehicles, cameras, and other devices installed in the city to collect
environmental information that is processed to make informed decisions. IoT and Deep
Learning techniques have also been employed to ensure air quality in cities [25]. Insurance
companies nowadays place cameras and sensors in insured vehicles to lower insurance
compensation rates [26]. In this case, they are able to monitor and recognize driving styles
of different drivers and have an informed assessment in case of an accident using GPS data.

The advance of the DL for IoT has enabled applications to become smarter. When the
amount of data being collected increases, traditional Machine Learning techniques, which
are mainly supervised, are not the best options. DL techniques come into play to extract
meaningful features from unlabeled data for intelligent decision making, which enhances
the capabilities of IoT applications, thus ensuring high QoS.

1.2. Problem Statement

Most critical systems and applications nowadays are IoT-based. This means that any
failure or compromise on the Quality of Service of these systems can be detrimental. As
such, ensuring the high Quality of Service of these IoT-based services should be given high
priority. Deep Learning, due to its numerous advantages as a data-driven technique, has
been applied to revolutionize various sectors in the IT world. However, it is not clear how
DL-based approaches have been applied to ensure and guarantee high Quality of Service
in IoT. It is also not clear which Deep Learning models best suit various aspects of QoS in
IoT systems. In this review paper, we investigate how DL models have been applied to
enhance QoS in IoT-based systems and why some DL models are applied in particular QoS
aspects but not applied in others.

1.3. Related Previous Review Papers

As more and more systems become IoT-based, huge amounts of data are being gener-
ated, which requires advanced data-driven techniques for quick processing. Deep Learning,
due to its capabilities in extracting relevant features from unlabeled data, is more appealing
to be applied for huge IoT-generated datasets than traditional data-driven Machine Learn-
ing models that can only be applied to labeled data. We give a summary of the related
literature reviews with an emphasis on papers published between 2015 and 2021 (see
Table 1). We chose this period because it gives state-of-the-art research in the application of
Deep Learning to IoTs. From these literature reviews, we note that QoS in IoT is mainly
compromised when: (1) The security and privacy of IoT-based systems are breached, and
(2) When IoT resources are not properly and efficiently managed. Most related review
articles are, therefore, about Deep Learning for security and privacy in IoT (mainly in-
trusion detection, anomaly detections, and defect detections) and resource allocation and
management (mainly resource scheduling, channel access, energy consumption, and man-
agement). Our search did not return any unequivocal review paper that had investigated
the application of DL to security and privacy or resource allocation and management in
IoTs for the years 2015–2017.
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In 2018, D. Andročec and N. Vrček [27] carried out a review on the applicability of
ML and DL models to IoT security. The note in their finding that ML and Deep Learning
have not been widely applied for IoT security, and they identified Support Vector Machines
(SVM) as the most used ML technique for IoT security. However, SVM works perfectly with
labeled data, which is hard to find currently due to the huge amounts of data generated
by the IoT. The paper does not consider the application of DL to resource allocation
and management.

In 2019, P. Fraga-Lamas et al. [28] reviewed Collision Avoidance and Obstacle Detec-
tion in IoT DL-based Unmanned Aerial Vehicles (UAV) systems. By avoiding collisions
and having the ability to detect obstacles, QoS is improved in IoT-based UAV systems.
In this review paper, DL techniques for collision avoidance and the detection of obsta-
cles autonomously are presented together with various datasets for IoT DL-UAV systems.
Lateef et al. [29], carried out a survey of DL-based Intrusion Detection Systems (IDS) for
IoT-based systems. They note that unsupervised DL models, such as AutoEncoders (AE),
are more suitable for implementing IDS, but there is still a challenge of lack of training data.

In 2020, J. Asharf et al. [30] provided a survey of how ML and DL have been applied
to solve intrusion detection in IoT-based systems. They also provide an overview of
the available datasets for intrusion detection research. One of the challenges they note
is “resource constraints issue with IoT devices limits the use of DL/ML algorithms”.
This suggests that there is a need to develop resource allocation and management DL
techniques, which is one of the aims of this review paper. F. Hussain et al. [31] carried
out an extensive review about the application of Machine Learning and Deep Learning to
resource management in IoT networks. In their future work suggestion, they propose the
development of DL models that are more reliable for mission-critical IoT systems. This calls
for the consideration of security and privacy as major factors in achieving this. However,
their review does not provide how DL models can be used to enhance security.

Table 1. Previous review papers about the use of DL-based models for QoS enhancement in IoT.

Year Review Paper Reference QoS Enhancement Factor

2015 No paper

2016 No paper

2017 No paper

2018 D. Andročec and N. Vrček [27] IoT security

2019
P. Fraga-Lamas et al. [28] Obstacle detection and

Collision Avoidance

A. Lateef et al. [29] Intrusion Detection

2020
J. Asharf et al. Intrusion Detection

F. Hussain et al. [31] Resource management

2021
R. Al-amri et al. [32], M. A. Alsoufi et al. [33] Anomaly Detection

L. Aversano et al. [34] IoT Security

In 2021, R. Al-amri et al. [32] provide a review of anomaly detection within IoT data
and systems using ML and DL. They note that DL models are more suited to anomaly
detection for IoT data streams than ML models because DL techniques have the capability
of automatically extracting features from this data. They suggest future research on how to
handle challenges that hinder the development of DL models for IoT anomaly detection.
Some of the stated challenges include data streams and features that keep evolving, the
complexity of data, which is usually noisy, visualization of data, and windowing problems.
More so, Alsoufi et al. [33] also investigated the application of Deep Learning in IoT
Intrusion Detection Systems based on anomaly detection. L. Aversano et al. [34] carried
out a systematic review of how DL has been applied to security in IoT. Their review only
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concentrates on the security aspect of IoT QoS, leaving out the resource allocation and
management aspects.

Based on the summary in Table 1, we conclude that all the related previous review pa-
pers focus on specific IoT QoS enhancement factors, including IoT security, obstacle detection
and collision avoidance, intrusion detection, anomaly detection, and resource management.
Our review is the first to explicitly cover the application of DL for QoS enhancement.

1.4. Purpose of This Review

Although the earlier literature research is helpful to review and describe the current
application state of DL-based models, specifically for QoS in the Internet of Things, there
are research gaps that we hope to address in this paper.

(1) Based on the previous review papers, there is a lack of papers that explicitly focus
on the application of Deep Learning for QoS guarantee in IoTs. Yet, DL has been
applied in many data-driven domains, including IoT. This review paper’s objective is
to address this gap.

(2) Various research papers recommend future research for the application of DL-based
techniques for intrusion detection [29,30] and resource allocation and management [31],
which are the main factors that determine the QoS of IoT networks and systems.
Therefore, this review takes up this recommendation to provide researchers with the
application of DL to QoS enhancement in IoTs.

(3) On top of providing the state-of-art, this research also discusses challenges hindering
the application of DL techniques for QoS enhancement in IoTs. With challenges
well-identified, future researchers about this topic can easily know where to focus.

In summary, the purpose of this review paper is four-fold: (1) To provide a review of
the application of Deep Learning-based techniques in IoT networks and systems to enhance
the QoS of such systems, (2) Identify Deep Learning models that have been applied in
QoS enhancement in IoTs, (3) Elaborate on the reasons behind the use of DL techniques
for QoS enhancement of IoT-based applications, and (4) Identify and discuss challenges in
applying DL models for QoS enhancement in IoT-based services. This paper addresses the
antecedently declared gaps in the analysis found over the assorted literature review papers
revealed in Table 1.

