# Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Diagnostics by Electromagnetic and Acoustic Recording of PD

#### 3.2. Diagnostics by Acoustic Recording of PD Using a Microphone Array

#### 3.3. Diagnostics with an Electro-Optical Sensor

_{0}from the PDS is fulfilled with the equality:

_{0}= 2 n D (reflection),

_{m}= (λ

_{0}− λ

_{E}) = n

^{3}r D E,

_{E}—wavelength in an applied electric field.

_{m}(n

^{3}r D)

^{−1},

_{m}) n

^{3}r D

_{m}is adjusted to the middle of the slope of the spectral reflectance curve corresponding to the value of R

_{max}/2, then the alternating electric field will create a corresponding change in the reflectance (∆R). The use of an almost linear segment dR/dλ

_{m}makes it possible to determine the values of the field E on a linear scale.

## 4. Discussion

#### 4.1. Electromagnetic and Acoustic Recording of PD Method

- The significant broadening of the phase intervals of radiation of partial discharges;
- The sharp increase in the number of partial discharges in negative high voltage half-periods in comparison with positive half-periods;
- The significant difference in the shape of single pulses of partial discharges for positive and negative signals.

#### 4.2. Method for Determining a Faulty Isolator Using a Microphone Array

**r**

_{S}). Cross-correlation is performed for the signals of the receiver pairs

**r**

_{1}–

**r**

_{4}and

**r**

_{2}–

**r**

_{3}.

**r**

_{1}–

**r**

_{4}

**r**

_{1}and

**r**

_{4}. A higher level of correlation means that the T argument is relatively close to the real time difference of the signal arrival. For a pair of sensors

**r**

_{1}–

**r**

_{4}, the difference in arrival time is determined by the ratio

**r**

_{1}–

**r**

_{4}and the incident sound, deg.

**r**

_{2}–

**r**

_{3}, cross-correlation of signals is performed in a similar way.

#### 4.3. Electro-Optical Method

^{−6}–10

^{−5}C/cm is formed. During this time the field changes its sign by 180° when the phase of the applied voltage changes. The intensity of the PD and the moment of occurrence are determined by the sign and the strengths of the applied and induced fields. The sum of these fields exceeds the electric breakdown field. According to our calculations and measurements, it was found that after the transition of the applied field to the negative phase, a condition for summing both fields occurs. This results in the generation of the most powerful PDs. In the case of a difference between the applied and induced fields there is a decrease in the total field and a tightening of the phase band of the PD radiation.

