Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. Sustainable Transport
2.2. Sustainable Urban Mobility
2.3. Electromobility and Its Promotion
2.3.1. Electromobility
2.3.2. Promotion
- The Qualified Plug-in Electric Drive Motor Vehicle Tax Credit of between USD 2500 and 7500, depending on the battery capacity and the kerb weight of the purchased vehicle;
- investment tax credit for alternative fuel infrastructure and installation of charging stations—reimbursement of up to 50% of the costs incurred by businesses, and up to USD 2000 for private consumers; and
- USD three billion on low-emission vehicles for governmental administration.
2.4. Polish EV Vehicle Numbers vs. the European and Worldwide Background
3. The Research Area
3.1. Selected Features of the Transport System and Socio-Economic Standing
3.2. Local Transport and Automotive Policy
4. Materials, Methods, and Limitations
4.1. Materials and Methods
4.2. Limitations
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Komornicki, T. Przemiany Mobilności Codziennej Polaków na tle Rozwoju Motoryzacji [Transformations in the Daily Mobility of Poles against the Background of Development of Car Ownership]; IGiPZ PAN: Warsaw, Poland, 2011; Volume 227. [Google Scholar]
- Fujii, S.; Gärling, T.; Kitamura, R. Changes in drivers’ perceptions and use of public transport during a freeway closure: Effects of temporary structural change on cooperation in a real-life social dilemma. Environ. Behav. 2001, 33, 796–808. [Google Scholar] [CrossRef]
- Electromobility Development Plan in Poland.‘Energy for the Future; Ministry of Energy: Warsaw, Poland, 2017.
- Taczanowski, J.; Kołoś, A.; Gwosdz, K.; Domański, B.; Guzik, R. The development of low-emission public urban transport in Poland. Bull. Geogr. 2018, 41, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Manzetti, S.; Mariasiu, F. Electric vehicle battery technologies: From present state to future systems. Renew. Sustain. Energy Rev. 2015, 51, 1004–1012. [Google Scholar] [CrossRef]
- Young, K.; Wang, C.; Strunz, K. Electric vehicle battery technologies. In Electric Vehicle Integration into Modern Power Networks; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–56. [Google Scholar]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Wild, M. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur. Renew. Sustain. Energy Rev. 2016, 56, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Hu, X.; Zhou, H.; Tong, L.; Widanalage, D.; Macro, J. Feature Analyses and Modelling of Lithium-ion Batteries Manufacturing based on Random Forest Classification. IEEE/ASME Trans. Mechatron. 2021, 1–11. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Hu, X.; Lucu, M.; Widanage, W.D. Gaussian Process Regression with Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-Ion Batteries. IEEE Trans. Ind. Inform. 2020, 16, 3767–3777. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Hu, X.; Wei, Z.; Li, Y.; Jiang, Y. Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries. IEEE Trans. Transp. Electrif. 2019, 5, 1225–1236. [Google Scholar] [CrossRef]
- Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A Data-Driven Approach with Uncertainty Quantification for Predicting Future Capacities and Remaining Useful Life of Lithium-ion Battery. IEEE Trans. Ind. Electron. 2021, 68, 3170–3180. [Google Scholar] [CrossRef]
- Liu, K.; Wei, Z.; Yang, Z.; Li, K. Mass load prediction for lithium-ion battery electrode clean production: A machine learning approach. J. Clean. Prod. 2021, 289, 125159. [Google Scholar] [CrossRef]
