Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Opto-Electrical Characterization
3.2. Elemental Profiles of Bulk and Back Contact
3.3. Morphology and Optical Enhancement
3.4. Etching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Mansfield, L.M.; Kanevce, A.; Harvey, S.P.; Bowers, K.; Beall, C.; Glynn, S.; Repins, I.L. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 2018, 26, 949–954. [Google Scholar] [CrossRef]
- Birant, G.; de Wild, J.; Meuris, M.; Poortmans, J.; Vermang, B. Dielectric-based rear surface passivation approaches for Cu(In,Ga)Se2 solar cells-A review. Appl. Sci. 2019, 9, 677. [Google Scholar] [CrossRef] [Green Version]
- Vermang, B.; Fjällström, V.; Gao, X.; Edoff, M. Improved Rear Surface Passivation of Cu(In,Ga)Se2 Solar Cells: A Combination of an Al2O3 Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts. IEEE J. Photovolt. 2014, 4, 486–492. [Google Scholar] [CrossRef]
- Haug, F.-J.; Ballif, C. Light management in thin film silicon solar cells. Energy Environ. Sci. 2015, 8, 824–837. [Google Scholar] [CrossRef]
- Pfeffer, F.; Eisenlohr, J.; Basch, A.; Hermle, M.; Lee, B.G.; Goldschmidt, J.C. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells. Sol. Energy Mater. Sol. Cells 2016, 152, 80–86. [Google Scholar] [CrossRef]
- Ferry, V.E.; Sweatlock, L.A.; Pacifici, D.; Atwater, H.A. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells. Nano Lett. 2008, 8, 4391–4397. [Google Scholar] [CrossRef] [Green Version]
- Vermang, B.; Wätjen, J.T.; Fjällström, V.; Rostvall, F.; Edoff, M.; Kotipalli, R.; Henry, F.; Flandre, D. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells. Prog. Photovolt. Res. Appl. 2014, 22, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacic, M.; Krc, J.; Lipovsek, B.; Chen, W.-C.; Edoff, M.; Bolt, P.J.; van Deelen, J.; Zhukova, M.; Lontchi, J.; Flandre, D.; et al. Light management design in ultra-thin chalcopyrite photovoltaic devices by employing optical modelling. Sol. Energy Mater. Sol. Cells 2019, 200, 109933. [Google Scholar] [CrossRef] [Green Version]
- Van Lare, C.; Yin, G.; Polman, A.; Schmid, M. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. ACS Nano 2015, 9, 9603–9613. [Google Scholar] [CrossRef]
- Schneider, T.; Tröndle, J.; Fuhrmann, B.; Syrowatka, F.; Sprafke, A.; Scheer, R. Ultrathin CIGSe Solar Cells with Integrated Structured Back Reflector. Sol. RRL 2020, 4, 2000295. [Google Scholar] [CrossRef]
- Naghavi, N.; Mollica, F.; Goffard, J.; Posada, J.; Duchatelet, A.; Jubault, M.; Donsanti, F.; Cattoni, A.; Collin, S.; Grand, P.P.; et al. Ultrathin Cu(In,Ga)Se2 based solar cells. Thin Solid Films 2017, 633, 55–60. [Google Scholar] [CrossRef]
- Gouillart, L.; Cattoni, A.; Chen, W.-C.; Goffard, J.; Riekehr, L.; Keller, J.; Jubault, M.; Naghavi, N.; Edoff, M.; Collin, S. Interface engineering of ultrathin Cu(In,Ga)Se2 solar cells on reflective back contacts. Prog. Photovolt. Res. Appl. 2021, 29, 212–221. [Google Scholar] [CrossRef]
- Mollica, F.; Jubault, M.; Donsanti, F.; Loubat, A.; Bouttemy, M.; Etcheberry, A.; Naghavi, N. Light absorption enhancement in ultra-thin Cu(In,Ga)Se2 solar cells by substituting the back-contact with a transparent conducting oxide based reflector. Thin Solid Films 2017, 633, 202–207. [Google Scholar] [CrossRef]
