# Robust Design of Dual-Input Power System Stabilizer Using Chaotic JAYA Algorithm

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- To investigate the performance of C-JAYA in designing PSS.
- To demonstrate the robustness of a dual-input PSS structure.
- To study the potential benefit of C-JAYA compared to the original JAYA, PSO and cuckoo search techniques.
- To show the efficacy of the suggested C-JAYAPSS controller over an extended range of loading conditions.

## 2. Mathematical Model

#### 2.1. Generator

#### 2.2. Excitation System and Stabilize Models

## 3. Classical JAYA

_{i}

_{,j}and $\lfloor {X}_{i,j}\rfloor $ is its absolute value. Besides, the previous equation include two, random numbers $ran{d}_{1}$ and $ran{d}_{2}$. $ran{d}_{1}\left({X}_{bestj}-\lfloor {X}_{i,j}\rfloor \right)$ expresses the tendency toward the best solution, whereas the term $ran{d}_{2}\left({X}_{worstj}-\lfloor {X}_{i,j}\rfloor \right)$ represents the avoidance of the worst solution. At this level, we will only accept ${x}_{new,i}$ if it gives better values of the objective function.

## 4. Proposed Chaotic JAYA

#### 4.1. Chaotic Map

#### 4.2. Chaotic JAYA Algorithm

## 5. Design Approach

#### 5.1. Design Method

#### 5.2. Appling of C-JAYA to Problem Stability

## 6. Simulations

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

**Generator**: M = 9.26; D = 0; ${x}_{d}$ = 0.973 p.u.

**Exciter**: ${K}_{A}$ = 50; ${T}_{A}$ = 0.05 s.

**Transmission line**: R = −0.034 p.u, X = 0.997 p.u.

## References

- Ghasemi, A.; Shayeghi, H.; Alkhatib, H. Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm. Int. J. Electr. Power Energy Syst.
**2013**, 51, 190–200. [Google Scholar] [CrossRef] - Pai, M.A.; Sen Gupta, D.P.; Padiyar, K.R. Small Signal Analysis of Power Systems, 1st ed.; Narosa Publishing House: New Dehli, India, 2004; p. 3. [Google Scholar]
- Khodabakhshian, A.; Hemmati, R.; Moazzami, M. Multi-band power system stabilizer design by using CPCE algorithm for multi-machine power system. Electr. Power Syst. Res.
**2013**, 101, 36–48. [Google Scholar] [CrossRef] - Chatterjee, A.; Ghoshal, S.P.; Mukherjee, V. Chaotic ant swarm optimization for fuzzy-based tuning of power system stabilizer. Int. J. Electr. Power Energy Syst.
**2011**, 33, 657–672. [Google Scholar] [CrossRef] - Ray, P.K.; Paital, S.R.; Mohanty, A.; Foo, Y.E.; Krishnan, A.; Gooi, H.B.; Amaratunga, G.A. A hybrid firefly-swarm optimized fractional order interval type-2 fuzzy PID-PSS for transient stability improvement. IEEE Trans. Ind. Appl.
**2019**, 55, 6486–6498. [Google Scholar] [CrossRef] - Chaib, L.; Choucha, A.; Arif, S. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng. J.
**2017**, 8, 113–125. [Google Scholar] [CrossRef] [Green Version] - Zhang, Y.; Jin, Z.; Chen, Y. Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems. Knowl.-Based Syst.
**2020**, 187, 104836. [Google Scholar] [CrossRef] - Sun, G.; Zhang, H.; Fang, J.; Li, G.; Li, Q. A new multi-objective discrete robust optimization algorithm for engineering design. Appl. Math. Model.
**2018**, 53, 602–621. [Google Scholar] [CrossRef] - Beirami, A.; Vahidinasab, V.; Shafie-khah, M.; Catalão, J.P. Multiobjective ray optimization algorithm as a solution strategy for solving non-convex problems: A power generation scheduling case study. Int. J. Electr. Power Energy Syst.
**2020**, 119, 105967. [Google Scholar] [CrossRef] - Farah, A.; Belazi, A. A novel chaotic Jaya algorithm for unconstrained numerical optimization. Nonlinear Dyn.
**2018**, 93, 1451–1480. [Google Scholar] [CrossRef] - Rao, R.V.; More, K.C. Optimal design and analysis of mechanical draft cooling tower using improved Jaya algorithm. Int. J. Refrig.
**2017**, 82, 312–324. [Google Scholar] [CrossRef] - Rao, R.V.; Saroj, A. An elitism-based self-adaptive multi-population Jaya algorithm and its applications. Soft Comput.
**2019**, 23, 4383–4406. [Google Scholar] [CrossRef] - Caldeira, R.H.; Gnanavelbabu, A. Solving the flexible job shop scheduling problem using an improved Jaya algorithm. Comput. Ind. Eng.
**2019**, 137, 106064. [Google Scholar] [CrossRef] - Raut, U.; Mishra, S. An improved Elitist–Jaya algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems. Renew. Energy Focus
**2019**, 30, 92–106. [Google Scholar] [CrossRef] - Guesmi, T.; Farah, A.; Marouani, I.; Alshammari, B.; Abdallah, H.H. Chaotic sine–cosine algorithm for chance-constrained economic emission dispatch problem including wind energy. IET Renew. Power Gener.
**2020**, 14, 1808–1821. [Google Scholar] [CrossRef] - Yousri, D.; Allam, D.; Eteiba, M.B. Chaotic whale optimizer variants for parameters estimation of the chaotic behavior in Permanent Magnet Synchronous Motor. Appl. Soft Comput.
**2019**, 74, 479–503. [Google Scholar] [CrossRef] - García-Ródenas, R.; Linares, L.J.; López-Gómez, J.A. A memetic chaotic gravitational search algorithm for unconstrained global optimization problems. Appl. Soft Comput.
**2019**, 79, 14–29. [Google Scholar] [CrossRef] - Rizk-Allah, R.M.; Hassanien, A.E.; Bhattacharyya, S. Chaotic crow search algorithm for fractional optimization problems. Appl. Soft Comput.
**2018**, 71, 1161–1175. [Google Scholar] [CrossRef] - Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng.
**2018**, 5, 275–284. [Google Scholar] [CrossRef] - Sayed, G.I.; Khoriba, G.; Haggag, M.H. A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl. Intell.
**2018**, 48, 3462–3481. [Google Scholar] [CrossRef] - Too, J.; Abdullah, A.R. Chaotic atom search optimization for feature selection. Arab. J. Sci. Eng.
**2020**, 45, 6063–6079. [Google Scholar] [CrossRef] - Tharwat, A.; Hassanien, A.E. Chaotic antlion algorithm for parameter optimization of support vector machine. Appl. Intell.
**2018**, 48, 670–686. [Google Scholar] [CrossRef] - Farah, A.; Guesmi, T.; Abdallah, H.H.; Ouali, A. A novel chaotic teaching–learning-based optimization algorithm for multi-machine power system stabilizers design problem. Int. J. Electr. Power Energy Syst.
**2016**, 77, 197–209. [Google Scholar] [CrossRef] - Peres, W.; Júnior, I.C.S.; Passos Filho, J.A. Gradient based hybrid metaheuristics for robust tuning of power system stabilizers. Int. J. Electr. Power Energy Syst.
**2018**, 95, 47–72. [Google Scholar] [CrossRef] - Butti, D.; Mangipudi, S.K.; Rayapudi, S.R. An improved whale optimization algorithm for the design of multi-machine power system stabilizer. Int. Trans. Electr. Energy Syst.
**2020**, 30, e12314. [Google Scholar] [CrossRef] - Abd Elazim, S.M.; Ali, E.S. Optimal power system stabilizers design via cuckoo search algorithm. Int. J. Electr. Power Energy Syst.
**2016**, 75, 99–107. [Google Scholar] [CrossRef] - Rao, R.V. Jaya: An Advanced Optimization Algorithm and Its Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 770–780. [Google Scholar]
- Li, C.; Zhou, X.; Gao, D.Y. Stable trajectory of logistic map. Nonlinear Dyn.
**2014**, 78, 209–217. [Google Scholar] [CrossRef]