1.5. Research Questions

The following research questions were followed in this research.

1. How are Deep Learning techniques being applied for QoS enhancement in IoTs?
2. Which Deep Learning models are being applied in various aspects of QoS enhance-

ment in IoT-based applications, and why those models in particular?
3. Why have researchers opted for the use of Deep Learning techniques for QoS en-

hancement compared to the existing QoS enhancement approaches?
4. What challenges are faced by developers when applying DL models for QoS enhance-

ment for IoTs?

1.6. Research Methodology

In this paper, we used the cataloging research method [35] to accomplish our review.
We first carried out a search of the previous review papers published from 2015 to 2021.
We chose this period because it represents the current state-of-the-art research carried out
in the area of DL and QoS in IoTs. A summary of the previous review papers is presented
in Section 1.3, and the respective QoS measurement factors addressed in the review papers
are summarized in Table 1.

The second step was to search for research papers within the same period that investi-
gated the application of Deep Learning techniques towards the enhancement of QoS in IoTs.
We considered papers that fall into two categories: (1) Research papers that investigated the
application of Deep Learning to improve the security and privacy in IoTs, and (2) Papers
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that investigated the application of Deep Learning for resource allocation and management
in IoTs. We chose papers that belong to these two categories because, for the QoS of any
IoT system to be compromised, it means that either the security of the IoT system has been
breached or the IoT system’s resources have been misallocated and or mismanaged.

Papers were searched for online from websites, including: https://ieeexplore.ieee.org
(accessed on 30 July 2021), https://mdpi.com (last accessed on 20 September 2021),
https://dl.acm.org/ (access on 30 July 2021), https://www.sciencedirect.com/ (accessed
on 30 July 2021), https://www.springer.com/ (accessed on 30 July 2021), and https://
scholar.google.com/ (accessed on 30 July 2021). The research articles were filtered according
to their content. We only considered papers that investigated the application of at least
one ML or DL technique towards the enhancement of IoT security and privacy or resource
management for a reason already stated above.

Finally, we analyzed the selected papers to find out the DL application trends in IoT.
We based our research questions in Section 1.5 on this analysis.

1.7. Contributions of This Review

The key contributions of this paper are listed below.

(a) We review Quality of Service in the Internet of Things and various metrics of QoS.
(b) We review the challenges of enhancing QoS using traditional methods (methods not

related to DL) and show how DL techniques can be used to solve these challenges
(c) We review how the various DL algorithms have been applied in enhancing QoS in IoT-

based systems. We identify the research gaps for the application of DL techniques for
QoS in IoT. More of the observations and contributions are explained in the discussion,
Section 4.

The rest of the paper is organized as follows. In Section 2, we give an overview of the
Quality of Service in relation to IoT and Deep Learning algorithms in general, with a bias
on those mostly applied to enhance QoS in IoT. In Section 3, we provide an extensive review
of how DL-based techniques have been applied in enhancing QoS. Section 4 provides the
discussion and description of the challenges of using DL for QoS enhancement in IoTs, and
in Section 5, we conclude the review.

2. An Overview of Quality of Service and Deep Learning Algorithms for Internet
of Things
2.1. Quality of Service in Internet of Things

QoS is the measurement of the general performance of any service, mainly the per-
formance seen by the users of the service [36–38]. Owing to the widespread usage and
application of IoT services in our daily life situations, the cost of IoT devices should be
low without compromising the level of QoS. If IoT applications are to provide high-quality
services to the users, latency and reliability must be guaranteed by these applications [39].

QoS assurance in IoT networks and systems requires clear support at different lev-
els. At the network layer, for example, specific technical communication principles are
needed to guarantee systematics and reliable distribution of data. For the application layer,
dedicated support from application protocols and the development of innovative resource
allocation procedures are needed to manage synchronized access and implementation of
proper management of resources.

QoS aids in managing the system proficiencies and its resources in delivering IoT
services. QoS metrics are the benchmarks upon which service providers can have perfect
perceptibility of their services’ performance and how best clients can use these services.
QoS metrics aid customers in identifying the best IoT service for their applications and
how best they can optimize the service quality. Anything that can negatively influence
the performance of an IoT-based service affects its QoS [40]. According to M. Singh and G.
Baranwal [37], QoS in IoT can be divided into three categories: (1) QoS of communication,
(2) QoS of things, and (3) QoS of computing.

https://ieeexplore.ieee.org
https://mdpi.com
https://dl.acm.org/
https://dl.acm.org/
https://www.sciencedirect.com/
https://www.springer.com/
https://scholar.google.com/
https://scholar.google.com/
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2.1.1. QoS of Communication

Transporting real-time data within IoT networks and applications is one of the fun-
damental determinants of the Quality of Service of the IoT network. Therefore, to meet
the needs of various applications of IoT, we must consider adding value to it in order to
improve the quality of the network applications and services. Anything that compromises
the efficiency of an IoT service or application compromises the Quality of Service offered by
that application. QoS of communication can be compromised by many factors, which may
include bandwidth problems, jitter, and cyber-attacks. Bandwidth is the measure of the
quantity of data that goes through a network in a particular period. Bandwidth determines
the throughput and efficiency of the network [41].

To avoid cyber-attacks, which would compromise the QoS of communication, we
need to pay close attention to the security and privacy of the network. Technologies, such
as Virtual Private Networks (VPN), Transport Layer Security (TLS), Onion Routing, and
Private Information Retrieval (PIR), have been invented to handle the privacy issue. Of
all the known QoS of Communication challenges, security and privacy have the most
significant influence on the adoption of IoT [42]. Denial of Service (DoS) is one of the most
catastrophic attacks against IoT [43]. IoT is slightly different from traditional computers
in that most IoT devices, such as sensors, are designed for deployment on a large scale,
which makes them more vulnerable to security threats. IoT is increasingly becoming
a target for cybercriminals. Most IoT architectures have three layers, i.e., the network
layer, the application layer, and the perception layer [44,45]. QoS of things corresponds to
the perception layer, QoS of computing corresponds to the application layer, and QoS of
communication corresponds to the network layer. The architectural representation of these
IoT layers is shown in Figure 2.

Figure 2. A Three-Layer IoT Architecture.

2.1.2. QoS of Things

Individual “things” in IoT networks must have quality parameters that can guarantee
the Quality of Service of the network. Sensors, as one major element of IoT networks, for
example, must be of low weight, reliable, and with low power consumption.

2.1.3. QoS of Computing

IoT networks generate huge amounts of data per unit of time. It is, therefore, important
that the computing components of IoT networks be of high quality. To enhance the QoS
and efficiency of computing, cloud computing was invented and is being used in IoT
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mainly because the applications produce an enormous volume of data that may not be
easy to process within the network [46]. Computations can also be executed at fog or edge
to lower the tremendous pressure put on the network [47]. Thus, edge computing shifts
the data processing from the cloud to the edge nodes, which improves the QoS for IoT
applications with low-latency requirements [48]. QoS of computing in IoT must ensure
reliability, scalability, availability, privacy, and security, as well as appropriate management
of the available resources.

