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Abstract: This paper investigates the potential of a new integrated solar concentrated photovoltaic
(CPV) system that uses a solo point focus Fresnel lens for multiple multi-junction solar cells (MJSCs).
The proposed system comprises of an FL concentrator as the primary optical element, a multi-leg
homogeniser as the secondary optical element (SOE), a plano-concave lens, and four MJSCs. A
three-dimensional model of this system was developed using the ray tracing method to predict the
influence of aperture width, height, and position with respect to MJSCs of different reflective and
refractive SOE on the overall optical efficiency of the system and the irradiance uniformity achieved
on the MJSCs’ surfaces. The results show that the refractive homogeniser using N-BK7 glass can
achieve higher optical efficiency (79%) compared to the reflective homogeniser (57.5%). In addition,
the peak to average ratio of illumination at MJSCs for the reflective homogeniser ranges from 1.07
to 1.14, while for the refractive homogeniser, it ranges from 1.06 to 1.34, causing minimum effects
on the electrical performance of the MJSCs. The novelty of this paper is the development of a high
concentration CPV system that integrates multiple MJSCs with a uniform distribution of rays, unlike
the conventional CPV systems that utilise a single concentrator onto a single MJSC. The optical
efficiency of the CPV system was also examined using both the types of homogeniser (reflective
and refractive).

Keywords: Fresnel lens; concentrated photovoltaic; ray tracing; uniformity

1. Introduction

With increasing concerns about global warming, there has been a shift in focus towards
solar power as a renewable and limitless energy source for replacing conventional fossil
fuels. In response to the demand growth for more efficient, yet cost effective, energy
systems, numerous studies have focused on the performance improvement of photovoltaic
(PV) systems and on finding integrated solutions with various hybrid technologies, such
as concentration photovoltaic (CPV) systems [1].

CPV systems increase energy flux-density by focusing solar energy onto a smaller
area of the receiving solar cell using cost-efficient concentrating optics. These optics work
on the principles of refraction or reflection. In reflection-based systems, highly reflective
surfaces such as a parabolic trough [2], a parabolic dish [3], or a compound parabolic
concentrator [4] are used to reflect and concentrate the solar rays. In refraction-based
systems, the principles of refraction are applied using a Fresnel lens [5]. CPV systems
are generally classified on the basis of a geometrical parameter called the concentration
ratio (CR) achieved by the geometry and the material of the system. A CPV system is
classed as a low concentration (CR < 10), medium concentration (10 < CR < 100), high
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concentration (100 < CR < 2000), and ultrahigh concentration (CR > 2000) [6]. These systems
employ various types of solar cell technologies, such as multi-junction solar cells (MJSCs),
depending on the field of use, for both solar thermal and solar PV application [7].

In recent years, the use of MJSCs for terrestrial concentrator applications has garnered
attention due to their very high conversion efficiency, enabling a significant reduction in the
overall system cost for generating electrical power [8]. The basic structure of MJSCs com-
prises multilayer III-V compound semiconductor materials that have multiple bandgaps for
responding to several light wavelength regions [9]. The first layer has the highest bandgap
energy for absorbing the shorter wavelength part of the solar radiation spectrum, whereas
the next layers have smaller energy bandgaps and are designed to absorb solar radiation in
the longer wavelength portion of the spectrum [10].

The use of MJSCs is more appropriate for CPV systems over single junction because
of their higher effectiveness, better response to higher solar concentration, and lower
temperature coefficient, which ensures a minimal effect on efficiencies for high temperature
ranges [11]. The latest reported efficiency of MJSCs is as high as 46%, with a foreseeable
potential to touch the 50% mark by the 2030s [12].

Among all concentrating collectors, the Fresnel lens (FL) concentrators are proving
lucrative due to their characteristic light-weightiness, smaller size, effective capability of
concentration, and low investment costs [13]. Fresnel lenses can mainly be configured
as either point-focused or line-focused with both higher and lower concentration ratios,
respectively [14]. A general characteristic of an FL is the production of non-uniform flux
distribution [15]. This non-uniformity can considerably impact and reduce the electrical
output, degrading the efficiency of the CPV system [16]. Thus, the reliability of a CPV
system is dependent on a design that can offer uniformity of the illumination.