- Abdelbaky, M.; Peeters, J.R.; Dewulf, W. On the influence of second use, future battery technologies, and battery lifetime on the maximum recycled content of future electric vehicle batteries in Europe. Waste Manag. 2021, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Pyzalska, A.; Kott, J.; Kott, M. Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats. Renew. Sustain. Energy Rev. 2020, 133, 110076. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Alvi, M.J.; Kim, H.J. Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation. Energies 2019, 12, 446. [Google Scholar] [CrossRef] [Green Version]
- Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Impact of electric vehicle charging station load on distribution network. Energies 2018, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; Von Jouanne, A. Advanced electric vehicle fast-charging technologies. Energies 2019, 12, 1839. [Google Scholar] [CrossRef] [Green Version]
- Varga, B.O.; Sagoian, A.; Mariasiu, F. Prediction of electric vehicle range: A comprehensive review of current issues and challenges. Energies 2019, 12, 946. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Tsakalidis, A.; Jäger-Waldau, A. Will electric vehicles be killed (again) or are they the next mobility killer app? Energies 2020, 13, 1828. [Google Scholar] [CrossRef] [Green Version]
- Grijalva, E.R.; López Martínez, J.M. Analysis of the reduction of CO2 emissions in urban environments by replacing conventional city buses by electric bus fleets: Spain case study. Energies 2019, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- Sierpiński, G.; Staniek, M.; Kłos, M.J. Decision making support for local authorities choosing the method for siting of in-city ev charging stations. Energies 2020, 13, 4682. [Google Scholar] [CrossRef]
- Canizes, B.; Soares, J.; Costa, A.; Pinto, T.; Lezama, F.; Novais, P.; Vale, Z. Electric vehicles’ user charging behaviour simulator for a smart city. Energies 2019, 12, 1470. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, R.; Ruggeri, M.; Vinci, G.; Poponi, S. Electric Mobility in a Smart City: European Overview. Energies 2021, 14, 315. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Wiśniewski, S.; Kowalski, M. Funkcjonowanie roweru publicznego w dużym mieście: Przykład Łodzi [Functioning of a Public Bike in a Big City: The Example of Łódź]; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2020. [Google Scholar]
- Waas, T.; Hugé, J.; Verbruggen, A.; Wright, T. Sustainable development: A bird’s eye view. Sustainability 2011, 3, 1637–1661. [Google Scholar] [CrossRef] [Green Version]
- Raszkowski, A.; Bartniczak, B. On the road to sustainability: Implementation of the 2030 Agenda sustainable development goals (SDG) in Poland. Sustainability 2019, 11, 366. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, A. Pomiar zrównoważonej mobilności miejskiej: Przegląd badań [Measuring sustainable urban mobility: Review of research]. Stud. i Pr. Kol. Zarządzania i Finans. Zesz. Nauk. 2019, 171, 61–80. [Google Scholar]
- Sosik, K. Współczesne Miejskie Systemy Transportowe W Kontekście Zrównoważonego Rozwoju W Polsce [Modern Urban Transport Systems In Context Of Sustainable Development In Poland]. Zesz. Nauk. Politech. Częstochowskiej Zarządzanie 2020, 39, 49–63. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Wiśniewski, S. Mobilność codzienna osób Straszych w Łodzi [Daily Mobility of the Elderly in Łódż]; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2019. [Google Scholar]
- Rześny-Cieplińska, J.; Szmelter-Jarosz, A.; Moslem, S. Priority-based stakeholders analysis in the view of sustainable city logistics: Evidence for Tricity, Poland. Sustain. Cities Soc. 2021, 67. [Google Scholar] [CrossRef]
- Nijkamp, J.E.; Mobach, M.P. Developing healthy cities with urban facility management. Facilities 2020, 38, 819–833. [Google Scholar] [CrossRef]