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Sanitary and Epidemiological Rules and Regulations 1.2.3685-21. Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness to Humans of Environmental Factors; Chief State Sanitary Doctor of the Russian Federation: Moscow, Russia, 2021. [Google Scholar]
- State Standard 12.1.045-84. Occupational Safety Standards System. Electrostatic Fields. Tolerance Levels and Methods of Control at Working Places; Standartinform: Moscow, Russia, 2006. [Google Scholar]
- Boggs, S.A. Partial discharge: Overview and signal generation. IEEE Electr. Insul. Mag.
**1990**, 6, 33–39. [Google Scholar] [CrossRef] - Altenbuzges, R.; Heitz, C.; Timmer, J. Analisis of phase-resolved partial discharge pattern of voids. J. Phys. D Appl. Phys.
**2002**, 35, 1149–1163. [Google Scholar] - Mor, R.A.; Heredia, L.C.; Harmsen, D.A.; Munoz, F.A. A new design of a test platform for testing multiple partial discharge sources. Electrical Power and Energy Systems.
**2018**, 94, 374–384. [Google Scholar] - Bartnicas, R. Partial discharges. Their mechanism, detection and measurement. IEEE Trans. Dielectr. Electr. Insul.
**2002**, 9, 763–808. [Google Scholar] [CrossRef] - Runde, M.; Aurud, T.; Ljokelsoy, K.; Lundgaard, L.; Nokleby, J.; Skyberg, B. Risk assessment basis of moving particles in gas insulated substations. IEEE Transactions on Power Delivery.
**1997**, 12, 714–721. [Google Scholar] [CrossRef] - Li, C.; Yoshino, T. Optical voltage sensor based on electrooptic crystal multiplier. J. Lightwave Technol.
**2002**, 20, 843–849. [Google Scholar] [CrossRef] - IEC TS 62478:2016|IEC Webstore. Available online: https://webstore.iec.ch/publication/25740 (accessed on 27 July 2021).
- IEEE 4-2013-IEEE Standard for High-Voltage Testing Techniques. Available online: https://standards.ieee.org/standard/4-2013.html (accessed on 27 July 2021).
- Callender, G.; Golosnoy, I.; Rapisarda, P.; Lewin, P. Critical analysis of partial discharge dynamics in air filled spherical voids. J. Phys. D Appl. Phys.
**2018**, 51, 125601. [Google Scholar] [CrossRef] [Green Version] - Wonf, R.L. Application of very high frequency method to ceramic insulators. IEEE Trans. Dielectr. Electr. Insul.
**2004**, 11, 1057–1064. [Google Scholar] - Castro, B.; Clerice, G.; Ramos, C.; Andreoli, A.; Baptista, F.; Campos, F.; Ulson, J. Partial Discharge Monitoring in Power Transformers Using Low-Cost Piezoelectric Sensors. Sensors
**2016**, 16, 1266. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ramesh, M.; Cui, L.; Gorur, R.S. Impact of superficial and internal defects on electric field of composite insulators. Electr. Power Energy Syst.
**2019**, 106, 327–334. [Google Scholar] [CrossRef] - Callender, G.; Lewin, P.L. Modeling Partial Discharge Phenomena. IEEE Electr. Insul. Mag.
**2020**, 36, 29–36. [Google Scholar] [CrossRef] - Long, J.; Wang, X.; Zhou, W.; Zhang, J.; Dai, D.; Zhu, G. Comprehensive Review of Signal Processing and Machine Learning Technologies for UHF PD Detection and Diagnosis (I): Preprocessing and Localization Approaches. IEEE Access
**2021**, 9, 69876–69904. [Google Scholar] [CrossRef] - Sikorski, W.; Walczak, K.; Gil, W.; Szymczak, C. On-Line partial discharge monitoring system for power transformers based on the simultaneous detection of high frequency, ultra-high frequency, and acoustic emission signals. Energies
**2020**, 13, 3271. [Google Scholar] [CrossRef] - Zhou, N.; Luo, L.; Song, H.; Sheng, G.; Jiang, X. A substation UHF partial discharge directional of arrival estimation method based on maximum likelihood estimation. Trans. China Electr. Soc.
**2019**, 34, 3285–3292. [Google Scholar] - Usachev, A.E.; Kubarev, A.Y. Problems of Insulation Diagnostics of Power Equipment by the Method of Partial Discharges. E3S Web Conf.
**2021**, 288, 01077. [Google Scholar] [CrossRef] - Ilkhechi, H.D.; Samimi, M.H. Applications of the Acoustic Method in Partial Discharge Measurement: A Review. IEEE Trans. Dielectr. Electr. Insul.
**2021**, 28, 42–51. [Google Scholar] [CrossRef] - Ghosh, R.; Chatterjee, B.; Dalai, S. A Method for the Localization of Partial Discharge Sources using Partial Discharge Pulse Information from Acoustic Emissions. IEEE Trans. Dielectr. Electr. Insul.
**2017**, 24, 237–243. [Google Scholar] [CrossRef] - Sikorski, W. Development of Acoustic Emission Sensor Optimized for Partial Discharge Monitoring in Power Transformers. Sensors
**2019**, 19, 1865. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pang, X.; Wu, H.; Li, X.; Qi, Y.; Jing, H.; Zhang, J.; Xie, Q. Partial discharge ultrasonic detection based on EULER-MUSIC algorithm and conformal array sensor. IET Gener. Transm. Distrib.
**2018**, 12, 3596–3605. [Google Scholar] [CrossRef] - Azadifar, M.; Karami, H.; Wang, Z.; Rubinstein, M.; Rachidi, F.; Karami, H.; Ghasemi, A.; Gharehpetian, G.B. Partial discharge localization using electromagnetic time reversal: A performance analysis. IEEE Access
**2020**, 8, 147507–147515. [Google Scholar] [CrossRef] - Gao, S.; Zhang, Y.; Xie, Q.; Kan, Y.; Li, S.; Liu, D.; Lü, F. Research on partial discharge source localization based on an ultrasonic array and a step-by-step over-complete dictionary. Energies
**2017**, 10, 593. [Google Scholar] [CrossRef] [Green Version] - Luo, Y.; Li, Z.; Wang, H. A review of online partial discharge measurement of large generators. Energies
**2017**, 10, 1694. [Google Scholar] [CrossRef] [Green Version] - Runde, D.; Brunken, S.; Rüter, C.E.; Kip, D. Integrated Optical Electric Field Sensor Based on a Bragg Grating in Lithium Niobate. Appl. Phys. B
**2006**, 86, 91–95. [Google Scholar] [CrossRef] - Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Kalimullin, R.I. Photon, and Phonon Crystals: Formation and Application in Opto-Acoustoelectronics; Fizmatlit: Moscow, Russia, 2010; p. 158. [Google Scholar]
- Zaripov, D.; Nasibullin, R. Experimental system for continuous monitoring of overhead power lines and substations insulation. In E3S Web of Conferences; Voropai, N., Ed.; EDP Sciences: Les Ulis, France, 2020; Volume 216. [Google Scholar] [CrossRef]