Method | ${\mathit{K}}_{\mathit{s}1}$ | ${\mathit{K}}_{\mathit{s}2}$ | ${\mathit{T}}_{1}$ | ${\mathit{T}}_{2}$ | ${\mathit{T}}_{3}$ | ${\mathit{T}}_{4}$ |
---|---|---|---|---|---|---|

C-JAYA | −47.0458 | 95.0377 | 1.9750 | 0.1059 | 0.3624 | 1.8487 |

JAYA | −12.1393 | 33.1568 | 1.8413 | 0.2951 | 1.4674 | 1.9591 |

PSO | −18.3154 | 87.0993 | 1.8328 | 0.4180 | 1.9986 | 0.0111 |

CS | −16.9978 | 74.6285 | 1.7516 | 0.1885 | 0.4841 | 1.7070 |

Loading | P(pu) | Q(pu) |
---|---|---|

Case 1 | 1 | 0.015 |

Case 2 | 1 | −0.1 |

Case 3 | 0.8 | 0.5 |

Case 4 | 0.95 | 0.3 |

Method | ITAE | FD | ||||||
---|---|---|---|---|---|---|---|---|

Case 1 | Case 2 | Case 3 | Case 4 | Case 1 | Case 2 | Case 3 | Case 4 | |

C-JAYAPSS | 0.87 | 0.94 | 0.92 | 1.03 | 16.21 | 19.38 | 21.04 | 24.12 |

JAYAPSS | 0.93 | 1.04 | 1.14 | 1.11 | 21.36 | 25.14 | 27.77 | 28.65 |

PSOPSS | 1.01 | 1.13 | 1.38 | 1.45 | 28.74 | 32.88 | 39.15 | 52.09 |

CPSS | 1.17 | 1.31 | 1.05 | 1.21 | 44.51 | 56.71 | 23.19 | 33.67 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alshammari, B.M.; Farah, A.; Alqunun, K.; Guesmi, T.
Robust Design of Dual-Input Power System Stabilizer Using Chaotic JAYA Algorithm. *Energies* **2021**, *14*, 5294.
https://doi.org/10.3390/en14175294

**AMA Style**

Alshammari BM, Farah A, Alqunun K, Guesmi T.
Robust Design of Dual-Input Power System Stabilizer Using Chaotic JAYA Algorithm. *Energies*. 2021; 14(17):5294.
https://doi.org/10.3390/en14175294

**Chicago/Turabian Style**

Alshammari, Badr M., Anouar Farah, Khalid Alqunun, and Tawfik Guesmi.
2021. "Robust Design of Dual-Input Power System Stabilizer Using Chaotic JAYA Algorithm" *Energies* 14, no. 17: 5294.
https://doi.org/10.3390/en14175294