- Peterson, M.; Epler, R. Sustainability Developments in Cities of the World. In Continuing to Broaden the Marketing Concept (Review of Marketing Research); Iacobucci, D., Ed.; Emerald Publishing Limited: Bingley, UK, 2020; Volume 17, pp. 243–260. [Google Scholar] [CrossRef]
- Załoga, E.; Kłos, Z. Transport miejski w polityce transportowej Unii Europejskiej [Urban transport in european transport policy]. Zesz. Nauk. Probl. Transp. Logistyki/Uniwersytet Szczeciński 2011, 644, 145–152. [Google Scholar]
- Brzustewicz, P. Zrównoważone rozwiązania w transporcie miejskim–kierunki rozwoju [Sustainable solutions for urban transport–directions of development]. Acta Univ. Nicolai Copernici Zarządzanie 2013, 40, 85–96. [Google Scholar] [CrossRef]
- Wołek, M.; Wolański, M.; Bartłomiejczyk, M.; Wyszomirski, O.; Grzelec, K.; Hebel, K. Ensuring sustainable development of urban public transport: A case study of the trolleybus system in Gdynia and Sopot (Poland). J. Clean. Prod. 2021, 279. [Google Scholar] [CrossRef]
- Russo, F.; Comi, A. City Characteristics and Urban Goods Movements: A Way to Environmental Transportation System in a Sustainable City. Procedia Soc. Behav. Sci. 2012, 39, 61–73. [Google Scholar] [CrossRef]
- Cherrett, T.; Allen, J.; McLeod, F.; Maynard, S.; Hickford, A.; Browne, M. Understanding urban freight activity–key issues for freight planning. J. Transp. Geogr. 2012, 24, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, E. Concepts of City Logistics for Sustainable and Liveable Cities. Procedia Soc. Behav. Sci. 2014, 151, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Kijewska, K.; Iwan, S. Analysis of the Functioning of Urban Deliveries in the City Centre and its Environmental Impact Based on Szczecin Example. Transp. Res. Procedia 2016, 12, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Chodkowska-Miszczuk, J.; Lewandowska, A. Kreowanie zrównoważonego transportu miejskiego na przykładzie Kopenhagi–wybrane aspekty [Creating a sustainable urban transport on the case study of Copenhagen–selected aspects]. Pr. Kom. Geogr. Komun. PTG 2018, 21, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Zawieska, J.; Pieriegud, J. Smart city as a tool for sustainable mobility and transport decarbonisation. Transp. Policy 2018, 63, 39–50. [Google Scholar] [CrossRef]
- Adamik, A.; Sikora-Fernandez, D. Smart Organizations as a Source of Competitiveness and Sustainable Development in the Age of Industry 4.0: Integration of Micro and Macro Perspective. Energies 2021, 14, 1572. [Google Scholar] [CrossRef]
- Okraszewska, R.; Romanowska, A.; Wołek, M.; Oskarbski, J.; Birr, K.; Jamroz, K. Integration of a multilevel transport system model into sustainable Urban mobility planning. Sustainability 2018, 10, 479. [Google Scholar] [CrossRef] [Green Version]
- Johansen, S.K. E–Mobility Maturity Model: Measuring E-Mobility Readiness of Countries. Master’s Thesis, Mannheim University, Department of Information Systems II, Mannheim, Germany, 16 January 2018. [Google Scholar]
- Higueras-Castillo, E.; Liébana-Cabanillas, F.J.; Muñoz-Leiva, F.; García-Maroto, I. Evaluating consumer attitudes toward electromobility and the moderating effect of perceived consumer effectiveness. J. Retail. Consum. Serv. 2019, 51, 387–398. [Google Scholar] [CrossRef]
- Pietrzak, K.; Pietrzak, O. Environmental effects of electromobility in a sustainable urban public transport. Sustainability 2020, 12, 1052. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Rieckhof, R.; May, N.; Scope, C.; Günther, E. Ökonomisch-ökologischer Nettoeffekt der Elektromobilität im öffentlichen Personennahverkehr. uwf UmweltWirtschaftsForum 2016, 24, 107–119. [Google Scholar] [CrossRef]
- Verheijen, E.; Jabben, J. Effect of Electric Cars on Traffic Noise and Safety. 2010. Available online: https://rivm.openrepository.com/bitstream/handle/10029/261949/680300009.pdf?sequence=3 (accessed on 25 April 2021).