One way to overcome non-uniformity of illumination is to add a secondary optical
element (SOE) in the focal area of the FL concentrator, which can also improve the level
of concentration in addition to the uniformity of the irradiance [17]. The SOEs can be
categorised into (a) reflective and (b) refractive optical elements, based on the material
properties. Reflective-type SOEs, such as hollow reflective truncated pyramids [18] and
reflective cones [19], comprise accurately formed materials with a high reflectivity. This en-
sures an appropriate concentration of the incoming solar irradiance on the cell surfaces, and
hence reduces the sensitivity to errors in solar tracking [20]. Examples of refractive SOEs
include ball lenses [21], refractive truncated pyramids (RTP), dielectric cross compound
parabolic concentrators (DCCPC), single-lens-optical (SILO) elements, and SILO-pyramid
and trumpet [22]. These SOEs are fabricated with dielectric materials which are electrical
insulators that can be polarised by applying an electric field. In order to attain higher
optical efficiencies and enhanced illumination intensity distribution, the principles of to-
tal internal reflection and light refraction are taken into consideration, in addition to the
material selection [20].

Until now, a lot of research attention has been given to the conventional configuration
design of the concentrator, with a focus on the solar radiation on a single solar cell. However,
research using single solar concentrators with a number of MJSCs is very limited. In one
study, a Cassegrain arrangement-based CPV system was proposed, based on two reflectors
used to focus the irradiance onto four MJSCs [23]. This work investigates the potential
of using an FL-based refractive system on multiple MJSCs, with a point-focus type of
concentration. The point-focused rays were passed via a concave lens and homogeniser-
based SOE that distributed the irradiance on the MJSCs’ surfaces uniformly. In order to
examine how the various geometrical parameters affect the system, 3-D optical ray tracing
model technology was used. The parameters tested were the (i) width and the (ii) height
of the homogeniser inlet aperture, (ii) the position of the concave lens with respect to
MJSCs on the concentration levels, and (iv) the irradiance uniformity achieved on the
MJSCs’ surfaces.
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2. Description of the Proposed CPV System

A schematic of the proposed CPV system is given in Figure 1, comprising of a primary
optical element (POE) as an FL concentrator, a plano-concave lens (PCL), a secondary
optical element (SOE) in the form of a multi-leg homogeniser (MLH), and four MJSCs.
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Figure 1. A schematic for the proposed FL-MJSCs-based CPV system under investigation [24].

The direct solar irradiance was focused onto the plano-concave lens using the FL
concentrator, and a set of Fresnel and plano-concave lenses provided collimated light
(i.e., area concentration is achieved instead of point-focus concentration). Then, the four
MJSCs were positioned under the MLH in such a way that the solar irradiance was divided
into four equal parts for a uniform distribution over the four MJSCs surfaces. For this
work, AZURSPACE III-V triple junction solar cells (active area 10 × 10 mm2, material
layers composed of GaInP/GaInAs/Ge) were used [25]. Figure 2a shows a point FL
concentrator (refractive prisms), used to focus the solar radiation. The MLH design is
shown in Figure 2b.

For the individual prisms, the geometric relations can be described by
Equations (1)–(4) [26,27]:

n sinα = sinβ (1)

tanω =
R
f

(2)

β = α+ω (3)

tanα =
R

n
√

R2 + f2 − f
(4)

where all the parameters are defined for the Fresnel lens (FL) concentrator as:
α—prism angle,
R—distance between the incident ray and the optical axis,
n—material refractive index, and
f—focal length.
AFL (concentrator area) is defined as the product of geometric concentration ratio

(GCR), area of MJSC (AMJSC), and the number of MJSCs (NMJSC) as per Equation (5):

AFL = GCR × AMJSC × NMJSC (5)

For the plano-concave lens, the focal length fcl can be determined by Equation (6) [28]:
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fcl =
Dcl

2×NA
(6)

where Dcl represents the plano-concave lens diameter, and NA stands for the numerical
aperture of the Fresnel lens.
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Figure 2. Design and geometry of the (a) point FL concentrator, and (b) MLH [24].