- Phung, B.T.; Blackburn, T.R.; Liu, Z. Acoustic measurements of partial discharge signals. J. Electr. Electron. Eng.
**2001**, 21, 41–47. [Google Scholar] - Lundgaard, L. Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations. IEEE Electr. Insul. Mag.
**1992**, 8, 25–31. [Google Scholar] [CrossRef] - Rohwetter, P.; Habel, W.; Heidmann, G.; Pepper, D. Acoustic emission from DC pre-treeing discharge processes in silicone elastomer. IEEE Trans. Dielectr. Electr. Insul.
**2015**, 22, 52–64. [Google Scholar] [CrossRef] - Silverman, H.F.; Yu, Y.; Sachar, J.M.; Patterson, W.R. Performance of real-time source-location estimators for a large-aperture microphone array. IEEE Trans. Speech Audio Process.
**2005**, 13, 593–606. [Google Scholar] [CrossRef] - Lundgaard, L.; Tangen, G.; Skyberg, B.; Faugstad, K. Acoustic diagnoses of GIS; field experience and development of expert system. IEEE Trans. Power Del.
**1992**, 7, 287–294. [Google Scholar] [CrossRef] - Pan, C.; Chen, G.; Tang, J.; Wu, K. Numerical Modeling of Partial Discharges in a Solid Dielectric-bounded Cavity: A Review. IEEE Trans. Dielectr. Electr. Insul.
**2019**, 26, 981–1000. [Google Scholar] [CrossRef] [Green Version] - Xie, Q.; Li, T.; Tao, J.; Liu, X.; Liu, D.; Xu, Y. Comparison of the acoustic performance and positioning accuracy of three kinds of planar partial discharge ultrasonic array sensors. IET Radar Sonar Navigat.
**2016**, 10, 166–173. [Google Scholar] [CrossRef] - Ultrasonic Sensor Murata MA40S4S/MA40S4R: Data Sheet. Available online: https://www.murata.com/-/media/webrenewal/products/sensor/ultrasonic/open/datasheet_maopn.ashx (accessed on 7 January 2021).
- Yaroslavsky, D.A.; Ivanov, D.A.; Sadykov, M.F.; Goryachev, M.P.; Savelyev, O.G.; Misbakhov, R.S. Real-Time Operating Systems for Wireless Modules. J. Eng. Appl. Sci.
**2016**, 11, 1168–1171. [Google Scholar] [CrossRef] - Ivanov, D.A.; Golenishchev-Kutuzov, A.V.; Yaroslavsky, D.A.; Sadykov, M.F. Portable complex for remote control of high-voltage insulators using wireless data collection and transmission module. ARPN J. Eng. Appl. Sci.
**2018**, 13, 2358–2362. [Google Scholar] - Ivanov, D.; Sadykov, M.; Golenishchev-Kutuzov, A.; Yaroslavsky, D.; Galieva, T.; Arslanov, A. The application of the technology of sensor networks for the intellectualization of the overhead power transmission lines. In E3S Web of Conferences; Art. No. 01071; Fedyukhin, A., Dixit, S., Eds.; EDP Sciences: Les Ulis, France, 2020; Volume 220. [Google Scholar] [CrossRef]
- Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Mardanov, G.D.; Khusnutdinov, R.A. Method of Contactless Remote Diagnostics of High-Voltage Insulators. Russian Federation Patent No. 2597962, 20 September 2016. [Google Scholar]
- Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Ivanov, D.A.; Mardanov, G.D.; Semennikov, A.V. Integrated Noncontact Diagnostics of the Operable Condition of High-Voltage Insulators. Russ. J. Nondestruct. Test.
**2019**, 55, 596–602. [Google Scholar] [CrossRef] - Bogdanova, K.G.; Bulatov, A.R.; Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Kalimullin, R.I.; Potapov, A.A. Formation of Submicron Partially Ordered Domain Structures in Ferroelectric and Magnetic Materials. Phys. Solid State
**2011**, 53, 2263–2265. [Google Scholar] [CrossRef] - Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Kalimullin, R.I.; Mardanov, G.D.; Potapov, A.A. Ultrasonic Tunable Transducer on Domain Structures. Ferroelectrics
**2012**, 441, 25–29. [Google Scholar] [CrossRef] - Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Ivanov, D.A.; Mardanov, G.D.; Semennikov, A.V. Remote Testing for Defects in In-Service High-Voltage Insulators. Russ. J. Nondestruct. Test.
**2018**, 54, 682–686. [Google Scholar] [CrossRef] - Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Ivanov, D.A.; Mardanov, G.D.; Semennikov, A.V.; Van’kov, Y.V. Complex Diagnostics of Defects in High-Voltage Insulators. Bull. Russ. Acad. Sci. Phys.
**2019**, 83, 1490–1493. [Google Scholar] [CrossRef] - Andreev, N.K. Influence of sensitivity and specifity of measuring methods on their informativity and hardware requirements. In E3S Web of Conferences; Art. No. 05043; Shamsutdinov, E.V., Ed.; EDP Sciences: Les Ulis, France, 2019; Volume 124. [Google Scholar] [CrossRef]
- Golenishchev-Kutuzov, A.V.; Golenishchev-Kutuzov, V.A.; Ivanov, D.A.; Mardanov, G.D.; Semennikov, A.V. Method of Contactless Remote Diagnostics of High-Voltage Insulators. Russian Federation Patent No.2679759, 12 February 2019. [Google Scholar]
- Ivanov, D.; Galieva, T.; Sadykov, M.; Golenischev-Kutuzov, A.; Naumov, A. Method for the diagnosis of high-voltage dielectric elements during operation based on dynamic registration of electromagnetic radiation. In E3S Web of Conferences; Art. No. 01061; Voropai, N., Ed.; EDP Sciences: Les Ulis, France, 2020; Volume 216. [Google Scholar] [CrossRef]
- Golenishchev-Kutuzov, A.V.; Ivanov, D.A.; Kalimullin, R.I.; Semennikov, A.V. Remotely Measured Diagnostic Parameters for Estimating the Residual Life of High Voltage Insulators. Bull. Russ. Acad. Sci. Phys.
**2020**, 84, 1502–1504. [Google Scholar] [CrossRef]