- Elsom, D. Smog Alert: Managing Urban Air Quality; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Straka, M.; Chovan, T.; Bindzár, P.; Žatkovič, E.; Hricová, R. Possibilities and Limitations of Electromobiles Utilization. Appl. Mech. Mater. 2014, 708, 159–164. [Google Scholar] [CrossRef]
- Shafiei, E.; Davidsdottir, B.; Stefansson, H.; Asgeirsson, E.I.; Fazeli, R.; Gestsson, M.H.; Leaver, J. Simulation-based appraisal of tax-induced electro-mobility promotion in Iceland and prospects for energy-economic development. Energy Policy 2019, 133. [Google Scholar] [CrossRef]
- Schickram, S.; Gleyzes, D.; Lienkamp, M. Evaluation of the Electromobility Potential Index and results for 46 major cities. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–9. [Google Scholar]
- Ryghaug, M.; Skjølsvold, T.M. Nurturing a regime shift toward electro-mobility in Norway. In The Governance of Smart Transportation Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–165. [Google Scholar]
- Nanaki, E.A.; Kiartzis, S.; Xydis, G.A. Are only demand-based policy incentives enough to deploy electromobility? Policy Stud. 2020, 1–17. [Google Scholar] [CrossRef]
- Bühne, J.A.; Gruschwitz, D.; Hölscher, J.; Klötzke, M.; Kugler, U.; Schimeczek, C. How to promote electromobility for European car drivers? Obstacles to overcome for a broad market penetration. Eur. Transp. Res. Rev. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Sendek-Matysiak, E. Analysis of the electromobility performance in Poland and proposed incentives for its development. In Proceedings of the 2018 XI International Science-Technical Conference Automotive Safety, Casta, Slovakia, 18–20 April 2018; pp. 1–7. [Google Scholar]
- Tucki, K.; Orynycz, O.; Swic, A.; Mitoraj-Wojtanek, M. The development of electromobility in Poland and EU states as a tool for management of CO2 emissions. Energies 2019, 12, 2942. [Google Scholar] [CrossRef] [Green Version]
- Drożdż, W.; Starzyński, P. Economic conditions of the development of electromobility in Poland at the background of selected countries. Eur. J. Serv. Manag. 2018, 28, 133–140. [Google Scholar] [CrossRef]
- Kłos, M.; Marchel, P.; Paska, J.; Bielas, R.; Błȩdzińska, M.; Michalski, L.; Wróblewski, K.; Zagrajek, K. Forecast and impact of electromobility development on the Polish Electric Power System. E3S Web Conf. 2019, 84. [Google Scholar] [CrossRef] [Green Version]
- Kupczyk, A.; Maczynśka, J.; Redlarski, G.; Tucki, K.; Baczyk, A.; Rutkowski, D. Selected aspects of biofuels market and the electromobility development in Poland: Current trends and forecasting changes. Appl. Sci. 2019, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Połom, M.; Tarkowski, M.; Puzdrakiewicz, K.; Dopierała, Ł. Is It Possible to Develop Electromobility in Urban Passenger Shipping in Post-Communist Countries? Evidence from Gdańsk, Poland. Energies 2020, 13, 6362. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Ntziachristos, L.; Mellios, G.; Samaras, Z. Road-transport emission projections to 2020 in European urban environments. Atmos. Environ. 2008, 42, 7465–7475. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Peng, J. Recent changes in the occurrences and damages of floods and droughts in the United States. Water 2018, 10, 1109. [Google Scholar] [CrossRef] [Green Version]
- The American Recovery and Reinvestment Act, Public Law 111–5—FEB. 17, 2009.
- Leurent, F.; Windisch, E. Triggering the development of electric mobility: A review of public policies. Eur. Transp. Res. Rev. 2011, 3, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kimble, C. Low-cost strategy through product architecture: Lessons from China. J. Bus. Strategy 2010, 31, 12–20. [Google Scholar] [CrossRef]
- Feckova Skrabulakova, E.; Ivanova, M.; Rosova, A.; Gresova, E.; Sofranko, M.; Ferencz, V. On electromobility development and the calculation of the infrastructural country electromobility coefficient. Processes 2021, 9, 222. [Google Scholar] [CrossRef]
- Rehák, R. Electromobility in European Union. Ekon. Cest. Ruchu Podn. 2018, 10, 53–63. [Google Scholar]
- Electric Vehicles in Urban Europe, Connecting Cities Bulding Successes, European Union, Urbact. 2012. Available online: https://urbact.eu/sites/default/files/import/Projects/EVUE/documents_media/EVUE_report_280912_FINAL.pdf (accessed on 25 April 2021).
- W kierunku Zeroemisyjnej Mobilności, Czynniki Determinujące Rozwój Napędów Alternatywnych w Samochodach Osobowych i Dostawczych w Unii Europejskiej, [Towards Zero-Emission Mobility, Factors Determining the Development of Alternative Drives in Passenger Cars and Vans in the European Union]. 2020. Available online: https://www.pzpm.org.pl/content/download/11562/72254/file/Perspektywy%20rozwoju%20samochodo%CC%81w%20z%20nape%CC%A8dami%20alternatywnymi%20_Raport%20PL.pdf (accessed on 25 April 2021).
- Ustawa o Elektromobilności i Paliwach Alternatywnych [Act of 11 January 2018 on Electromobility and Alternative Fuels] 2018. Available online: isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180000317 (accessed on 25 April 2021).