The MLH design depends on four parameters, namely: (1) the width of inlet aperture
(Win), (2) the outlet aperture width (Wout), (3) the slope angle (θ), and (4) the height (H), as
shown in Figure 2b. H is determined with the use of Equation (7):

H =
Wout −Win

2
× tan θ (7)

3. Numerical Simulation Analysis

The most common technique for evaluating the optical performance and optimising
various types of solar concentrators is known as ray tracing [29]. As the name suggests,
it is the action of “tracing a ray of light through the optical components which allows the
modelling of light propagation in different mediums according to the properties applied to
the optical components” [30].

For the ray tracing simulation of this proposed CPV system, the gop module of the
COMSOL Multiphysics® CFD simulation software was used. This allowed study into 3D,
2D, 2D axisymmetric space dimensions, and bi-directionally coupled time-dependent ray
tracing. The aim was to assess the effects of the energy flux distribution and the optical
efficiencies on the MJSCs. A total of six first-order differential equations required solving
to compute the ray trajectory for K (3D ray vector), qray (position vector), andω (angular
frequency), as given in the Equations (8) and (9) [31,32]:

dk
dt

= − ∂ω

∂qsolar
k = x, y, z (8)
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dqsolar
dt

= −∂ω

∂k
k = x, y, z (9)

The Fresnel lens concentrator and the plano-concave lens were, respectively, made
of a plastic, polymethyl methacrylate (PMMA), and N-BK7 glass. The ‘N’ type glass
offers an environmentally friendly alternative to conventional glass types that contain lead
and arsenic. During the ray tracing simulation, both the FL concentrator and the MJSCs
were maintained as constant for the proposed CPV system while using different types of
materials for MLH. In one case, a reflective material (aluminium; surface reflectivity = 90%)
was applied and, in the other case, a refractive material (N-BK7, refractive index n = 1.52)
was used.

The CPV system was designed for a CR of 400, with a solar cell size of 10 mm × 10 mm,
so the Fresnel lens size can be obtained by using Equation (5) as 400 mm × 400 mm. The
focal length of the FL concentrator was designed as 600 mm, with a thickness of 3 mm
and an F-number of 1.06. The number of total incident rays generated by the source was
100,000; this number provided a high definition of the intense ray distribution on the outlet
aperture. The solar irradiance was 1000 W/m2, with all incident rays considered parallel
with the same energy. A ray traced simulation through the optical component is given in
Figure 3.
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3.1. Ray Tracing through Reflective Homogeniser

Ray tracing simulation was performed on the reflective homogeniser made of alu-
minium. It was assumed that the inner surfaces of the homogeniser were specular, with a
reflectivity of 90%. All the incident rays entering the reflective homogeniser behaved as
shown in Figure 4.
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3.2. Ray Tracing through Refractive Homogeniser

The ray tracing simulation was carried out on the refractive homogeniser made from
N-BK7, where the light rays moved from the air, with a refractive index of 1, to the N-BK7
material that had an average refractive index of 1.52. Following the law of refraction, all
the incident rays entering the refractive homogeniser performed as shown in Figure 5.

3.3. Irradiation Uniformity on the Solar Cells

The uniformity of the solar radiation on the surfaces of the MJSCs can be evaluated
using the American national standard ANSI/NAPMIT7.228-1997 [33]. The average value
for intensity (Ea) can be calculated by using Equation (10), and the definition of uniformity
(N) by using Equation (11) [34,35].

