Simulation of Perovskite Solar Cells Optimized by the Inverse Planar Method in SILVACO: 3D Electrical and Optical Models
Abstract
:1. Introduction
2. Modeling Inverted Planar Solar Cell
- Creating an anti-reflective coating on the surface of this type of structure is the most important method for light trapping to compensate for the current reduced by the reflection of surface photons. Thus, in this section, by employing several different materials, including CaF2 [45], SiO2 [46] and Al2O3 [47], it can work as an anti-reflective layer in the device between the air and the front electrode layer, as an optical trap which reduces the reflection and strengthens the photon transfer to the absorbent layer. The highest efficiency is obtained for CaF2 with an optimal thickness of 110 nm, the results of which are fully described in Section 4.1;
- The next layer of indium tin oxide (ITO) with a thickness of 45 nm is used as a transparent front contact in this solar cell. The low thickness of this material can lead to an increased optical clarity and higher electrical conductivity [48];
- NiOx is used as the hole transport layer in this study. Of the notable features of these inorganic materials, we can mention suitable energy levels compared to perovskites, as well as uniformity, compression, proper electrical properties, abundance, and cost-effectiveness, which could greatly reduce the cost of solar cell production. Therefore, in this research, these inorganic materials are used as an alternative to expensive organic hole transporters [30,49].
- The main layer of this solar cell is a layer known as perovskite, which is composed of several organic mineral halides PSCS and methyl ammonium lead halide (CH3NH3PbI3), and works as the absorbent layer [50];
- A zinc oxide (ZnO) layer is considered as the electron transport material (buffer) with a thickness of 300 nm between the perovskite layer and graphene. ZnO-based PSCs have interesting advantages over titanium dioxide (TiO2). For example, large exciton of 60 MeV, high optical efficiency, high mechanical and thermal stability, and radiation hardening are other features of this material. Additionally, the higher electron mobility of ZnO than TiO2 makes it an ideal choice for the ETL layer [51];
- In particular, we used graphene (as a carbon derivative) instead of gold or silver as the back contact. Graphene is widely used in electronics, owing to its extraordinary transparency and some unique physical properties. Among these properties, the mobility of charged particles in graphene, which is denoted by μ, is highly important. The mobility value for graphene is 10,000 cm2/V s. All these properties have raised the potential of graphene as a potent conductor for electronic applications, including inverted planar PSCs. Given the availability of this material, as well as its ability to reduce manufacturing costs as one of the most large-scaled flexible lightweight solar cells, it can be considered the most efficient, leading to wide use of this solar cell in the industry [52];
- To achieve the maximum current, all layers must have the same structure. Otherwise, it leads to structural failure and increases the recombination rate. Therefore, the loss of photo-generated minority carriers increases, and the efficiency decreases [53].
3. Results and Discussion
3.1. Effect of Absorbent Layer Thickness Variation (CH3NH3PbI3) on Inverted Planar PSC
3.2. Performance Parameters
3.2.1. Short-Circuit Current (ISC)
3.2.2. Open-Circuit Voltage (VOC)
3.2.3. Fill Factor (FF)
3.2.4. Efficiency (η)
4. Performance Comparison
4.1. Effect of Different Anti-Reflective Coatings on the Efficiency of Inverted Planar PSC by Graphene Contact
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Renewable Energy Laboratory. Available online: http://www.nrel.gov (accessed on 6 July 2019).
- Kim, H.; Lim, K.-G.; Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers. Energy Environ. Sci. 2016, 9, 12–30. [Google Scholar] [CrossRef]
- Hu, W.; Xu, C.Y.; Bin Niu, L.; Elseman, A.M.; Wang, G.; Liu, D.B.; Yao, Y.Q.; Liao, L.P.; Zhou, G.D.; Song, Q.L. High Open-Circuit Voltage of 1.134 V for Inverted Planar Perovskite Solar Cells with Sodium Citrate-Doped PEDOT:PSS as a Hole Transport Layer. ACS Appl. Mater. 2019, 11, 21275–22028. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G.F.; Watts, J.F.; Xu, Z.; et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanmandlu, C.; Swamy, V.S.; Singh, A.; Chen, H.-A.; Liu, C.-C.; Lai, C.-S.; Mohapatra, A.; Pao, C.-W.; Chen, P.; Chu, C.-W. Suppression of surface defects to achieve hysteresis-free inverted perovskite solar cells via quantum dot passivation. J. Mater. Chem. A 2020, 8, 5263–5274. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Q.; Xue, R.; Zhan, Y.; Wang, C.; Lai, J.; Yang, J.; Lin, H.; Yao, J.; Li, Y.; et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Guo, Y.; Zhu, M.; Li, Y.; Li, X. HClO4-assisted fabrication of SnO2/C60 bilayer electron-transport materials for all air-processed efficient and stable inverted planar perovskite solar cells. J. Power Sources 2020, 476, 228648. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Yang, J.; Pu, X.; Gao, B.; He, Z.; Cao, Q.; Han, J.; Li, X. Multiple functional groups synergistically improve the performance of inverted planar perovskite solar cells. J. Nano Energy 2021, 82, 105742. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Li, S.; Sun, Q.; Wu, Y.; Liu, Y.; Li, Z.; Cui, Y.; Ma, C.; Hao, Y.; et al. Enhanced Efficiency and Stability of Inverted Planar Perovskite Solar Cells With Piperazine as an Efficient Dopant Into PCBM. IEEE J. Photovolt. 2020, 10, 811–817. [Google Scholar] [CrossRef]
- Afzaal, M.; Yates, H.M.; Walter, A.; Nicolay, S. Improved FTO/NiOx Interfaces for Inverted Planar Triple-Cation Perovskite Solar Cells. IEEE J. Photovolt. 2019, 9, 1302–1308. [Google Scholar] [CrossRef]
- Lan, F.; Jiang, M.; Tao, Q.; Li, G. Revealing the Working Mechanisms of Planar Perovskite Solar Cells With Cross-Sectional Surface Potential Profiling. IEEE J. Photovolt. 2017, 8, 125–131. [Google Scholar] [CrossRef]
- Zhao, P.; Hao, Y.; Yue, M.; Lei, C.; Lin, Z.; Su, J.; Chen, D.; Zhang, C.; Zhang, J.; Chang, J. Device Simulation of Organic–Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cell With Various Antireflection Materials. IEEE J. Photovolt. 2018, 8, 1685–1691. [Google Scholar] [CrossRef]
- Razzaq, A.; Mayer, A.; Depauw, V.; Gordon, I.; Hajjiah, A.; Poortmans, J. Application of a Genetic Algorithm in Four-Terminal Perovskite/Crystalline-Silicon Tandem Devices. IEEE J. Photovolt. 2020, 10, 1689–1700. [Google Scholar] [CrossRef]
- Yan, L.; Han, C.; Shi, B.; Zhao, Y.; Zhang, X. Interconnecting layers of different crystalline silicon bottom cells in monolithic perovskite/silicon tandem solar cells. Superlattices Microstruct. 2021, 151, 106811. [Google Scholar] [CrossRef]
- Palmstrom, A.F.; Eperon, G.; Leijtens, T.; Prasanna, R.; Habisreutinger, S.N.; Nemeth, W.; Gaulding, E.A.; Dunfield, S.P.; Reese, M.; Nanayakkara, S.; et al. Enabling Flexible All-Perovskite Tandem Solar Cells. J. Joule 2019, 3, 2193–2204. [Google Scholar] [CrossRef]
- Doshi, P.; Jellison, G.E.; Rohatgi, A. Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics. Appl. Opt. 1997, 36, 7826–7837. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.R.; Brett, M.J. Porous broadband antireflection coating by glancing angle deposition. Appl. Opt. 2003, 42, 4573–4579. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Uzum, A.; Harano, N.; Yoshinaga, S.; Ishikawa, Y.; Uraoka, Y.; Fukui, H.; Harada, T.; Ito, S. Al2O3/TiO2 double layer anti-reflection coating film for crystalline silicon solar cells formed by spray pyrolysis. Energy Sci. Eng. 2016, 4, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Shahverdi, N.; Yaghoubi, M.; Goodarzi, M.; Soleamani, A. Optimization of anti-reflection layer and back contact of Perovskite solar cell. Sol. Energy 2019, 189, 111–119. [Google Scholar] [CrossRef]
- Yadav, P.; Pandey, K.; Bhatt, P.; Raval, D.; Tripathi, B.; P, C.K.; Pandey, M.; Kumar, M. Exploring the performance limiting parameters of perovskite solar cell through experimental analysis and device simulation. Sol. Energy 2015, 122, 773–782. [Google Scholar] [CrossRef]
- El-Mellouhi, F.; Marzouk, A.; Bentria, E.T.; Rashkeev, S.N.; Kais, S.; Alharbi, F.H. Hydrogen Bonding and Stability of Hybrid Organic-Inorganic Perovskites. ChemSusChem 2016, 9, 2648–2655. [Google Scholar] [CrossRef]
- El-Mellouhi, F.; Bentria, E.T.; Rashkeev, S.N.; Kais, S.; Alharbi, F. Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling. Sci. Rep. 2016, 6, 30305. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Phung, N.; Di Girolamo, D.; Vivo, P.; Abate, A. Enhancement in lifespan of halide perovskite solar cells. Energy Environ. Sci. 2019, 12, 865–886. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, F.; Rao, H.; Ye, S.; Liu, Z.; Bian, Z.; Huang, C. Metal Halide Perovskite Materials for Solar Cells with Long-Term Stability. Adv. Energy Mater. 2019, 9, 1802671. [Google Scholar] [CrossRef]
- Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T.J.; Grätzel, M.; Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 2017, 10, 710–727. [Google Scholar] [CrossRef]
- Shi, Z.; Jayatissa, A.H. Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods. Materials 2018, 11, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Yang, M.; Priya, S.; Zhu, K. Origin of J–V Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 905–917. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S. Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market? Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Asad, J.; Shaat, S.K.K.; Musleh, H.; Shurrab, N.; Issa, A.; Lahmar, A.; Al Kahlout, A.; Al Dahoudi, N. Perovskite solar cells free of hole transport layer. J. Sol-Gel Sci. Technol. 2019, 90, 443–449. [Google Scholar] [CrossRef]
- Rahman, S.; Miah, S.; Marma, M.S.W.; Sabrina, T. Simulation based Investigation of Inverted Planar Perovskite Solar Cell with All Metal Oxide Inorganic Transport Layers. In Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 7–9 February 2019. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Wu, G.; Li, M. Optimal design of efficient hole transporting layer free planar perovskite solar cell. Sci. China Mater. 2016, 59, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Yang, X.; Wang, H.; Cheng, M.; Zhao, J.; Sun, L. Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode. ACS Appl. Mater. Interfaces 2014, 6, 16140–16146. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X.; Cheng, M.; Li, J.; Wang, W.; Wang, H.; Sun, L. Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. J. Mater. Chem. A 2015, 3, 24272–24280. [Google Scholar] [CrossRef]
- Liang, X.; Cheng, Y.; Xu, X.; Dong, R.; Li, D.; Zhou, Z.; Wei, R.; Dong, G.; Tsang, S.-W.; Ho, J.C. Enhanced performance of perovskite solar cells based on vertical TiO2 nanotube arrays with full filling of CH3NH3PbI3. Appl. Surf. Sci. 2018, 451, 250–257. [Google Scholar] [CrossRef]
- Hedley, G.J.; Quarti, C.; Harwell, J.; Prezhdo, O.V.; Beljonne, D.; Samuel, I.D.W. Hot-Hole Cooling Controls the Initial Ultrafast Relaxation in Methylammonium Lead Iodide Perovskite. Sci. Rep. 2018, 8, 8115. [Google Scholar] [CrossRef]
- Kasparavicius, E.; Magomedov, A.; Malinauskas, T.; Getautis, V. Long-Term Stability of the Oxidized Hole-Transporting Materials used in Perovskite Solar Cells. Chem. -A Eur. J. 2018, 24, 9910–9918. [Google Scholar] [CrossRef]
- Hu, M.; Liu, L.; Mei, A.; Yang, Y.; Liu, T.; Han, H. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3. J. Mater. Chem. A 2014, 2, 17115–17121. [Google Scholar] [CrossRef]
- Silvaco ATLAS (vol I&II) User’s Manual. Available online: http://w.silvaco.corn (accessed on 17 August 2021).
- Zarede, T.; Lidjici, H.; Mahrane, A.; Fathi, M. 3D Numerical Simulation of Bifacial Heterojunction Silicon p-type Solar Cell. Silicon 2018, 10, 1745–1753. [Google Scholar] [CrossRef]
- Needleman, D.B.; Wagner, H.; Altermatt, P.P.; Xiong, Z.; Verlinden, P.; Buonassisi, T. Dislocation-limited performance of advanced solar cells determined by TCAD modeling. Sol. Energy Mater. Sol. Cells 2016, 158, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Hofstetter, J.; Fenning, D.; Powell, D.M.; Morishige, A.; Buonassisi, T. Iron Management in Multicrystalline Silicon through Predictive Simulation: Point Defects, Precipitates, and Structural Defect Interactions. Solid State Phenom. 2013, 205-206, 15–25. [Google Scholar] [CrossRef]
- Kowsar, A.; Billah, M.; Dey, S.; Debnath, S.C.; Yeakin, S.; Farhad, S.F.U. Comparative Study on Solar Cell Simulators. In Proceedings of the 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh, 23–24 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ghahremani, A.; Fathy, A.E. A three-dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 2015, 3, 520–534. [Google Scholar] [CrossRef]
- Ming, W.; Yang, D.; Li, T.; Zhang, L.; Du, M. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode. Adv. Sci. 2018, 5, 1700662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malitson, I.H. A Redetermination of Some Optical Properties of Calcium Fluoride. Appl. Opt. 1963, 2, 1103–1107. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Malitson, I.H. Refraction and Dispersion of Synthetic Sapphire. J. Opt. Soc. Am. 1962, 52, 1377–1379. [Google Scholar] [CrossRef]
- Holman, Z.C.; Filipič, M.; Descoeudres, A.; De Wolf, S.; Smole, F.; Topic, M.; Ballif, C. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J. Appl. Phys. 2013, 113, 013107. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Mahbub, R.; Satter, S.S.; Ullah, S.M. Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance. Int. J. Photoenergy 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Löper, P.; Stuckelberger, M.; Niesen, B.; Werner, J.; Filipič, M.; Moon, S.-J.; Yum, J.-H.; Topič, M.; De Wolf, S.; Ballif, C. Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry. J. Phys. Chem. Lett. 2015, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Monsur, A.; Mahtab, S.S.; Ahmed, S.S.; Chakma, R.; Alam, M.J. Design and Optimization of Perovskite Solar Cell with Thin ZnO Insulator Layer as Electron Transport. In Proceedings of the 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, 22–24 November 2018. [Google Scholar] [CrossRef]
- Kang, A.K.; Zandi, M.H.; Gorji, N.E. Simulation analysis of graphene contacted perovskite solar cells using SCAPS-1D. Opt. Quantum Electron. 2019, 51, 91. [Google Scholar] [CrossRef]
- Singh, K.J.; Sarkar, S.K. Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers. Opt. Quantum Electron. 2012, 43, 1–21. [Google Scholar] [CrossRef]
- Dutta, J.; Nayak, P.; Mishra, G. Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer. Optik Int. J. Light Electron. Opt. 2016, 127, 4156–4161. [Google Scholar] [CrossRef]
- Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat. Energy 2016, 1, 15017. [Google Scholar] [CrossRef]
- Xu, B. Advanced Organic Hole Transport Materials for Solution-Processed Photovoltaic Devices. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2015. [Google Scholar]
- Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 2001, 79, 2085–2087. [Google Scholar] [CrossRef]
- Ganesan, P.; Fu, K.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L.H.; Grätzel, M.; Nazeeruddin, M.K. A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy Environ. Sci. 2015, 8, 1986–1991. [Google Scholar] [CrossRef]
- Bi, D.; Boschloo, G.; Hagfeldt, A. High-Efficient Solid-State Perovskite Solar Cell Without Lithium Salt In The Hole Transport Material. Nano 2014, 9. [Google Scholar] [CrossRef]
- Dadashbeik, M.; Fathi, D.; Eskandari, M. Design and simulation of perovskite solar cells based on graphene and TiO2/graphene nanocomposite as electron transport layer. Sol. Energy 2020, 207, 917–924. [Google Scholar] [CrossRef]
- Sarvari, H.; Wang, X.; Wang, Y.; Zhang, P.; Li, S.; Singh, V.P.; Chen, Z. Photovoltaic Performance of Lead-Iodide Perovskite Solar Cells Fabricated Under Ambient Air Conditions With HTM Solution Excluding LiTFSI. IEEE J. Photovolt. 2018, 8, 1051–1057. [Google Scholar] [CrossRef]
- Guo, X.; Luo, G.; Liu, J.; Liao, C.; Wang, G.; Li, S. A 16.5% Efficient Perovskite Solar Cells With Inorganic NiO Film as Hole Transport Material. IEEE J. Photovolt. 2018, 8, 1039–1043. [Google Scholar] [CrossRef]
- Jayan, K.D.; Sebastian, V. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 2021, 217, 40–48. [Google Scholar] [CrossRef]
- Gratia, P.; Magomedov, A.; Malinauskas, T.; Daskeviciene, M.; Abate, A.; Ahmad, S.; Grätzel, M.; Getautis, V.; Nazeeruddin, M.K. A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells. Chem. Int. Ed. 2015, 54, 11409–11413. [Google Scholar] [CrossRef]
- Murray, A.T.; Frost, J.M.; Hendon, C.H.; Molloy, C.; Carbery, D.; Walsh, A. Modular design of SPIRO-OMeTAD analogues as hole transport materials in solar cells. Chem. Commun. 2015, 51, 8935–8938. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; He, J. Recent progress in antireflection and self-cleaning technology—From surface engineering to functional surfaces. Prog. Mater. Sci. 2014, 61, 94–143. [Google Scholar] [CrossRef]
- Schossig, M. Bio and Nano Packaging Techniques for Electron Devices; Springer: Berlin/Heidelberg, Germany; Technisch Universitat Dresden: Dresden, Germany, 2012. [Google Scholar]
Parameter | Anti-Reflection | ITO | Spiro-OMeTAD | Cu2O | NiOx | MAPbI3 | ZnO | Back Contact Graphene |
---|---|---|---|---|---|---|---|---|
Thickness (nm) | 110 | 45 | 12 | 12 | 12 | 500 | 300 | 200 |
Acceptor Con NA (cm−3) | - | - | - | - | - | 1.8e15 | - | - |
Donor Con ND (cm−3) | - | - | 1e15 | - | - | - | 2e20 | 1e14 |
Electric resistance | 80 | 80 | 20 | 80 | 80 | 45 | 80 | 100 |
Band gap (eV) | - | - | 2.45 | 1.42 | 3.76 | 1.6 | 3.37 | 1.07 |
Con Band Density NC (cm−3) | - | - | 2e17 | - | - | 2e17 | - | 1e14 |
Val Band Density NC (cm−3) | - | - | 1e18 | - | - | 1.7e17 | - | 1e15 |
Electron affinity (eV) | - | - | 4 | 3.2 | 2.2 | 4.58 | 4.54 | 4.42 |
Defect type | Neutral | Neutral | Neutral | - | - | Neutral | - | Neutral |
Thickness of Perovskite | Jsc (mA/cm2) | Voc (V) | FF (%) | Eff (%) |
---|---|---|---|---|
200 | 25.0556 | 1.62791 | 86.3937 | 25.526 |
400 | 24.9564 | 1.62791 | 86.3938 | 25.425 |
500 | 27.5356 | 1.62601 | 86.3939 | 28.064 |
600 | 26.7772 | 1.62791 | 86.3938 | 27.28 |
700 | 26.415 | 1.62791 | 86.3938 | 26.911 |
Wavelength (nm) | Spiro-OMeTAD | Cu2O | NiOx |
---|---|---|---|
700 | 26.73 | 25.73 | 25.99 |
710 | 27.47 | 26.39 | 26.45 |
720 | 28.10 | 26.95 | 26.84 |
730 | 28.69 | 27.48 | 27.18 |
740 | 29.05 | 27.85 | 27.32 |
750 | 29.26 | 28.06 | 27.30 |
760 | 28.47 | 27.38 | 26.26 |
770 | 25.36 | 24.62 | 23.45 |
780 | 20.74 | 20.52 | 19.93 |
790 | 16.26 | 16.48 | 16.54 |
Structure | Jsc (mA/cm2) | Voc (V) | FF (%) | Eff (%) |
---|---|---|---|---|
With Spiro-OMeTAD | 28.7217 | 1.62609 | 86.3938 | 29.261 |
With Cu2O | 27.5356 | 1.62601 | 86.3939 | 28.064 |
With NiOx | 26.8218 | 1.62596 | 86.3936 | 27.325 |
Wavelength (nm) | CaF2 | SiO2 | Al2O3 |
---|---|---|---|
710 | 26.39 | 26.72 | 27.07 |
720 | 26.95 | 27.20 | 27.41 |
730 | 27.48 | 27.61 | 27.64 |
740 | 27.85 | 27.86 | 27.70 |
750 | 28.06 | 27.92 | 27.53 |
760 | 27.38 | 26.90 | 26.06 |
770 | 24.62 | 23.80 | 22.54 |
780 | 20.52 | 19.67 | 18.44 |
790 | 16.48 | 16.00 | 15.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fakhri, N.; Salay Naderi, M.; Gholami Farkoush, S.; SaeidNahaei, S.; Park, S.-N.; Rhee, S.-B. Simulation of Perovskite Solar Cells Optimized by the Inverse Planar Method in SILVACO: 3D Electrical and Optical Models. Energies 2021, 14, 5944. https://doi.org/10.3390/en14185944
Fakhri N, Salay Naderi M, Gholami Farkoush S, SaeidNahaei S, Park S-N, Rhee S-B. Simulation of Perovskite Solar Cells Optimized by the Inverse Planar Method in SILVACO: 3D Electrical and Optical Models. Energies. 2021; 14(18):5944. https://doi.org/10.3390/en14185944
Chicago/Turabian StyleFakhri, Naser, Mohammad Salay Naderi, Saeid Gholami Farkoush, Sanam SaeidNahaei, Si-Na Park, and Sang-Bong Rhee. 2021. "Simulation of Perovskite Solar Cells Optimized by the Inverse Planar Method in SILVACO: 3D Electrical and Optical Models" Energies 14, no. 18: 5944. https://doi.org/10.3390/en14185944
APA StyleFakhri, N., Salay Naderi, M., Gholami Farkoush, S., SaeidNahaei, S., Park, S.-N., & Rhee, S.-B. (2021). Simulation of Perovskite Solar Cells Optimized by the Inverse Planar Method in SILVACO: 3D Electrical and Optical Models. Energies, 14(18), 5944. https://doi.org/10.3390/en14185944