**Figure 5.**General scheme for measuring electric field gradients. The AID-70M is installed for testing dielectrics.

**Figure 9.**Dependence of the value of the reflection coefficient R on the change in the resonant wavelength.

**Figure 10.**Distribution of the field strength between the ends of the defective (a) and defect-free (b) insulators. The change in the field on the defect is shown by a dotted line.

**Figure 11.**PD parameters for HVI samples with small defects: 1—measurement by an electromagnetic sensor, 2—measurement by an acoustic sensor, and 3—distribution of the number of PDs depending on the intensity.

**Figure 13.**Parameters of PD and induced field gradients in polymer HVI, measured by electromagnetic and electro-optical sensors, respectively: 1, 2—small defects; 3, 4—large defects; and 5—spatial distribution of induced field gradients.

HVI No. | ∆φ | q, pC | N | ∆φ | q, pC | N |
---|---|---|---|---|---|---|

1 | 45–65 | 60 | 200 | 220–240 | 60 | 1600 |

2 | 40–60 | 60 | 220 | 225–235 | 50 | 2000 |

3 | 50–65 | 70 | 200 | 230–250 | 60 | 1900 |

4 | 50–65 | 60 | 150 | 220–240 | 65 | 1000 |

5 | 45–75 | 70 | 180 | 230–250 | 75 | 1700 |

6 | 40–50 | 290 | 250 | 230–240 | 300 | 2600 |

7 | 35–45 | 270 | 280 | 220–235 | 270 | 2550 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ivanov, D.A.; Sadykov, M.F.; Yaroslavsky, D.A.; Golenishchev-Kutuzov, A.V.; Galieva, T.G.
Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation. *Energies* **2021**, *14*, 5670.
https://doi.org/10.3390/en14185670

**AMA Style**

Ivanov DA, Sadykov MF, Yaroslavsky DA, Golenishchev-Kutuzov AV, Galieva TG.
Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation. *Energies*. 2021; 14(18):5670.
https://doi.org/10.3390/en14185670

**Chicago/Turabian Style**

Ivanov, Dmitry A., Marat F. Sadykov, Danil A. Yaroslavsky, Aleksandr V. Golenishchev-Kutuzov, and Tatyana G. Galieva.
2021. "Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation" *Energies* 14, no. 18: 5670.
https://doi.org/10.3390/en14185670