- Skowrońska-Szmer, A.; Kowalska-Pyzalska, A. Key Factors of Development of Electromobility AMONG Microentrepreneurs: A Case Study from Poland. Energies 2021, 14, 764. [Google Scholar] [CrossRef]
- de Lara, F.F.; Marx, R. Comparative positioning between Brazilian subsidiaries and European matrices on Electromobility and carsharing technologies. Res. Transp. Bus. Manag. 2018, 27, 67–74. [Google Scholar] [CrossRef]
- May, N. Local environmental impact assessment as decision support for the introduction of electromobility in urban public transport systems. Transp. Res. Part D Transp. Environ. 2018, 64, 192–203. [Google Scholar] [CrossRef]
- Helmers, E.; Marx, P. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.C. The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles With their superior fuel economy and performance, hybrid vehicles will likely increase in popularity in coming years; further development of control theory for hybrids is essential for their. Proc. IEEE 2007, 95, 704–718. [Google Scholar] [CrossRef]
- Tie, S.F.; Tan, C.W. A review of energy sources and energy management system in electric vehicles. Renew. Sustain. Energy Rev. 2013, 20, 82–102. [Google Scholar] [CrossRef]
- Zhang, A.; Kang, J.E.; Kwon, C. Multi-day scenario analysis for battery electric vehicle feasibility assessment and charging infrastructure planning. Transp. Res. Part C Emerg. Technol. 2020, 111, 439–457. [Google Scholar] [CrossRef]
- Tal, G.; Nicholas, M.A. Studying the PEV market in California: Comparing the PEV, PHEV and hybrid markets. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–10. [Google Scholar]
- Mallig, N.; Heilig, M.; Weiss, C.; Chlond, B.; Vortisch, P. Modelling the weekly electricity demand caused by electric cars. Future Gener. Comput. Syst. 2016, 64, 140–150. [Google Scholar] [CrossRef]
- Eberle, U.; Müller, B.; Von Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: Status 2012. Energy Environ. Sci. 2012, 5, 8780–8798. [Google Scholar] [CrossRef]
- Túry, G. Electromobility in the Automotive Industry. What Role Does Technology Change Play in the Geographic Pattern of Production? Glob. Econ. Obs. 2019, 7, 112–120. [Google Scholar]
- Liebreich, M. Liebreich: Green New Deal-Trumpism with Climate Characteritics. 2019. Available online: www.liebreich.com/bnef-green-new-deal-trumpism-climate-characteristics/ (accessed on 25 April 2021).
- RobecoSAM The Sustainability Yearbook. 2014. Available online: www.p-plus.nl/resources/articlefiles/SustainabilityYearbook2014.pdf (accessed on 25 April 2021).
- Żochowska, R.; Karoń, G. Model kształtowania mobilności miejskiej w ujęciu systemowo-funkcjonalnym [Model for shaping urban mobility–system-functional approach]. Pr. Nauk. Politech. Warsz. 2018, 120, 471–480. [Google Scholar]
- Kowalski, M.; Wiśniewski, S. Centrum handlowe jako czynnik ruchotwórczy w transporcie samochodowym–przykład Portu Łódź [A shopping centre as a traffic-generating factor In car transport as exemplified by Port Łódź, Poland]. Przegląd Geogr. 2017, 89, 617–639. [Google Scholar] [CrossRef] [Green Version]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S. Wewnętrzna samochodowa dostępność transportowa Łodzi w świetle pomiarów z inteligentnych systemów transportowych [Internal car transport accessibility of Łódź in the light of measurements from intelligent transportation systems]. Pr. Geogr. 2019, 159, 7–27. [Google Scholar]
- Suliborski, A.; Walkiewicz, D.; Wójcik, M. Dostępność komunikacyjna Łodzi (plansza L) [Transport accessibility of Łódź (board L)]. In Atlas MiastaŁodzi; Liszewski, S., Ed.; Urząd Miasta Łodzi, Łódzkie Towarzystwo Naukowe: Łódź, Poland, 2009. [Google Scholar]
- Kowalski, M.; Wiśniewski, S. Dostępność transportowa łódzkich centrów handlowych [Transport Accessibility to the Shopping Centres in Łódź]. Handel Wewnętrzny 2017, 3, 339–357. [Google Scholar]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S. Changes in urban transport behaviours and spatial mobility resulting from the introduction of statutory Sunday retail restrictions: A case study of Lodz, Poland. Morav. Geogr. Rep. 2020, 28, 29–47. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Kowalski, M.; Wiśniewski, S.; Szustowski, B.; Maczuga, M. The impact of statutory sunday trading restrictions… on the choices of residents of a large polish city with regard to transport behaviours and mobility. Stud. Reg. Lokal. 2020, 82, 33–59. [Google Scholar] [CrossRef]
- Rochmińska, A. Atrakcyjność Łódzkich Centrów Handlowych oraz Zachowania Nabywcze i Przestrzenne ich klientów [The Attractiveness of Łódź Shopping Centers as Well as the Purchasing and Spatial Behavior of Their Customers]; UŁ: Łódź, Poland, 2013; ISBN 9788375258653. [Google Scholar]
- Uchwała Rady Miejskiej w Łodzi Nr LI/528/97 z dnia 29 Stycznia 1997 [Resolution of the City Council in Łódź No. LI/528/97 of 29 January 1997]. Available online: http://archiwum.bip.uml.lodz.pl/index.php?str=83&id=2523 (accessed on 25 April 2021).
