The Comparative Analysis of Phase Shifting Transformers
Abstract
:1. Introduction
- Presentation of the working idea of asymmetrical phase shifting transformer;
- Verification of the laboratory test, simulation comparison of the proposed solution with classical asymmetrical phase shifting transformers.
2. Power Flow Control in the Power Systems
3. Phase Shifting Transformers
- Symmetrical;
- Asymmetrical;
- Independent.
- Single-core;
- Two-core.
- Rated through put power up to 1800 MVA;
- Rated voltage up to 765 kV;
- Maximum no-load phase angle up to ±85°.
3.1. Asymmetrical Phase Shifting Transformer (APST)
3.2. Asymmetrical Controllable Phase Shifting Transformers (ACPST)
4. Laboratory Arrangement and Simulation Model
4.1. Laboratory Setup
- System S2 internal impedance greater than system S1 (ZS1 = 1.24 Ω, ZS2 = 0.46 Ω);
- Nominal voltage of system S1 greater than S2 (VS1 = 1.24 V, VS2 = 0.46 V);
- Phase angle between both systems voltages 0° (no load).
4.2. Simulation Model
5. Laboratory Tests
6. The ACPST and APST Power Transfer Comparative Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adapa, R.; Nilsson, S.; Andersen, B.; Yang, Y. Technical Description of the Unified Power Flow Controller (UPFC) and Its Potential Variations. In Flexible AC Transmission Systems; Andersen, B., Nilsson, S., Eds.; CIGRE Green Books; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Relić, F.; Marić, P.; Glavaš, H.; Petrović, I. Influence of FACTS Device Implementation on Performance of Distribution Network with Integrated Renewable Energy Sources. Energies 2020, 13, 5516. [Google Scholar] [CrossRef]
- Ćalasan, M.; Konjić, T.; Kecojević, K.; Nikitović, L. Optimal Allocation of Static Var Compensators in Electric Power Systems. Energies 2020, 13, 3219. [Google Scholar] [CrossRef]
- Bruno, S.; De Carne, G.; La Scala, M. Distributed FACTS for Power System Transient Stability Control. Energies 2020, 13, 2901. [Google Scholar] [CrossRef]
- Sieńko, T.; Szczepanik, J.; Martis, C. Reactive Power Transfer via Matrix Converter Controlled by the “One Periodical” Algorithm. Energies 2020, 13, 665. [Google Scholar] [CrossRef] [Green Version]
- Joint Study Joint Study by ČEPS, MAVIR, PSE and SEPS Regarding the Issue of Unplanned Flows in the CEE Region in Relation to the Common Market Area Germany—Austria. January 2013. Available online: https://www.pse.pl/documents/20182/51490/Unplanned_flows_in_the_CEE_region.pdf/44c6534e-a30d-4f06-9f7e-cb941b0ccf40 (accessed on 25 March 2021).
- Urząd Regulacji Energetyki. Sprawozdanie z Działalności Prezesa URE w 2019r; Urząd Regulacji Energetyki: Warszawa, Poland, 2020. [Google Scholar]
- Singh, A.; Frei, T.; Chokani, N.; Abhari, R.S. Impact of Unplanned Power Flows in Interconnected Transmission Systems—Case Study of Central Eastern European Region. Energy Policy 2016, 91, 287–303. [Google Scholar] [CrossRef]
- Verboomen, J.; Van Hertem, D.; Schavemaker, P.H.; Kling, W.L.; Belmans, R. Phase shifting transformers: Principles and applications. In Proceedings of the 2005 International Conference on Future Power Systems, Amsterdam, The Netherlands, 16–18 November 2005; p. 6. [Google Scholar] [CrossRef]
- Van Hertem, D. The Use of Power Flow Controlling Devices in the Liberalized Market. Ph.D. Thesis, K.U. Leuven, Leuven, Belgium, 2009. [Google Scholar]
- Kling, W.; Klaar, D.; Schuld, J.; Kanters, A.; Koreman, C.; Reijnders, H.; Spoorenberg, C. Phase Shifting Transformers Installed in The Netherlands in Order to Increase Available International Transmission Capacity; CIGRE C2-207; CIGRE: Paris, France, 2004. [Google Scholar]
- Korab, R.; Owczarek, R. Cross-Border Power Flow Control by Using Phase Shifting Transformers. Przeglad Elektrotechniczny 2012, 88, 299–302. [Google Scholar]
- Kocot, H.; Korab, R.; Owczarek, R.; Przygrodzki, M.; Żmuda, K. Countermeasures for Dealing with Uncheduled Power Flows within an Interconnected Power System; Elektryka: Szczecin, Poland, 2015. [Google Scholar]
- European Network of Transmission System Operators for Electricity. TYNDP 2020 Main Report; Version for ACER Opinion; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2021. [Google Scholar]
- European Network of Transmission System Operators for Electricity. Regional Investment Plan Northern Seas; Draft Version Prior to Public Consultation; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2020. [Google Scholar]
- European Network of Transmission System Operators for Electricity. Regional Investment Plan CCE; Draft Version Prior to Public Consultation; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2020. [Google Scholar]
- Ohki, Y. Construction of a new phase-shifting transformer [News from Japan]. IEEE Electr. Insul. Mag. 2016, 32, 44–47. [Google Scholar] [CrossRef]
- Szczepanik, J. The Multiphase Matrix Converter for Power System Applications; Monograph, Electrical and Computer Engineering; Cracow University of Technology: Kraków, Poland, 2014. [Google Scholar]
- Lubośny, Z.; Machowski, J. Power System Stability; WNT: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Machowski, J. Power System Control; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2017. (In Polish) [Google Scholar]
- IEEE Guide for the Application, Specification, and Testing of Phase-Shifting Transformers; IEEE Std C57.135-2011 (Revision of IEEE Std C57.135-2001); IEEE: New York, NY, USA, 2011; pp. 1–50. [CrossRef]
- European Network of Transmission System Operators for Electricity. Phase Shift Transformer Modelling; Version 1.0.0. CGMES V2.4.14. Available online: https://eepublicdownloads.entsoe.eu/clean-documents/CIM_documents/Grid_Model_CIM/ENTSOE_CGMES_v2.4_28May2014_PSTmodelling.pdf (accessed on 25 March 2021).
- European Network of Transmission System Operators for Electricity. Phase Shifting Transformers (PST). Available online: https://www.entsoe.eu/Technopedia/techsheets/phase-shifting-transformers-pst (accessed on 26 March 2021).
- Siemens Energy. Phase Shifter Application Workshop. PJM Power Pool. March 2015. Available online: https://pjm.com/-/media/committees-groups/task-forces/partf/20150514/20150514-item-03-pjm-phase-shifting-transformer-principles.ashx (accessed on 25 March 2021).
- Bednarczyk, T.; Szablicki, M.; Halinka, A.; Rzepka, P.; Sowa, P. Phase Shifting Transformer Electromagnetic Model Dedicated for Power System Protection Testing in a Transient Condition. Energies 2021, 14, 627. [Google Scholar] [CrossRef]
- Sakallıoğlu, B.; Esenboğa, B.; Demirdelen, T.; Tümay, M. Performance evaluation of phase-shifting transformer for integration of renewable energy sources. Electr. Eng. 2020, 102, 2025–2039. [Google Scholar] [CrossRef]
- Mamcarz, D.; Albrechtowicz, P.; Radwan-Pragłowska, N.; Rozegnał, B. The Analysis of the Symmetrical Short-Circuit Currents in Backup Power Supply Systems with Low-Power Synchronous Generators. Energies 2020, 13, 4474. [Google Scholar] [CrossRef]
- Rozegnał, B.; Albrechtowicz, P.; Mamcarz, D.; Radwan-Pragłowska, N.; Cebula, A. The Short-Circuit Protections in Hybrid Systems with Low-Power Synchronous Generators. Energies 2021, 14, 160. [Google Scholar] [CrossRef]
- Szczepanik, J.; Rozegnał, B. The development of the real life model of the five node power system. Czasopismo Techniczne Elektrotechnika Y 2015, 112, 83–102. [Google Scholar]
US = const | UL = const | ||||||||
---|---|---|---|---|---|---|---|---|---|
US (V) | α (°) | ΔU (V) | UL (V) | ΔP (%) | US (V) | α (°) | ΔU (V) | UL (V) | ΔP (%) |
230 | 0 | 0 | 230.00 | 3.5 | 230 | 0 | 0 | 230 | 3.5 |
230 | 2 | 8.03 | 230.14 | 7.0 | 229.86 | 8.02 | 2 | 230 | 7.0 |
230 | 4 | 16.07 | 230.56 | 10.5 | 229.44 | 16.04 | 4 | 230 | 10.5 |
230 | 6 | 24.16 | 231.27 | 14.0 | 228.74 | 24.03 | 6 | 230 | 13.9 |
230 | 8 | 32.31 | 232.26 | 17.5 | 227.76 | 31.99 | 8 | 230 | 17.4 |
230 | 10 | 40.53 | 233.54 | 21.1 | 226.51 | 39.92 | 10 | 230 | 20.8 |
230 | 12 | 48.86 | 235.13 | 24.7 | 224.98 | 47.80 | 12 | 230 | 24.2 |
230 | 14 | 57.32 | 237.03 | 28.4 | 223.17 | 55.61 | 14 | 230 | 27.6 |
230 | 16 | 65.92 | 239.26 | 32.1 | 221.10 | 63.37 | 16 | 230 | 30.9 |
230 | 18 | 74.69 | 241.82 | 36.0 | 218.75 | 71.04 | 18 | 230 | 34.2 |
230 | 20 | 83.67 | 244.75 | 39.9 | 216.14 | 78.63 | 20 | 230 | 37.5 |
230 | 22 | 92.87 | 248.04 | 43.9 | 213.27 | 86.12 | 22 | 230 | 40.7 |
230 | 24 | 102.34 | 251.74 | 48.0 | 210.14 | 93.50 | 24 | 230 | 43.8 |
230 | 26 | 112.11 | 255.87 | 52.2 | 206.75 | 100.78 | 26 | 230 | 46.9 |
230 | 28 | 122.22 | 260.46 | 56.6 | 203.10 | 107.93 | 28 | 230 | 50.0 |
230 | 30 | 132.71 | 265.54 | 61.2 | 199.22 | 114.95 | 30 | 230 | 53.0 |
230 | 32 | 143.63 | 271.16 | 65.9 | 195.09 | 121.83 | 32 | 230 | 55.9 |
Rated Primary Voltage [V] | Rated Secondary Voltage [V] | Rated Primary Current [A] | Rated Secondary Current [A] | Rated Power [kVA] | Rated Frequency [Hz] | Connection Group | Short-Circuit Voltage [%] | |
---|---|---|---|---|---|---|---|---|
Quadrature transformer | 3 × 400 | 3 × 128/3 × 64/3 × 32/3 × 16/3 × 8/3 × 4 | 3 × 33.2 | 3 × 30/3 × 30/3 × 30/3 × 30/3 × 30/3 × 30 | 22.5 | 50 | D/iiiiii | 3.88 |
Longitudinal transformer | 3 × 400 | 3 × 400 + 5 × 1.5%–10 × 1.5% | 3 × 33 | 3 × 32.5 | 22.5 | 50 | Yy0 | 5.10 |
Quad. Voltage [V] | 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
Output ACPST voltage [V] (blue case 230 V) | 234.60 | 234.17 | 234.01 | 234.22 | 234.56 | 234.88 | 235.93 | 236.56 | 237.47 | 238.80 |
Output ACPST voltage [V] (red case 196 V) | 213.47 | 213.13 | 212.98 | 213.36 | 213.54 | 214.33 | 215.37 | 216.52 | 217.80 | 219.62 |
Quad. Voltage [V] | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | |
Output ACPST voltage [V] (blue case 230 V) | 240.23 | 241.91 | 243.76 | 245.77 | 247.46 | 249.28 | 251.13 | 252.66 | 254.75 | |
Output ACPST voltage [V] (red case 196 V) | 221.32 | 223.08 | 224.92 | 226.84 | 229.06 | 231.18 | 233.67 | 236.05 | 237.93 |
Quad. Voltage [V] | 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
Output ACPST voltage [V] (blue dotted case 230 V) | 230.6 | 230.2 | 229.4 | 228.2 | 231.5 | 232.9 | 234.8 | 237.4 | 233.6 | 234.8 |
Output ACPST voltage [V] (red dotted case 196 V) | 211.2 | 210.9 | 210.8 | 210.9 | 211.3 | 211.9 | 212.7 | 213.7 | 214.8 | 216.2 |
Quad. Voltage [V] | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | |
Output ACPST voltage [V] (blue dotted case 230 V) | 236.3 | 237.8 | 239.7 | 241.5 | 243.6 | 245.6 | 244.9 | 246.6 | 248.5 | |
Output ACPST voltage [V] (red dotted case 196 V) | 217.8 | 219.5 | 221.2 | 223.3 | 225.3 | 227.4 | 229.3 | 231.6 | 233.8 |
Quad. Voltage (V) | 0 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
Output ACPST voltage (V) (248/230 V) | 230.6 | 230.2 | 229.4 | 228.2 | 231.5 | 232.9 | 234.8 | 237.4 | 233.6 | 234.8 |
Output APST voltage (V) | 245.9 | 245.7 | 245.7 | 245.9 | 246.3 | 246.8 | 247.6 | 248.5 | 248.6 | 250.8 |
Quad. Voltage (V) | 80 | 88 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | |
Output ACPST voltage (V) (blue case 230 V) | 236.3 | 237.8 | 239.7 | 241.5 | 243.6 | 245.6 | 244.9 | 246.6 | 248.5 | |
Output APST voltage (V) | 252.2 | 253.6 | 255.3 | 256.8 | 258.6 | 260.1 | 262.9 | 264.5 | 266.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrechtowicz, P.; Szczepanik, J. The Comparative Analysis of Phase Shifting Transformers. Energies 2021, 14, 4347. https://doi.org/10.3390/en14144347
Albrechtowicz P, Szczepanik J. The Comparative Analysis of Phase Shifting Transformers. Energies. 2021; 14(14):4347. https://doi.org/10.3390/en14144347
Chicago/Turabian StyleAlbrechtowicz, Paweł, and Jerzy Szczepanik. 2021. "The Comparative Analysis of Phase Shifting Transformers" Energies 14, no. 14: 4347. https://doi.org/10.3390/en14144347
APA StyleAlbrechtowicz, P., & Szczepanik, J. (2021). The Comparative Analysis of Phase Shifting Transformers. Energies, 14(14), 4347. https://doi.org/10.3390/en14144347