The perception layer is also known as the “sensor” layer, and its main function is to
detect and collect data, which is transmitted, to the network layer. The routing of data and
transmission to the IoT applications and devices is then handled by the network layer over
the internet.

To enhance QoS in IoTs, we must ensure that mainly two factors are well managed:
(1) Ensure network security in order to guarantee privacy and security of the network
resources, and (2) Ensure that network resources are well-managed, i.e., proper resource
allocation and management. A QoS breach is mainly because of the mismanagement of
these two factors. Either security is compromised, or resources are not well managed or
allocated. This paper focuses on how Deep Learning techniques have been applied to
guarantee QoS in IoT by handling security issues and resource allocation and management
challenges of the network.

2.2. Deep Learning Algorithms

With the advent of big data technologies, various IoT-based services have emerged
to make use of this data. Smart manufacturing [5,21,22,49,50], smart cities [24,51], smart
homes [6,7], smart agriculture [52–54], and smart health [8,17,55–57], among others, have
undergone tremendous development with the aid of deep-learning techniques. IoT based-
services today are faced with an unprecedented surge in generated sensory data, which
comes in different formats, structures, and semantics. From this massive amount of sensory
data, DL has attracted wide attention as a revolution in computational automation and
intelligence. By mining knowledge from different sources of data, DL technology is vital in
the extraction of features from data automatically in order to identify various patterns and
make informed decisions.

Deep Learning can handle huge volumes of data because DL techniques and algo-
rithms are more scalable with increasing amounts of data compared to traditional Machine
Learning algorithms, and hence are more suited to model training. On top of this, Deep
Learning techniques can automatically extract hidden features and relevant correlations
from unlabeled input data. Because IoT data is generated from different sources, the data
tends to be of various patterns and usually in an unlabeled form. Deep Learning can
exploit this unlabeled data in an unsupervised way to learn useful patterns.

IoT-based services have become an integral part of our daily lives, including very
critical systems, such as airplane environmental detection systems [58] and life support
systems [59]. This means that the Quality of Service (QoS) of such systems is also critical.
Anything that compromises the Quality of Service must be approached with equal mea-
sures. Numerous DL algorithms have been developed, and the relevant research topics
are increasing at a very rapid pace. To smoothen the study of smart services in IoT, sev-
eral DL algorithms have been proposed, including Restricted Boltzmann Machine (RBM),
Convolutional Neural Network (CNN), Autoencoder, and Recurrent Neural Networks
(RNN) [60].

2.2.1. Convolutional Neural Network (CNN)

CNN, first proposed by G. E. Hinton et al. [61] for two-dimensional image processing,
is a multilayer artificial neural network that uses a forward-feed algorithm and backpropa-
gation [62]. Similar to other neural networks, CNN operates in the same way the brain’s
visual cortex recognizes and processes things and learns to classify them [63]. CNN has also
been applied to speech recognition [64–66] and natural language processing (NLP) [67,68].
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CNN networks contain three layers, i.e., input layer, hidden layers, and output layer. The
hidden layers also consist of pooling layers, convolution layers, normalization layers,
and other connected layers. When applied to images for example, the convolution layer
transforms the image into convolution processes while the pooling layer combines the
adjacent pixels of an image into one pixel. The convolutional layer creates the feature map,
which is a list of new features, by extracting some special and unique features from the
initial data. This representative value is generally the average or the largest value of the
pixels being selected. To conduct operations in the pooling layer, the criterion of selecting
the pixels and how to set the representation value must be decided. In Figure 3 for example,
the adjacent pixels are selected from the 2 × 2 square matrix. The convolution layer is the
fundamental module of CNNs much as each specific problem requires different structures
of CNNs. Given the input feature map χ, and a filter matrix W, then the output of the input
feature map Y is given by:

Y = ∑ Wij ∗ χ+ bi (1)

where b is the bias parameter and i represents the ith row, j represents the jth column of the
input matrix. The convolution layer output is in many cases run through a function known
as the activation function, which is generally non-linear. An activation function can be a
sigmoid function, a tanh function or reLU function as listed as follows:

Sigmoid activation f unction : f = 1
1+e−x

ReLU activation f unction : f = max(0, x)
tanhactivation f unction : f = ex−e−x

ex+e−x

(2)

where x is the input value e and an exponent constant.

Figure 3. Illustration of the two pooling methods: Mean and Max pooling.

2.2.2. Restricted Boltzmann Machine

Restricted Boltzmann Machines (RBMs) consist of two layers; the visible and hidden
layers. Unlike other neural networks, neurons within a single layer in RBM have no
connections with each and every other neuron, as illustrated in Figure 4. RBMs are
Artificial Neural Networks that belong to an Energy-Based Model [69] where the data is
input through the visible layers, and unique features are extracted by the hidden layers.
RBM models are probabilistic in nature. This means that instead of assigning a discrete
value, RBM models assign probabilities. For dimensionality reduction and data encoding,
hidden layers provide parameters that are considered to be features that define the input
data. ML techniques, such as Naïve Bayes, logistic regression, and Support Vector Machine,
are then applied for data classification. Since RBM automatically extracts the required
features from data, it avoids the local minimum value, and it has received a growing
number of considerations. RBM is always in a particular state. That state denotes the



Energies 2021, 14, 6384 10 of 27

values attached to each neuron within the input (layer-v) plus inner layers (hidden layers,
h). The possibility (P) for a given h and v to be detected is defined by the equation below.

P(v, h) =
1

W
e−E(v,h)

W = ∑
v,h

e−E(v,h)

Figure 4. Restricted Boltzmann Machines Architecture.

W defines partition function for the hidden and visible neuron values and E is the
RMB energy function.

The energy function for RBMs is defined as

E(v, h) = −∑
i

aivi −∑
j

bjhj −∑
i,j

vihiwij (3)

where v represents input layers, h represents hidden layers, and a and b are the bias values.

2.2.3. Autoencoders (AE)

An autoencoder is a neural network mainly used in unsupervised learning to effi-
ciently learn codings from unlabeled data. Through encoding and decoding techniques,
AE can regenerate the original data input. An AE neural network uses a backpropagation
algorithm [70], by equating the output values to the inputs, that is Y(i) = X(i) [71]. Ac-
cording to J. Jordan [72], an ideal autoencoder model should be sensitive to the original
inputs enough to precisely regenerate a reconstruction and insensitive to the inputs so that
the designed model does not merely overfit or simply memorize the data. The autoencoder
can compress the input and then reconstruct the output according to the compressed
representation [73]. Autoencoders are data-specific, meaning that they can only be applied
to data similar to the training data, and their output is not always the same as the input. For
example, if the model is trained using handwritten digits, it is not appropriate to apply it to
landscape photos. Autoencoder techniques have been applied in various domains. For ex-
ample, in civil engineering for bearing defect detections [74], health-related human activity
recognition [75,76], medical imaging [77,78], recommendation systems [79–81], and many
other domains. Figure 5 shows the components of an autoencoder algorithm. Autoencoder
can be combined with LSTM algorithm to create LSTMAE as shown in Figure 6.



Energies 2021, 14, 6384 11 of 27

Figure 5. Illustration of components of an autoencoder.

Figure 6. An architectural view of the LSMTAE algorithm.