Ea =
1
9

8

∑
i=0

Ei (10)

N = 1− max|Ei − Ea|
Ea

× 100% (11)

The arrangement of the distributed test points was in agreement with ANS, as the
MJSC surface was divided into nine equal and comparable rectangular areas (Figure 6).
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4. Optical Characteristics of the CPV System Using a Reflective Homogeniser

The performance of the CPV was evaluated using the reflective homogeniser with
a reflectivity of 90% on the internal surfaces. Figure 7 shows the overall layout of the
proposed CPV system with some nominal dimensions. For evaluating the impacts of
the key dimensional factors, such as the working distance (D) between the concave lens
and homogeniser inlet aperture, and the SOE geometry, a parametric study was carried



Energies 2021, 14, 4301 8 of 18

out. The objective was to reach a higher concentration efficiency and homogeneity in the
available irradiance.
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The variation in the system optical efficiency at various reflective homogeniser aper-
ture widths and heights is shown in Figure 8, where the inlet homogeniser was placed at
different working distances. Four increasing values of the working distance, i.e., 40 mm
(where the reflective homogeniser was shifted towards the concave lens), 60 mm, 80 mm,
and 100 mm (where the inlet homogeniser was positioned at the system focal point) were
examined. This study was conducted for homogenisers of different heights to examine
if working distances, except the optimum, can impact the optical efficiency considerably.
With variation in the working distances, the effect of shifting the position of the reflective
homogeniser with respect to the concave lens is given in Figure 8a–d. It is clear from these
figures that the configuration design of the reflective homogeniser (D = 40 mm, aperture
width = 29 mm and height = 40 mm) has the highest optical efficiency (reaching about
57.5%) when the irradiance uniformity is 78.7%.
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Figure 9 shows the respective variation of the irradiance uniformity on MJSCs for the
conditions as presented in Figure 8.
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5. Optical Characteristics of the CPV System Using a Refractive Homogeniser

The variation of the system optical efficiency at various refractive homogeniser aper-
ture widths and heights where the inlet homogeniser was placed at different working
distances is shown in Figure 10. As can be observed, an increase in the homogeniser height
led to an increase in the optical efficiency. Again, it can be seen from Figure 10 that when
a 20 mm-high refractive homogeniser was used, the system optical efficiency decreased
as the aperture width was increased. It was noticed that with a 30 mm-high refractive
homogeniser, the system optical efficiency increased until it reached the 27 mm aperture
width and afterwards, the curve started to plunge. The figures make it evident that the
configuration design of refractive homogeniser (D = 40 mm, aperture width = 30 mm and
height = 60 mm) had the highest optical efficiency, reaching about 79% when the irradiance
uniformity was 83.23%.
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Figure 11 depicts the influence of change in the irradiance uniformity on the solar cells
for the conditions shown in Figure 10. The simulated results reveal that the uniformity
distribution on solar cells was in the range of 69.0% to 92.2%. The best uniformity distribu-
tion (i.e., above 90%) was obtained with a height of 50 and 60 mm, at an aperture width of
27 and 28 mm for the reflective homogeniser at all working distances (D). In addition, it
was demonstrated that for different working distances, the irradiance uniformity showed a
similar trend for different heights.



Energies 2021, 14, 4301 11 of 18Energies 2021, 14, x FOR PEER REVIEW 13 of 21 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Uniformity distribution on solar cell using a refractive homogeniser at various homogeniser aperture widths, homogeniser heights, and working distances, D of: (a) 40 mm, 
(b) 60 mm, (c) 80 mm, and (d) 100 mm. 

 

Figure 11. Uniformity distribution on solar cell using a refractive homogeniser at various homogeniser aperture widths,
homogeniser heights, and working distances, D of: (a) 40 mm, (b) 60 mm, (c) 80 mm, and (d) 100 mm.