- Oliveira, A.J.N.; de Wild, J.; Oliveira, K.; Valença, B.A.; Teixeira, J.P.; Guerreiro, J.R.L.; Abalde-Cela, S.; Lopes, T.S.; Ribeiro, R.M.; Cunha, J.M.V.; et al. Encapsulation of Nanostructures in a Dielectric Matrix Providing Optical Enhancement in Ultrathin Solar Cells. Sol. RRL 2020, 4, 2000310. [Google Scholar] [CrossRef]
- Erslev, P.T.; Lee, J.; Hanket, G.M.; Shafarman, W.N.; Cohen, J.D. The electronic structure of Cu(In1 − xGax)Se2 alloyed with silver. Thin Solid Films 2011, 519, 7296–7299. [Google Scholar] [CrossRef]
- Ledinek, D.; Donzel-Gargand, O.; Sköld, M.; Keller, J.; Edoff, M. Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers. Sol. Energy Mater. Sol. Cells 2018, 187, 160–169. [Google Scholar] [CrossRef]
- Birant, G.; de Wild, J.; Kohl, T.; Buldu, D.G.; Brammertz, G.; Meuris, M.; Poortmans, J.; Vermang, B. Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells. Sol. Energy 2020, 207, 1002–1008. [Google Scholar] [CrossRef]
- Buffière, M.; Mel, A.-A.E.; Lenaers, N.; Brammertz, G.; Zaghi, A.E.; Meuris, M.; Poortmans, J. Surface Cleaning and Passivation Using (NH4)2S Treatment for Cu(In,Ga)Se2 Solar Cells: A Safe Alternative to KCN. Adv. Energy Mater. 2015, 5, 1401689. [Google Scholar] [CrossRef]
- De Wild, J.; Buldu, D.G.; Schnabel, T.; Simor, M.; Kohl, T.; Birant, G.; Brammertz, G.; Meuris, M.; Poortmans, J.; Vermang, B. High Voc upon KF Post-Deposition Treatment for Ultrathin Single-Stage Coevaporated Cu(In, Ga)Se2 Solar Cells. ACS Appl. Energy Mater. 2019, 2, 6102–6111. [Google Scholar] [CrossRef] [Green Version]
- Edoff, M.; Jarmar, T.; Nilsson, N.S.; Wallin, E.; Högström, D.; Stolt, O.; Lundberg, O.; Shafarman, W.; Stolt, L. High Voc in (Cu,Ag)(In,Ga)Se2 Solar Cells. IEEE J. Photovolt. 2017, 7, 1789–1794. [Google Scholar] [CrossRef]
- Valdes, N.; Lee, J.; Shafarman, W. Comparison of Ag and Ga alloying in low bandgap CuInSe2-based solar cells. Sol. Energy Mater. Sol. Cells 2019, 195, 155–159. [Google Scholar] [CrossRef]
- Suresh, S.; de Wild, J.; Kohl, T.; Buldu, D.G.; Brammertz, G.; Meuris, M.; Poortmans, J.; Isabella, O.; Zeman, M.; Vermang, B. A study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell. Thin Solid Films 2019, 669, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Siebentritt, S. Shallow Defects in the Wide Gap Chalcopyrite CuGaSe2. In Wide-Gap Chalcopyrites; Siebentritt, S., Rau, U., Eds.; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 113–156. ISBN 978-3-540-31293-2. [Google Scholar]
- Luo, S.; Eisler, C.; Wong, T.-H.; Xiao, H.; Lin, C.-E.; Wu, T.-T.; Shen, C.-H.; Shieh, J.-M.; Tsai, C.-C.; Liu, C.-W.; et al. Suppression of surface recombination in CuInSe2 (CIS) thin films via Trioctylphosphine Sulfide (TOP:S) surface passivation. Acta Mater. 2016, 106, 171–181. [Google Scholar] [CrossRef]
- Boyle, J.H.; McCandless, B.E.; Shafarman, W.N.; Birkmire, R.W. Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys. J. Appl. Phys. 2014, 115, 223504. [Google Scholar] [CrossRef]