- Zhang, Y.; Qian, Z.S.; Sprei, F.; Li, B. The impact of car specifications, prices and incentives for battery electric vehicles in Norway: Choices of heterogeneous consumers. Transp. Res. Part C Emerg. Technol. 2016, 69, 386–401. [Google Scholar] [CrossRef]
- Sendek-Matysiak, E.; Łosiewicz, Z. Analysis of the Development of the Electromobility Market in Poland in the Context of the Implemented Subsidies. Energies 2021, 14, 222. [Google Scholar] [CrossRef]
- Vidhi, R.; Shrivastava, P. A review of electric vehicle lifecycle emissions and policy recommendations to increase EV penetration in India. Energies 2018, 11, 483. [Google Scholar] [CrossRef]
- Zhang, Q.; Ou, X.; Yan, X.; Zhang, X. Electric vehicle market penetration and impacts on energy consumption and CO2 emission in the future: Beijing case. Energies 2017, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Hassouna, F.M.A.; Al-Sahili, K. Future energy and environmental implications of electric vehicles in palestine. Sustainability 2020, 12, 5515. [Google Scholar] [CrossRef]
EU Urban Level | National Level (Poland) | National Urban Level/Łódź City |
---|---|---|
Green Paper on Urban Mobility (2007) | National Spatial Development Concept 2030 (2013) | National Urban Policy 2023 (2015) |
Leipzig Charter on Sustainable European Cities (2007) | Mid-term National Development Strategy 2020 (2012) | Sustainable Transport Plan for Łódź (2018) |
Action Plan on Urban Mobility (2009) | National Environmental Policy 2009–2012 (2009) | |
Urban Mobility Package (2013) | Poland’s Energy Policy 2030 (2009) | |
Sustainable Urban Mobility Plans (SUMPs) (2014) | Transport Development Strategy until 2020 with a perspective until 2030 (2013) | |
The European Green Deal (2019) | Public Sustainable Transport Development Plan (2012) | |
Sustainable and Smart Mobility Strategy (2020) | Strategy of Responsible Development (2017) | |
Poland’s Electromobility Development Plan (2017) | ||
National Framework for Policy of Alternative Fuels Infrastructure Development (2017) | ||
Acts Establishing the Low-Emission Transport Fund (FNT) (2018) | ||
Act on Electromobility and Alternative Fuels (2018) |
Type | Country |
---|---|
Subsidies | Austria, Finland, France, Ireland, Malta, Germany, Portugal, Romania, Slovenia, Sweden, United Kingdom, Belgium |
Road tax exemptions | Austria, Bulgaria, Czech Republic, Greece, Netherlands, Latvia, Romania, Slovakia, Sweden, Hungary, United Kingdom, |
partially: Belgium, Cyprus, Denmark, Spain, Ireland, Luxembourg, Malta, Germany, Norway, Slovenia, Switzerland, Italy | |
Free vehicle registration | Austria, Cyprus, Greece, Netherlands, Luxembourg, Latvia, Portugal, Romania, Hungary, United Kingdom, |
partially: Belgium, Croatia, Denmark, