Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study
Abstract
:1. Introduction
2. Description of the Proposed CPV System
3. Numerical Simulation Analysis
3.1. Ray Tracing through Reflective Homogeniser
3.2. Ray Tracing through Refractive Homogeniser
3.3. Irradiation Uniformity on the Solar Cells
4. Optical Characteristics of the CPV System Using a Reflective Homogeniser
5. Optical Characteristics of the CPV System Using a Refractive Homogeniser
6. Peak to Average Ratio (PAR)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | |
CFD | Computational Fluid Dynamics |
CPV | Concentrated Photovoltaic |
CPVT | Concentrated Photovoltaic/Thermal |
CR | Concentration Ratio |
DCCPC | Dielectric-Cross Compound-Parabolic-Concentrator |
FF | Fill factor |
MJSC | Multi-Junction Solar Cell |
MLH | Multi-Leg Homogeniser |
PAR | Peak-to-Average Ratio |
PMMA | Polymethyl Methacrylate |
POE | Primary Optical Element |
RTP | Refractive Truncated Pyramid |
SILO | Single-Lens-Optical Element |
SOE | Secondary Optical Element |
Symbols | |
Area of Fresnel lens (mm2) | |
AMJSC | Area of MJSC (mm2) |
D | Working distance between concave lens and inlet homogeniser (mm) |
Focal length of the Fresnel lens (mm) | |
Focal length of the plano-concave lens (mm) | |
GCR | Geometric concentration ratio |
H | Height of the homogeniser (mm) |
Refractive index of the material used for Fresnel lens | |
NA | Numerical aperture for the Fresnel lens |
NMJSC | Number of MJSC |
R | Distance between the optical axis and the incident ray of the Fresnel lens (mm) |
U | Uniformity (%) |
Inlet aperture width of the homogeniser (mm) | |
Outlet aperture width of the homogeniser (mm) |
References
- Renno, C.; Landi, G.; Petito, F.; Neitzert, H.C. Influence of a degraded triple-junction solar cell on the CPV system performances. Energy Convers. Manag. 2018, 160, 326–340. [Google Scholar] [CrossRef]
- Yazdanifard, F.; Ebrahimnia-Bajestan, E.; Ameri, M. Performance of a parabolic trough concentrating photovoltaic/thermal system: Effects of flow regime, design parameters, and using nanofluids. Energy Convers. Manag. 2017, 148, 1265–1277. [Google Scholar] [CrossRef]
- Daabo, A.M.; Mahmoud, S.; Al-Dadah, R.K. The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications. Energy 2016, 114, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, H.; Han, Y.; Liu, H.; Li, M. Experimental and simulation studies on a novel compound parabolic concentrator. Renew. Energy 2017, 113, 784–794. [Google Scholar] [CrossRef]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z. Numerical and experimental analysis of a point focus solar collector using high concentration imaging PMMA Fresnel lens. Energy Convers. Manag. 2011, 52, 2417–2426. [Google Scholar] [CrossRef]
- Shanks, K.; Senthilarasu, S.; Mallick, T.K. Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renew. Sustain. Energy Rev. 2016, 60, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Baig, H.; Heasman, K.C.; Mallick, T.K. Non-uniform illumination in concentrating solar cells. Renew. Sustain. Energy Rev. 2012, 16, 5890–5909. [Google Scholar] [CrossRef]
- Philipps, S.P.; Dimroth, F.; Bett, A.W. High-efficiency III-V multijunction solar cells. Pract. Handb. Photovolt. 2012, 417–448. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Shah, A.H. Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities. Renew. Sustain. Energy Rev. 2018. [Google Scholar] [CrossRef]
- Sharaf, O.Z.; Orhan, M.F. Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I—Fundamentals, design considerations and current technologies. Renew. Sustain. Energy Rev. 2015, 50, 1500–1565. [Google Scholar] [CrossRef]
- Aldossary, A.; Mahmoud, S.; Al-Dadah, R. Technical feasibility study of passive and active cooling for concentrator PV in harsh environment. Appl. Therm. Eng. 2016, 100, 490–500. [Google Scholar] [CrossRef]
- Gilmore, N.; Timchenko, V.; Menictas, C. Microchannel cooling of concentrator photovoltaics: A review. Renew. Sustain. Energy Rev. 2018, 90, 1041–1059. [Google Scholar] [CrossRef]
- Xie, W.T.; Dai, Y.J.; Wang, R.Z.; Sumathy, K. Concentrated solar energy applications using Fresnel lenses: A review. Renew. Sustain Energy Rev. 2011, 15, 2588–2606. [Google Scholar] [CrossRef]
- Imtiaz Hussain, M.; Ali, A.; Lee, G.H. Performance and economic analyses of linear and spot Fresnel lens solar collectors used for greenhouse heating in South Korea. Energy 2015, 90, 1522–1531. [Google Scholar] [CrossRef]
- Algora, C.; Rey-Stolle, I. Handbook of Concentrator Photovoltaic Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Ancona, M.A.; Bianchi, M.; Diolaiti, E.; Giannuzzi, A.; Marano, B.; Melino, F. A novel solar concentrator system for combined heat and power application in residential sector. Appl. Energy 2017, 185, 1199–1209. [Google Scholar] [CrossRef]
- Victoria, M.; Domínguez, C.; Antón, I.; Sala, G. Comparative analysis of different secondary optical elements for aspheric primary lenses. Opt. Express 2009, 17, 6487. [Google Scholar] [CrossRef]
- Nayak, A.; Kinsey, G.S.; Liu, M.; Bagienski, W.; Garboushian, V. Comparison of primary optics in amonix CPV arrays. AIP Conf. Proc. 2012, 1477, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Jaus, J.; Bett, A.W.; Reinecke, H.; Weber, E.R. Reflective secondary optical elements for Fresnel lens based concentrator modules. Prog. Photovolt. Res. Appl. 2011, 19, 580–590. [Google Scholar] [CrossRef]
- Renzi, M.; Cioccolanti, L.; Barazza, G.; Egidi, L.; Comodi, G. Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems. Appl. Energy 2017, 185, 233–243. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, L. Ball lens as secondary optical element for CPV system. Sol. Energy 2017, 148, 57–62. [Google Scholar] [CrossRef]
- Ferrer-Rodríguez, J.P.; Baig, H.; Fernández, E.F.; Almonacid, F.; Mallick, T.; Pérez-Higueras, P. Optical modeling of four Fresnel-based high-CPV units. Sol. Energy 2017, 155, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Burhan, M.; Chua, K.J.E.; Ng, K.C. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic (CPV) system with electrical rating analysis. Energy Convers. Manag. 2016, 116, 58–71. [Google Scholar] [CrossRef]
- Alamri, Y.A.; Albaik, I.; Mahmoud, S.; Al-Dadah, R.; Ismail, M.A. Integration of concentrated multi-junction solar cells with small-scale organic rankine cycle. Energy Convers. Manag. 2021, 239, 114235. [Google Scholar] [CrossRef]
- Azure Space Solar Power GMBH. Enhanced Fresnel Assembly—EFA Type: 3C42A—with 10 × 10 mm2 CPV TJ Solar Cell Application: Concentrating Photovoltaic (CPV) Modules; Azure Space Solar Power GMBH: Heilbronn, Germany, 2014; p. 4. Available online: http://azurspace.com/images/products/DB_3987-00-00_3C42_AzurDesign_EFA_10x10_2014-03-27.pdf (accessed on 20 April 2020).
- Leutz, R.; Suzuki, A. Nonimaging Fresnel Lenses: Design and Performance of Solarconcentrators; Springer: Heidelberg, Germany, 2001. [Google Scholar]
- Zhuang, Z.; Yu, F. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Opt. Laser Technol. 2014, 60, 27–33. [Google Scholar] [CrossRef]
- Malacara, D. Optical Shop Testing: Third Edition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Al-Shohani, W.A.M.; Al-Dadah, R.; Mahmoud, S.; Algareu, A. Optimum design of V-trough concentrator for photovoltaic applications. Sol. Energy 2016, 140, 241–254. [Google Scholar] [CrossRef]
- Yılmaz, İ.H.; Mwesigye, A. Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review. Appl. Energy 2018, 225, 135–174. [Google Scholar] [CrossRef]
- Born, M.A.X. Principles of optics. Spectrosc. Ellipsom. 1959, 13–48. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Jiang, L.; Winston, R. Coupled optical-thermal modeling, design and experimental testing of a novel medium-temperature solar thermal collector with pentagon absorber. Sol. Energy 2018, 173, 1248–1261. [Google Scholar] [CrossRef]
- American National Standard Institute, Inc., ANSI/NAPMIT7.228-1997. Electronic Projection-Fixed Resolution Projectors; National Association of Photographic Manufacture, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Gong, J.; Wang, C.; Gong, C.; Liang, F.; Ma, J. Study on the uniformity of high concentration photovoltaic system with array algorithm. Sol. Energy 2017, 153, 181–187. [Google Scholar] [CrossRef]
- Wang, C.L.; Gong, J.H.; Yan, J.J.; Zhou, Y.; Fan, D.W. Theoretical and experimental study on the uniformity of reflective high concentration photovoltaic system with light funnel. Renew. Energy 2019, 133, 893–900. [Google Scholar] [CrossRef]
- Herrero, R.; Victoria, M.; Domínguez, C.; Askins, S.; Antón, I.; Sala, G. Concentration photovoltaic optical system irradiance distribution measurements and its effect on multi-junction solar cells. Prog. Photovolt. Res. 2012, 20, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Herrero, R.; Victoria, M.; Askins, S.; Domínguez, C.; Antón, I.; Sala, G.; Berrios, J. Indoor characterization of multi-junction solar cells under non uniform light patterns. AIP Conf. Proc. 2010, 1277, 36–38. [Google Scholar] [CrossRef]
- Victoria, M.; Herrero, R.; Domínguez, C.; Antón, I.; Askins, S.; Sala, G. Characterization of the spatial distribution of irradiance and spectrum in concentrating photovoltaic systems and their effect on multi-junction solar cells. Prog. Photovolt. Res. 2013, 21, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Saura, J.M.; Fernández, E.F.; Almonacid, F.M. Characterisation and impact of non- uniformity on multi-junction solar cells (MJSC) caused by concentrator optics. AIP Conf. Proc. 2019, 2149. [Google Scholar] [CrossRef]
- Herrero, R.; Victoria, M.; Domínguez, C.; Askins, S.; Antón, I.; Sala, G. Understanding causes and effects of non-uniform light distributions on multi-junction solar cells: Procedures for estimating efficiency losses. AIP Conf. Proc. 2015, 1679. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, Y.A.; Mahmoud, S.; Al-Dadah, R.; Sharma, S.; Roy, J.N.; Ding, Y. Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study. Energies 2021, 14, 4301. https://doi.org/10.3390/en14144301
Alamri YA, Mahmoud S, Al-Dadah R, Sharma S, Roy JN, Ding Y. Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study. Energies. 2021; 14(14):4301. https://doi.org/10.3390/en14144301
Chicago/Turabian StyleAlamri, Yassir A., Saad Mahmoud, Raya Al-Dadah, Shivangi Sharma, J. N. Roy, and Yulong Ding. 2021. "Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study" Energies 14, no. 14: 4301. https://doi.org/10.3390/en14144301
APA StyleAlamri, Y. A., Mahmoud, S., Al-Dadah, R., Sharma, S., Roy, J. N., & Ding, Y. (2021). Optical Performance of Single Point-Focus Fresnel Lens Concentrator System for Multiple Multi-Junction Solar Cells—A Numerical Study. Energies, 14(14), 4301. https://doi.org/10.3390/en14144301