2.2.4. Recurrent Neural Networks (RNN)

RNNs are a type of NN where inputs for the succeeding layers are generated from
the preceding layers while having hidden states [82]. An RNN is very suitable for feature
learning and extraction from sequential data [83] because of the connections between the
preceding and the succeeding data items. RNNs recall the past, and their decisions are
affected by whatever they learned from the past. Much as rudimentary feed-forward
networks also recall things, they only recall things they learn while training. Even though
RNNs learn in a similar way during the learning process, they can evoke states learned
from previous inputs when constructing the output for the next stage. RNNs are capable
of taking one or more input vectors and generating more output vectors, and unlike NN,
where outputs are only determined by the weights of input vectors, they also use hidden
state vectors, which show the context of the previous data [15,84]. The hidden state is
calculated at various time steps using an updated rule. Consider a sequential input vector;
we may calculate the current hidden state in two parts using the same sigmoid or tanh
activation function. The first component is obtained using the original input, while the
second is based on the preceding time step’s hidden state. A softmax function can then be
used to extract the desired final output from the up-to-date hidden state. Over raw input
data, pooling methods, such as max pooling and mean pooling, are used to find the hidden
state. The largest value of one vector in the feature map is chosen as the most significant
feature by max pooling. Mean pooling takes the mean value of one vector and uses it as
the vector’s pooling value. In this scenario, a vector can represent a patch of pixel values
on a picture being investigated. Max pooling is a great way to get sparse features.

2.2.5. Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning techniques do not require huge training data sets
but rather learn by interacting with the environment. It is similar to how humans learn
from their actions. Deep Q-learning is one of the most prevalent Reinforcement Learning
techniques. It combines Deep Neural Networks (DNN) and Reinforcement Learning (RL),
with DNN serving as a learning agent for RL. In this scenario, DNN uses interactions
with environmental data to gradually approximate the best policy function, obviating the
requirement for extensive training data. Because RL alone cannot handle circumstances
where the number of system states and data is very large, and the environment is not
stationary, DNN is integrated with RL. In IoT networks, IoT devices can use Reinforcement
Learning to make judgments based on inference under dynamic and uncertain network
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conditions. For example, RL has been utilized in cognitive radio networks during spectrum
sharing for channel access between the primary users and secondary users [85–87].

2.2.6. Generative Adversarial Network

Generative Adversarial Networks (GANs) are methods of generative modeling using
Deep Learning methods. Generative modeling is a form of the unsupervised learning
task, which involves automatic discovery and learning the patterns in input data in a
way that the model can be used to plausibly produce new examples “resembling” the
original dataset. GANs are an ingenious way of training DL models by turning the problem
being investigated into a supervised learning problem that has two other models: (1) A
model that is trained to generate new examples (the generator model), and (2) A mode that
attempts to classify data as either real or just generated fake data (discriminator model).

2.2.7. Deep Learning Frameworks

The implementation of the above Deep Learning algorithms within IoT-based services
is accomplished using Deep Learning frameworks that support various programming
languages. The most notable examples of Deep Learning frameworks are described in
Table 2.

Table 2. Deep Learning frameworks.

DL Framework Description Type

Chainer [88] Dynamic, intuitive, and highly powerful tool that is based on python. Chainer is
mainly deployed in machine recognition, speech recognition, and sentiment analysis. Open source

Caffe [89]

Supported by c, c++, python, and Matlab. It is popularly used for vision recognition.
Caffe does not provide support for fine granularity network layers as compared to
tensor flow or CNTK. Caffe’s biggest bragging right is its speed. However, sometimes
it may require usage of low-level language, which many users do not like. Caffe is
also open source.

Open source

CNTK [90]

Known as the Microsoft cognitive tool. It supports C++ and python. It provides high
scalability in terms of training a CNN and Generative Adversarial Networks (GAN)
especially for images, speech of any text-based data. Mainly deployed in handwriting
recognition and speech recognition. It is easy to train, and above all, open source.

Open source

MXNet [91]

Provides the users the ability to code in a variety of different programming languages,
including python, C++, R, Scala, Julia. Designed for high efficiency, high flexibility,
and high productivity. Mainly used in Natural language processing and speech
recognition, as well as forecasting. Mxnet is the certified DL reference library
for Amazon.

Open Source

DeepLearning4j [92]

Deep Learning for java (DL4J). Java is one of the most widely used programming
languages; DL4J development was a respite for java programmers. DL4J provides
parallel training though iterative modules and micro service architectures option
coupled with distributed CPUs and GPUs. Binds together the whole java ecosystem to
implement Deep Learning. Can be administered on top of hadoop and Apache spark.
DL4J supports LSTM Networks, CNN, RNN, RBM, and DBN among other Deep
Learning algorithms. Deployed for image recognition and fraud detection.

Open Source

Keras [93]

Official high-level API of TensorFlow. Supports both convolutional and Recurrent
Neural Networks. Keras can run on top of Theano, Tensorflow, or CNTK. Keras is
modular, and building models is as simple as stacking layers and connecting graphs.
Keras is open source, actively developed by contributors across the globe, and has a
good amount of documentation.

Open source

Pytorch [94]
PyTorch is an optimized tensor library for Deep Learning using GPUs and CPUs.
Provides support for both python and c++. It is also an open source framework with a
lot of support from the developers the world over.

Open source

Tensorflow [95]

TensorFlow is an open source machine-learning platform that features a robust
ecosystem of tools, libraries, and community resources that enable researchers to
advance the state-of-the-art in Machine Learning and developers to quickly build and
deploy Machine Learning powered apps [96].

Open Source
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3. DL Application to QoS Guarantee in IoT

DL, as a trending technological method, has been researched in various types of
applications in IoT recently. In this section, we review the application of DL in ensuring
that the Quality of Service of the IoT networks and applications is ensured.

3.1. Data Processing, Analytics and Transmission

Some IoT networks transfer the data to the cloud for analysis. However, this is
ineffective due to high communication costs and QoS requirements. In addition, when
the data is analyzed within the IoT network, there are increased bandwidth requirements
and communication delays. DL-based prediction techniques play an important role in
predicting the bandwidth that may be required.

Liang [97] proposed a data processing method for Deep Learning in IoT by applying
Singular-Value Decomposition(SVD)-QR for the preprocessing of Deep Learning data and
limited memory subspace optimization for SVD-QR algorithm to speed up data processing.

Liang outlines two possible data processing schemes for Deep Learning: (1) Data is
reduced via keeping a subset, and its original features are kept through down-sampling,
and (2) Data is transformed, and some of the original features are lost, e.g., through
compression. The purpose of these two methods is to speed up data processing in IoT for
reliable QoS.

The authors in [98] proposed a Deep Learning-based approach for IoT data transfer
that is both latency and bandwidth-efficient. They suggest a solution for the missing data
IoT data problem by enabling Deep Learning models on resource-restricted IoT devices.
In many cases, IoT devices do not accurately collect data due to various reasons, such
as malfunctioning within the devices, unreliable network communication, and external
attacks. Subsequently, missing data may lead to wrong decision-making and impact the
QoS, especially for time-intensive and emergency applications. To test the DL models,
they used data from the Intel Berkeley Research Lab. They [98] used a Long Short Term
Memory (LSTM) model for model formulation and TensorFlow plus Keras frameworks to
implement the model. Their results demonstrated that Deep Learning-based techniques
can greatly improve network delay and bandwidth requirements, hence an improved QoS
for IoTs.