6. Peak to Average Ratio (PAR)

The performance of MJSC under non-uniform illumination distribution saw a reduc-
tion in efficiency and fill factor (FF) in comparison to a uniformly illuminated solar cell
(Figure 12) [36]. For the quantification of different non-uniform illumination patterns,
Herrero et al. [37] introduced the peak-to-average ratio (PAR) parameter. PAR is the ratio
of the peak to the average irradiance on the solar cell. This parameter is commonly used for
the experimental characterisation and evaluation of the effect of illumination distribution
on MJSCs [38,39]. By quantifying the PAR parameter, the relative losses in electrical effi-
ciency and FF due to non-uniform illumination patterns can be evaluated. Figure 12 shows
that there were no significant effects of non-uniformity or on the electrical performance of
MJSCs when the PAR values were below 2 on the FF [40]. In this study, for the reflective
homogeniser, the PAR values of illumination on MJSCs for the configuration design with
the highest optical efficiency ranged from 1.07 to 1.14. For the refractive homogeniser, the
PAR values ranged from 1.06 to 1.34, as shown in Figures 13 and 14, respectively. Therefore,
the system configuration with maximum optical efficiency (79%) can be used since its PAR
value was less than 2.
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The radiance intensity distribution on the surfaces of the solar cells for the optimum
design is given in Figure 15 for the reflective homogeniser, and in Figure 16 for the refractive
homogeniser.



Energies 2021, 14, 4301 14 of 18

Energies 2021, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 14. PAR values for the refractive homogeniser: equivalent to the uniformity for the configu-
ration design with the highest optical efficiency. 

The radiance intensity distribution on the surfaces of the solar cells for the optimum 
design is given in Figure 15 for the reflective homogeniser, and in Figure 16 for the refrac-
tive homogeniser. 

 
(a) 

Energies 2021, 14, x FOR PEER REVIEW 17 of 21 
 

 

 
(b) 

Figure 15. Irradiance intensity distribution on the surfaces of the solar cells: configuration designs of reflective homoge-
niser (D = 40 mm, aperture width = 29 mm, and height = 40 mm). 

 
(a) 

Figure 15. Irradiance intensity distribution on the surfaces of the solar cells: configuration designs of reflective homogeniser
(D = 40 mm, aperture width = 29 mm, and height = 40 mm).



Energies 2021, 14, 4301 15 of 18

Energies 2021, 14, x FOR PEER REVIEW 17 of 21 
 

 

 
(b) 

Figure 15. Irradiance intensity distribution on the surfaces of the solar cells: configuration designs of reflective homoge-
niser (D = 40 mm, aperture width = 29 mm, and height = 40 mm). 

 
(a) 

Energies 2021, 14, x FOR PEER REVIEW 18 of 21 
 

 

 
(b) 

Figure 16. Irradiance intensity distribution on the surfaces of the solar cells: configuration design of refractive homogeniser 
(D = 40 mm, aperture width = 30 mm, and height = 60 mm). 

7. Conclusions 
In contrast to the conventional configuration designs for point-focus Fresnel lens-

based concentrators that concentrate solar radiations onto a single MJSC, a new integrated 
solar concentrated photovoltaic system that uses a single point focus Fresnel lens for mul-
tiple MJSCs has been developed. COMSOL Multiphysics® CFD simulation software was 
used for ray tracing simulation to study the effect of varying the different geometrical 
parameters on the irradiance uniformity achieved on MJSCs surfaces and the system op-
tical efficiency. The parameters studied were: (a) the inlet aperture width and (b) the 
height of the homogeniser with (c) the position of the concave lens with respect to the 
homogeniser inlet aperture. Comparative analysis of the reflective and the refractive sec-
ondary optical elements was performed and the optimum configuration design was de-
termined. The results show that the refractive homogeniser made with N-BK7 type glass 
can achieve a higher optical efficiency (79%) compared to the reflective homogeniser 
(57.5%). Higher irradiance uniformity of around 83.23% was attained with the refractive 
homogeniser, compared to 78.70% for the reflective homogeniser. Published work shows 
that for PAR values below 2, non-uniformity does not considerably affect the fill factor or 
the electrical performance of MJSCs. In this study, the PAR values of illumination at 
MJSCs for the configuration design with the highest optical efficiency for reflective ho-
mogeniser ranged from 1.07 to 1.14, while for the refractive homogeniser, the PAR values 
ranged from 1.06 to 1.34. Therefore, the system configuration with the maximum optical 
efficiency of 79% can be used, since its PAR value is less than 2. 

Author Contributions: conceptualization, Y.A.A., S.M., and R.A.-D.; methodology, Y.A.A. and 
S.M.; software, Y.A.A; validation, Y.A.A. and S. M.; formal analysis, Y.A.A. and S.S.; investigation, 
Y.A.A., S.M., R.A.-D., and S.S.; resources, R.A.-D., Y.D., and J.N.R.; writing—original draft prepara-
tion, Y.A.A.; writing—review and editing S.S., Y.D., and J.N.R.; visualization, Y.A.A. and S.S.; su-
pervision, R.A.-D., Y.D., and J.N.R.; project administration, R.A.-D., S.S., S.M. and Y.D.; funding 
acquisition, R.A.-D., Y.D., and J.N.R. All authors have read and agreed to the published version of 
the manuscript. 

Figure 16. Irradiance intensity distribution on the surfaces of the solar cells: configuration design of refractive homogeniser
(D = 40 mm, aperture width = 30 mm, and height = 60 mm).

7. Conclusions

In contrast to the conventional configuration designs for point-focus Fresnel lens-
based concentrators that concentrate solar radiations onto a single MJSC, a new integrated
solar concentrated photovoltaic system that uses a single point focus Fresnel lens for
multiple MJSCs has been developed. COMSOL Multiphysics® CFD simulation software
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was used for ray tracing simulation to study the effect of varying the different geometrical
parameters on the irradiance uniformity achieved on MJSCs surfaces and the system optical
efficiency. The parameters studied were: (a) the inlet aperture width and (b) the height of
the homogeniser with (c) the position of the concave lens with respect to the homogeniser
inlet aperture. Comparative analysis of the reflective and the refractive secondary optical
elements was performed and the optimum configuration design was determined. The
results show that the refractive homogeniser made with N-BK7 type glass can achieve a
higher optical efficiency (79%) compared to the reflective homogeniser (57.5%). Higher
irradiance uniformity of around 83.23% was attained with the refractive homogeniser,
compared to 78.70% for the reflective homogeniser. Published work shows that for PAR
values below 2, non-uniformity does not considerably affect the fill factor or the electrical
performance of MJSCs. In this study, the PAR values of illumination at MJSCs for the
configuration design with the highest optical efficiency for reflective homogeniser ranged
from 1.07 to 1.14, while for the refractive homogeniser, the PAR values ranged from 1.06 to
1.34. Therefore, the system configuration with the maximum optical efficiency of 79% can
be used, since its PAR value is less than 2.
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Nomenclature

Abbreviations
CFD Computational Fluid Dynamics
CPV Concentrated Photovoltaic
CPVT Concentrated Photovoltaic/Thermal
CR Concentration Ratio
DCCPC Dielectric-Cross Compound-Parabolic-Concentrator
FF Fill factor
MJSC Multi-Junction Solar Cell
MLH Multi-Leg Homogeniser
PAR Peak-to-Average Ratio
PMMA Polymethyl Methacrylate
POE Primary Optical Element
RTP Refractive Truncated Pyramid
SILO Single-Lens-Optical Element
SOE Secondary Optical Element
Symbols
AFL Area of Fresnel lens (mm2)
AMJSC Area of MJSC (mm2)
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D Working distance between concave lens and inlet homogeniser (mm)
f Focal length of the Fresnel lens (mm)
fcl Focal length of the plano-concave lens (mm)
GCR Geometric concentration ratio
H Height of the homogeniser (mm)
n Refractive index of the material used for Fresnel lens
NA Numerical aperture for the Fresnel lens
NMJSC Number of MJSC
R Distance between the optical axis and the incident ray of the Fresnel lens (mm)
U Uniformity (%)
Win Inlet aperture width of the homogeniser (mm)
Wout Outlet aperture width of the homogeniser (mm)
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