- Keller, J.; Sopiha, K.V.; Stolt, O.; Stolt, L.; Persson, C.; Scragg, J.J.S.; Törndahl, T.; Edoff, M. Wide-gap (Ag,Cu)(In,Ga)Se2 solar cells with different buffer materials—A path to a better heterojunction. Prog. Photovolt. Res. Appl. 2020, 28, 237–250. [Google Scholar] [CrossRef]
- Virtuani, A.; Lotter, E.; Powalla, M.; Rau, U.; Werner, J.H.; Acciarri, M. Influence of Cu content on electronic transport and shunting behavior of Cu(In,Ga)Se2 solar cells. J. Appl. Phys. 2006, 99, 014906. [Google Scholar] [CrossRef]
- Kandybka, I.; Birant, G.; de Wild, J.; Buldu, D.G.; Kohl, T.; Eachambadi, R.T.; Brammertz, G.; Manca, J.V.; Meuris, M.; Poortmans, J.; et al. Novel cost-effective approach to produce nano-sized contact openings in an aluminum oxide passivation layer up to 30 nm thick for CIGS solar cells. J. Phys. D Appl. Phys. 2021, 54, 234004. [Google Scholar] [CrossRef]
- Zeman, M.; van Swaaij, R.A.C.M.M.; Metselaar, J.W.; Schropp, R.E.I. Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness. J. Appl. Phys. 2000, 88, 6436–6443. [Google Scholar] [CrossRef]
- Jehl, Z.; Bouttemy, M.; Lincot, D.; Guillemoles, J.F.; Gerard, I.; Etcheberry, A.; Voorwinden, G.; Powalla, M.; Naghavi, N. Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells. J. Appl. Phys. 2012, 111, 114509. [Google Scholar] [CrossRef]
- Scholtz, L.; Ladanyi, L.; Mullerova, J. Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells. Adv. Electr. Electron. Eng. 2014, 12, 631–638. [Google Scholar] [CrossRef]
- Chen, L.; Soltanmohammad, S.; Lee, J.; McCandless, B.E.; Shafarman, W.N. Secondary phase formation in (Ag,Cu)(In,Ga)Se2 thin films grown by three-stage co-evaporation. Sol. Energy Mater. Sol. Cells 2017, 166, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Buldu, D.G.; de Wild, J.; Kohl, T.; Brammertz, G.; Birant, G.; Meuris, M.; Poortmans, J.; Vermang, B. Study of Ammonium Sulfide Surface Treatment for Ultrathin Cu(In,Ga)Se2 with Different Cu/(Ga + In) Ratios. Phys. Status Solidi A 2020, 217, 2000307. [Google Scholar] [CrossRef]
Sample | Band Gap EQE (eV) | PL Peak Max (eV) |
---|---|---|
10 nm Ag | 1.199 | 1.187 |
10 nm Ag/3 nm AlOx | 1.199 | 1.190 |
20 nm Ag/3 nm AlOx | 1.193 | 1.197 |
Sample | GGI | ACGI | AAC |
---|---|---|---|
10 nm Ag | 0.31 ± 0.01 | 0.86 ± 0.01 | 0.104 ± 0.003 |
10 nm Ag/3 nm AlOx | 0.29 ± 0.02 | 0.90 ± 0.04 | 0.100 ± 0.005 |
20 nm Ag/3 nm AlOx | 0.30 ± 0.01 | 0.99 ± 0.02 | 0.178 ± 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Wild, J.; Birant, G.; Brammertz, G.; Meuris, M.; Poortmans, J.; Vermang, B. Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector. Energies 2021, 14, 4268. https://doi.org/10.3390/en14144268
de Wild J, Birant G, Brammertz G, Meuris M, Poortmans J, Vermang B. Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector. Energies. 2021; 14(14):4268. https://doi.org/10.3390/en14144268
Chicago/Turabian Stylede Wild, Jessica, Gizem Birant, Guy Brammertz, Marc Meuris, Jef Poortmans, and Bart Vermang. 2021. "Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector" Energies 14, no. 14: 4268. https://doi.org/10.3390/en14144268
APA Stylede Wild, J., Birant, G., Brammertz, G., Meuris, M., Poortmans, J., & Vermang, B. (2021). Ultrathin Cu(In,Ga)Se2 Solar Cells with Ag/AlOx Passivating Back Reflector. Energies, 14(14), 4268. https://doi.org/10.3390/en14144268