3.2. Deep Learning for IoT Security

Because IoT-based solutions are utilized for control and communication in critical
infrastructure, these systems must be safeguarded from vulnerabilities in order to ensure
the Quality of Service metric of availability [3].

3.2.1. Intrusion Detection in IoT

IoT networks are susceptible to attacks and detecting the adversaries’ actions as early
as possible and can help safeguard data from malicious damages, which guarantees Quality
of Service of the network. Because of its high-level feature extraction capacity, the adoption
of DL for attack and intrusion detection in cyberspace and IoT networks could be a robust
mechanism against tiny mutations or innovative attacks. When malicious attacks on IoT
networks are not recognized in a timely manner, the availability of important systems for
end-users is harmed, which leads to an increase in data breaches and identity theft. In such
a scenario, the Quality of Service is drastically compromised.

Koroniotis et al. [99] created the BoT-IoT dataset, and it was used to evaluate RNN
and LSTM. They used feature normalization to scale the data within the range 0–1 and
estimated the correlation coefficient within the features and joint entropy of the dataset for
feature selection. They evaluated the performance of their model based on Machine and
Deep Learning algorithms using the botnet-IoT dataset compared with popular datasets.
The results show an improved intrusion detection using Deep Learning compared to
traditional methods.
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In [100], the authors employ Machine Learning classifiers; SVM, Adaboost, decision
trees, and Naïve Bayes to classify data into normal and attack classes. In their work,
they used Node MCU-ESP8266, DHT11-sensor, and a wireless router to simulate an IoT
environment. They then built an adversary scheme with a computer, which implements
poisoning and sniffing attacks on the IoT environment. The steps they followed while
building their system are as follows: Develop a testbed to mimic an IoT-based environment
→ Develop an attack-like system to obtain attack data→ Obtain the flow of data in the
system and generate normal and attack scenarios features→ Build Machine Learning and
DL methods to identify and categorize network attacks.

Susilo, Bambang and Riri, Fitri Sari [101] discuss numerous Machine Learning and
DL strategies, plus standard datasets that can be used to enhance the safety performance in
IoT networks and systems. Using Deep Learning techniques, they presented a method for
identifying Denial-of-Service (DoS) assaults. Tensorflow, Seaborn, and Scikit-learn were
among the tools they employed using the Python programming language. According to
their findings, a Deep Learning model could improve accuracy, ensuring that attacks on
IoT networks are mitigated as effectively as possible, hence guaranteeing the QoS in IoT
networks and applications. They used the BoT-IoT and KDD data sets to evaluate their
algorithm. They used Random Forest, CNN, and multilayer perceptron (MLP) to classify
the attacks.

Yingfei Xu et al. [102] proposed an autoencoder anomaly-monitoring model based
on LSTMs-AE, where LTSM is used to capture time-series characteristics, and AE is used
for intrusion detection. Their tests revealed that the model outperforms the standard
autoencoder in terms of intrusion detection.

In [103], the authors developed a hybrid intelligent Intrusion Detection System (HIIDS)
for IoT to efficiently and automatically extract important features representation from vast
unlabeled raw IoT network traffic data. In their work, the authors also combined the LSTM
algorithm because of its ability to capture long dependencies and the autoencoder to carry
out their experiments, hence the LSTMAE algorithm. They carried out their experiments
on ISCX-2012, and the results showed 97.3% accuracy.

In [104], the authors proposed RNN-CNN, an RNN and CNN hybrid. To avoid
overfitting, they added layers, such as max pooling, batch normalization, and dropout.
They tested their model using RedIRIS real data. RedIRIS is a Spanish research and aca-
demic backbone network that offers enhanced communication services to scientists and
researchers. Results from their work show that RNN combined with CNN effectively mon-
itored network traffic for abnormal detection with over 97% accuracy and outperformed
traditional abnormality detection techniques.

Using Gated Recurrent Neural Networks, a DL model for IDS in the IoT Network
was presented by Manoj Kumar Putchala, in his master’s degree thesis [105]. For feature
selection, the Random Forest classifier was applied. The UNB ISCX 2012 and KDD cup’99
data sets were used to validate the model.

A novel anomaly detection approach based on unsupervised DL techniques was
suggested by Dawoud et al. [106]. The model compares the usage of Restricted Boltzmann
machines as generative energy-based models to autoencoders as non-probabilistic algo-
rithms to see if Deep Learning can discover abnormalities. The simulation results show
≈99% anomaly detection accuracy, which guarantees QoS in IoT.

Using bi-directional long short-term memory Recurrent Neural Networks, B. Roy and
H. Cheung [107] proposed a DL approach for intrusion detection in the IoT networks. They
translated categorical features to numeric values using feature normalization. Using the
UNSWNB15 data set, they built a multilayer DL Neural Network. Working with the IoT
network, their research focused on the binary classification of normal and attack patterns.
The experimental findings demonstrate the effectiveness of the proposed model, which
achieves over 95% accuracy in attack detection while ensuring QoS in intrusion detection.

In [108], on the NSL-KDD dataset, a Deep Neural Network (DNN) is used. To
minimize the loss function of DNN, the authors employ stochastic gradient descent (SGD).
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They employ fog nodes for training the DL model. Local parameters are provided to a
fog coordinator node for updating, and the DL model is developed using fog nodes. This
allows the optimum parameters to be shared and helps to avoid local overfitting.

In [109], M. Roopak et al. proposed a Deep Learning model for cyber security using
various classification DL algorithms, which included multilayer perceptron, 1D Convolu-
tional Neural Network, Long Short Term Memory (LSTM), and a combined Convolutional
Neural Network +LSTM on CICIDS2017 dataset. Their model provides 97.17% accuracy in
DDOS attack detections. The higher the accuracy of attack detection, the higher the Quality
of Service a particular IoT network can guarantee.

The authors of [110] developed an intelligent intrusion-detection system for the IoT
environment. Using an IoT simulation dataset, they proposed a feed-forward DNN using
a Deep Belief Network. They allocate a cost function to each layer of the model in order to
optimize DNN. For several attack scenarios, such as DDoS, wormhole attacks, sinkhole,
opportunistic service, and blackhole attacks, their method achieved a recall rate of 97
percent and an average precision rate of 95%. An IoT would ensure dependable Quality
of Service with such precision and recall rates because security for the Internet of Things
is ensured.

Mohammadi et al. [111] developed a self-organizing map (SOM) algorithm, Radial
Basis Function (RBF), and multilayer perceptron networks-based IoT Intrusion Detection
System. To generate the parameters for the perceptron neural network, they employ the
Imperialist Competitive Algorithm (ICA). Their tests were carried out using the KDD99,
and results show tremendous improvement in intrusion detection, which enhances the
QoS in IoTs.

Deepcoin, a Deep Learning and blockchain-based energy exchange concept for smart
grids, was suggested by Ferrag and Maglaras [112]. On two non-IoT datasets and the
BoT-IoT [113] dataset, they utilized the RNN algorithm and the truncated backpropa-
gation through time (BPTT) [70] algorithm. Before being fed into the model, features
are normalized. Their approach generates blocks with small signatures to thwart smart
grid assaults.

Aldhaheri et al. [114] proposed a DeepDCA model, a hybrid between DL and Dendritic
Cell Algorithm (DCA) [115] in order to handle intrusion detection. Their model implements
DCA and SNN (Self Normalizing Neural Network) [116]. Their research was directed at
classifying IoT intrusion and minimizing false alarm generation. Their suggested Intrusion
Detection System selects the appropriate collection of features from the IoT-Bot dataset,
then uses the SNN to categorize signals before using the DCA for classification. DeepDCA
performs exceptionally well in detecting IoT threats, with a detection rate of over 98.73%
accuracy and a low false-positive rate, according to the simulation data. The authors
validated their results with other ML and DL algorithms, which showed that their model
performs better classification tasks than SVM, KNN, and MLP.

Using the Bot-IoT dataset, Soe et al. [117] proposed an Artificial Neural Network to
detect Distributed Denial-of-Service (DDoS) attacks in the IoT environment. They applied
the Synthetic Minority Over-sampling Technique (SMOTE) to overcome data imbalances
and normalized the features before feeding the input data to their proposed neural network.
Their results show that the suggested model can successfully detect DDoS attacks within
the IoT environment.

Ge et al. [118], using the BoT-IoT dataset applied feed-forward neural networks to
detect malicious attacks in IoT. They used the Adam optimizer to optimize the model,
and cross-entropy loss function, a sparse categorical in nature, was used for weights
updating. Regularization techniques, such as L1, L2, and dropout, were used to avoid deal
overfitting. The results obtained by evaluating the implemented model on the BoT-IoT
data demonstrate a high accuracy in the classification of malicious attacks.

Muna et al. [119] proposed a framework to detect malicious activities in industrial
IoT using deep autoencoder (DAE) and deep feed-forward NN. They compared their
model with Computer Vision Technique (CVT) [120], Filter-based Support Vector Machine
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(F-SVM) [121], Triangle Area Nearest Neighbors (TANN)[122], Dirichlet Mixture Model
(DMM) [123], Deep Belief Networks (DBN) [124], Recurrent Neural Networks (RNN), Deep
Neural Networks (DNN), and Ensemble-DNN. Their model outperformed all the herein
mentioned techniques.

Zhong et al. [125], using Deep Learning models, proposed a sequential model-based
Intrusion Detection System for Internet of Things (IoT) servers. Their model uses tcpdump
packets to get information from the network layer and system procedures to gather in-
formation from the application layer. Their approach greatly improves the detection of
intrusive attacks in IoT networks, hence enhancing QoS.

In [126], the authors used the Self-Normalizing Neural Network (SNN) and compared
the results of their model with the feed-forward neural networks (FNN) for classifying
intrusion attacks in an IoT network. They used the BoT-IoT data set, and their experimental
results show that FNN outperforms SNN in terms of accuracy, precision, and recall for
intrusion detection in IoT. However, the SNN shows better resilience than FNN as far as
adversarial robustness is concerned.

3.2.2. Defect Detection in IoT

Ola Salman et al. [127] suggested a Machine Learning-based framework for identifying
IoT devices and detecting aberrant data. By pushing intelligence to the network edge, their
approach extracts features per network flow to identify the source, the type of generated
traffic, and to detect network threats. They analyze different machine-learning algorithms
and find that Random Forest produces the best results, with up to 94.5% accuracy for
device type identification, 93.5% accuracy for traffic type classification, and 97% accuracy
for abnormal traffic detection.

3.3. DL for Resource Allocation and Management in IoT

Another metric of QoS in IoT is how effective resources are allocated and managed.
Poor resource management and allocation can compromise the QoS offered by a particular
IoT network or application. Resource allocation is conventionally done using optimization
methods, Heuristic techniques, and game theoretical approaches by considering the QoS
requirements of the user [31]. Optimization method approaches have challenges whenever
the number of users and devices increase or when the multicellular situations are consid-
ered. The reason is that optimization space becomes tremendously huge to satisfy the entire
network; thus finding solutions becomes computationally too high. Heuristic and game
theoretical approaches suffer from a lack of scalability, slow convergence, and information
exchange overload. DL, on the other hand, has the ability to deduce information from
data and then utilize that knowledge to alter a DL agent’s behavior depending on that
knowledge. Since IoT networks produce gigantic volumes of data, researchers have applied
DL techniques [128,129] to extract useful features that can be used to dynamically and
intelligently handle resource allocation efficiently.

Generally, each type of IoT network faces different challenges in relation to resource
allocation (RA) and management. For example, RA challenges in cellular IoT are different
from those in cognitive IoT networks, low-power IoT, and mobile IoT networks [31].

General IoT resource management challenges include session management and
setup [130], interference management, and channel dynamic access [131]. Conventional
resource allocation and management methods in IoT networks mainly make use of opti-
mization techniques. However, as the number of users increases, the optimization compu-
tational complexity also increases tremendously, hence affecting the QoS of that network.

Cognitive IoT networks have primary users and secondary users. Primary users are
the “rightful” owners of the source, but a resource can be assigned to the secondary user
once the primary user is idle or absent. When the primary user in cognitive networks is
stimulated, the secondary user must be removed from that channel [132]. Therefore, there
is a need to consider QoS requirements for both the primary and secondary users as far as
resource allocation is concerned. Static techniques are used to manage resource allocation
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problems, such as channel sensing, detection, and acquisition. However, these techniques
have a number of drawbacks, including collisions and reduced system performance.

Mobile IoT (MIoT) networks have one distinguishing feature from traditional IoTs
mobility. In MIoT, the services and applications of IoT can be transferred from one physical
location to another. The communicating things move but maintain their interconnection
and accessibility, for example, in the case of smart transport where cars move from one
location to another but maintain connectivity. Resource allocation and management using
traditional methods is more complex in MIoT than in static IoT networks because of the
extra information required to maintain connectivity among mobile devices.

To address the challenges of using traditional resources allocation methods, Machine
Learning and Deep Learning techniques can be an appropriate remedy where IoT networks
can learn the context of users. IoT devices, through progressive learning, can autonomously
be able to access the available spectrum. IoT entities can also adaptively learn and adjust
the transmission power to conserve energy. Deep Reinforcement Learning techniques [133]
and linear regression [134] have been used in resource allocation in IoT.

In [135], the authors investigate a combined task scheduling and resource distribution
for Deep Neural Network (DNN) inference in the Industrial IoT (IIoT) networks. They for-
mulate a resource management issue with the goal of optimizing mean inference accuracy
while also meeting the QoS of DNN inference jobs in IIoT networks with limited spectrum
and computational resources for huge DNN inference projects. They convert the problem
to a Markov Decision Process and offer a deep deterministic policy gradient-based learning
technique to quickly find a solution.

Deng et al. [136] proposed a reinforced learning method for dynamic resource allo-
cation for edge computing-based IoT systems. In order to improve trustworthiness, IoT
services declare a service-level agreement (SLA), which is used as a basis for the mea-
surement of QoS of that particular service. The authors encode the state of the service
provisioning system as well as the resource allocation scheme using the SLA as a measure
and then describe the adjustment of resources allocated for that specific service as a Markov
Decision Process (MDP). With the help of reinforcement learning, they obtain the trained
resource allocation model, which dynamically allocated the resources according to the
system states and requirements. They carried out experiments on Youtube request data,
and results show that their approach has a 21.72% better performance compared to the
Low Inter-reference Recency Set (LIRS) algorithm, Locality Frequency (LF) algorithm, and
Long Short Term Memory (LSTM) algorithm.

In [137], the authors proposed a resource allocation approach for IoT, which uses Re-
inforcement Learning based on the Quality of Experience (QoE) status. They proposed two
RF-based algorithms to accomplish the resource allocation task. Reinforcement Learning-
based Mapping Table (RLMT) and Reinforcement Learning Resource Allocation (RLRA)
algorithm. RLMT is aimed at creating an efficient cost-mapping table, which dynamically
adjusts table items depending on the feedback of QoE. The RLRA algorithm then chooses
the optimum path for allocating a resource based on the task-mapping table.

Shah and Zhao [138] proposed a multi-agent virtual resource allocation scheme for
IoT based on Deep Reinforcement Learning. They accessed network resources using
the Network Function Virtualization (NFV) approach, then handle resource allocation in
IoT networks using the Deep Reinforcement Learning (DRL) algorithm. By learning the
network’s behavior, DRL eliminates the need for exact Channel State Information (CSI).
They frame their issue as a Markovian Decision-Making Process (MDP).

In [31], the authors review various Machine Learning techniques for resource allo-
cation in cellular and IoT networks. They also provide several resource allocation and
management challenges in IoT networks and applications, which include massive chan-
nel access, power allocation and interference, cell selection, energy management, and
real-time processing.
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3.3.1. Massive Simultaneous Channel Access

When a large number of devices connect to the same wireless channel at the same
time, the channel can become overloaded. In order to accommodate significant capacity
and connection while efficiently utilizing network resources, load balancing and access
control must be handled. In [139], the authors proposed an ML-based channel assignment
algorithm that applies Tug-Of-War (TOW) dynamics to select channels for communication
in cognitive massive IoT networks. They formulate their problem as a MAB problem.
Their experimental results show great improvement in interference detection compared to
conventional interference detection approaches that do not use ML techniques.

3.3.2. Power Allocation and Interference Management

Power allocation serves an important role in improving the performance of IoT net-
works by reducing the interference to other IoT network entities. Choosing transmission
power dynamically in line with varying physical channel and network conditions is very
challenging. Therefore, dynamic and intelligent power allocation and interference manage-
ment techniques are needed. Machine learning techniques are best suited for this.

In [140], the authors presented a Deep Learning-based long-term Power Allocation
(DL-PA) scheme for satellite-based Internet of Things non-orthogonal multiple access
(NOMA) downlink system (S-IoT). They use a neural network as an approximation function
to compute the Successive Interference Cancellation (SIC) decoding order according to a
particular queue state and channel state. Their approach produces more accurate results
than when Deep Learning is not used. In device-to-device IoT networks, the author applied
Q-learning and CART Decision Tree algorithms for power control interference management.
A multi-agent Q-learning algorithm is used to solve the power allocation to various users
by allowing each user an optimal share of power resources. Complexity time is reduced by
using binary trees, which improves the system capacity and energy efficiency.

Per Lynggaard [141] proposed a system for interference detection and dynamic power
allocation based on the interference level in the radio channels. In order to minimize
power wastages and interference, the author applied a linear regression algorithm on
Channel State Information (CSI) to predict the transmission power levels. Linear regression
can handle continuous dependent variables, and its computational complexity is lower
compared to other methods, such as SVM.

3.3.3. Energy Consumption and Management

Because many of the sensors and actuators in the Internet of Things are small and have
limited battery capacity and charging capabilities, having energy-efficient connectivity is
critical. It is, therefore, paramount to intelligently manage and allocate this scarce resource.
The authors of [142] proposed a Machine Learning-based system for managing energy
efficiency in IoT-based smart cities. They used Deep Artificial Neural Networks, CART
decision trees, and Random Forest learning methods to predict energy consumption for
IoT-based smart cities. They used real data from the Croatian energy management infor-
mation system. Their results show improved energy consumption predictions compared to
non-Machine Learning techniques. Isaac at el. [143] also proposed a big-data and Machine
Learning technique, which they called HEMS-IoT, for IoT-based smart home’s energy sav-
ing. A Deep Learning framework for intelligent energy consumption management in IoT
is proposed in [144]. They proposed a novel sequential learning-based energy prediction
and estimation approach with less time complexity compared to existing approaches. A
summary on the application of DL for QoS enhancements in IoT is given in Table 3.
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Table 3. Deep Learning application to Security and resource allocation in IoT.

QoS Measurement Factor Application Scenarios Learning Model Reference

Security and Privacy

Attack classification

SVM [100]

Decision Trees [100]

Naïve Bayes [100]

Random Forest [101]

Intrusion Detection

CNN [99,101,104,118]

RNN [104,107,112]

Autoencoders [119]

Restricted Boltzmann machine [106]

Self-normalizing Neural Network (SNN) [114,126]

Multilayer perceptron (MLP) neural network [101,109,111]

LSTMs-AE [102,103]

LSTM [109]

Gated Recurrent Neural Networks [105]

Deep Neural Network (DNN) [108]

Random Forest [127]

Deep Belief Network (DBN) [110]

Defect Detection SDPN-stacked-deep polynomial network [127]

Resource Allocation
and management

Task scheduling and
resource distribution

Deep Reinforcement Learning [136–138,145,146]

DNN [135]

Power allocation and
interference detection Deep Neural Networks-DNN [31]

Massive channel access Linear Regression [139]

4. Discussion on the Application of DL to Enhance QoS in IoTs

In this age of big data, DL provides innovative analytics and offers great potential for
QoS enhancement in IoT applications and networks. Various IoT networks have different
QoS requirements. However, guaranteeing QoS in IoT is a challenging task. To enforce
QoS in IoTs, we must ensure that two aspects are well managed: (1) Ensure network and
equipment security in order to guarantee privacy and security of the network resources.
and (2) Ensure that IoT network resources are well-managed, i.e., proper resource allocation
and management. This paper focuses on how Deep Learning techniques have been applied
in order to guarantee QoS in IoT by handling security issues and resource allocation and
management challenges of the network.

IoT has the potential to revolutionize a wide range of facets of our daily lives, including
school environments, health, lifestyle, environment, business, and infrastructure. Some of
these aspects are so critical in our lives, and any compromise in QoS may be detrimental.
It is, therefore, important that any factor that can lead to a compromise of QoS is quickly
handled. IoT QoS breaches emerge from poorly managed resources or from compromising
the security of IoT networks and systems. Traditional resource management methods,
such as optimization and heuristics-based methods, cannot intelligently learn from the
data and make appropriate actions during run-time. Deep Learning methods guarantee
automatic resource management and dynamic and intelligent decision-making for large
and distributed IoT networks and applications.

In Section 3, we showed the various DL algorithms and how they have been applied
in IoTs for QoS enhancement and guarantee. Table 3 shows the summary of various Deep
Learning models and the respective QoS metric that they have been applied to. Table 3
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assists in answering various research questions as outlined in Section 1.5.
RQ1: How are Deep Learning techniques being applied for QoS enhancement in IoTs?

We note that Deep Learning has been widely applied in IoT-based systems to enhance
QoS through designing security and privacy DL-based models or the development of
DL-based models for resource allocation and management in IoT. Concerning the Security
and privacy QoS aspect in IoT-based systems, intrusion detection has received the most
attention as far as the application of Deep Learning is concerned. This is attributed to
the availability of public datasets, which makes it easy for researchers to implement, test,
and validate their models. The attack classification has also been massively researched,
but researchers mainly apply ML models, such as Decision trees, SMV, and Naïve Bayes.
Defect detection has so far received the least attention, as shown in Table 3. More future
research should explore the application of DL to defect detection. As far as the resource
allocation and management aspect of QoS in IoT-based systems is concerned, the use of DL
for task scheduling and resource distribution has received more attention from researchers
compared to power allocation and interference detection and massive channel access (see
Table 3).

RQ2: Which Deep Learning models are being applied to various aspects of QoS
enhancement in IoT-based applications, and why those models in particular? Still from
Table 3, we note that CNN and RNN are the most widely applied Deep Learning models as
far as the security and privacy aspect of QoS enhancement in IoTs is concerned. However,
the two models have only been applied to the intrusion detection aspect of security and
privacy. In addition, other DL models that have been widely applied to intrusion detection
include MLP, autoencoders, SNN, and LSTM-AE. In all the papers we reviewed, we did
not find any that applied CNN, RNN, MLP, AE, SNN, or LSTM-AE to defect detection.
Only SDPN was applied to defect detection. According to [127], SDPN is suitable for the
development of Deep Learning models where the size of the dataset is small. This explains
why Deep Learning models, such as CNN, RNN, and other data demanding DL algorithms,
have not been applied to defect detection due to the scarcity of data sets in that area. For
the Resource Allocation and Management aspect of QoS, Deep Reinforcement Learning
(DRL) is the most widely applied DL technique, especially for task scheduling and resource
distribution. DRL is able to learn progressively from its environment and learn to take
appropriate actions. This reason makes RL more qualified for task scheduling tasks than
other DL models that must learn from datasets. DNN is also applied to task scheduling
and resource distribution but has not been widely used by researchers compared to DRL.

RQ3: Why have researchers opted for using Deep Learning techniques for QoS en-
hancement compared to the existing QoS enhancement approaches? In the preamble of
Section 3.3, we note that resource allocation is conventionally done, using optimization
methods, heuristic techniques, and game theoretical approaches, and is based on the QoS
requirements of the user [31]. Optimization method approaches have challenges whenever
the number of users and devices increases or when the multicellular situations are con-
sidered. The reason is that the optimization space becomes tremendously huge to satisfy
the entire network; thus finding the optimal resource allocation and management solution
becomes computationally too high. Heuristic and game theoretical approaches suffer from
a lack of scalability, slow convergence, and information exchange overload. For these
reasons, DL approaches have been used by the researcher to overcome the problems of
optimization, heuristic techniques, and game theoretical approaches for resource allocation
and management. Since IoT networks produce huge amounts of data, researchers have
applied DL techniques [128,129] to extract useful features that can be used to dynamically
and intelligently handle resource allocation efficiently, which could not be handled using
traditional non-DL techniques.

RQ4: What challenges are faced by developers when applying DL models for QoS
enhancement for IoTs? Four major challenges have been identified: scarcity of datasets,
heterogeneity of datasets, data storage, and privacy of IoT data. The challenges are further
elaborated below:
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Scarcity of datasets: Generally, DL models require huge amounts of data to train.
Much as IoT generates huge amounts of data, refining that data for a particular training
model is also complex. Some data is not available due to data laws and policies.

Heterogeneity of data sets: IoT networks are of diverse types and each generates data
with different dimensions. As such, DL models have to be developed to extract useful and
relevant features from such data. Therefore, there is a need for data preprocessing and
ordering in order to be fit for the respective DL models.

Storage of data: Some IoT devices have limited storage capacities, and as such, they
are unable to store huge volumes of data for analysis. Data is usually sent to servers for
storage. However, this increases the communication cost involved in sending data to the
respective storage servers.

Privacy of IoT data: Depending on the nature of the IoT network or application,
some data may be considered private and others public. In health-based IoT networks,
for example, data is usually private and may not be readily available for use in many
DL models.

5. Conclusions

The aim of this paper was to provide a review of how DL-based techniques have
been applied to enhance QoS in the IoTs. We first give an overview of QoS in the IoTs
and the most common Deep Learning techniques. We then provide a breakdown of how
various DL-based techniques have been applied in IoTs in order to enhance QoS. We
finally identify challenges that hinder the application of DL-based techniques for QoS
enhancement in IoTs. From our review, it was observed that DL-based techniques have
been widely applied in IoTs to improve some aspects of QoS measurement factors but
have not been widely applied to others. For example, DL-based techniques have been
widely applied to improve IoT security through intrusion detection. More so, in regard
to IoT resource allocation and management, DL-based techniques have not been widely
applied for massive channel access. We note the absence of research papers that provide a
performance-based comparison of various DL techniques as far as improving QoS in IoT is
concerned. Thus, a lack of clarity on DL algorithms that have achieved the best results as far
as improvement of QoS in IoT is concerned. What is currently clear is that DL-based models
are promising, and in most cases, if well trained, perform far better than the traditional
techniques. In our future research, we intend to carry out a performance-based comparison
study to determine which DL techniques outperform others in various aspects of QoS in
IoTs. We hope this comparison will help provide insights on DL techniques that are more
suitable for application in a particular QoS enhancement situation.

As a lot of research has been done on some aspects of QoS, such as intrusion detection
through Deep Learning, there are some QoS aspects that have received very little attention
as far as the application of DL models is concerned. Thus, we suggest future research on the
application of Deep Learning to power allocation, interference detection, massive channel
access, defect detection, and other QoS areas that have not been widely researched. We hope
that the discussion and findings of this review paper will help researchers and professionals
in the IoTs to confidently choose DL-based techniques for various QoS situations in IoT
and subsequently contribute to the growth of the field.
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Abbreviations

Acronym Description Acronym Description
QoS Quality of Service GPU Graphics Processing Unit
DL Deep Learning DBN Deep Belief Network
IoT Internet of Things RL Reinforcement Learning
IDS Intrusion Detection System SOM Self-Organizing Map algorithm
RBF Radial Basis Function DRL Deep Reinforcement Learning
SOM Self-organizing Map algorithm MDP Markov Decision Process
CNN Convolutional Neural Networks FIFO First In first Out
TCNN Temporal Convolutional Neural Networks DQN Deep Q Networks
RNN Recurrent Neural Network QoE Quality of Experience
DOS Denial-of-Service AML Adversarial Machine Learning
DDOS Distributed Denial-of-Services DAE Denoising autoencoders
ICA Imperialist Competitive Algorithm ReLU Rectified Linear Unit activation function
MLP Multilayer perceptron neural network RLRA Reinforcement Learning Resource Allocation Algorithm
SAE Sparse autoencoders ANN Artificial Neural Networks
CAE Contractive autoencoders CSI Channel State Information
RLMT Reinforcement Learning-based Mapping Table ML Machine Learning

RQ Research Question
NFV Network Function Virtualization
MAB Multi-Armed Bandit
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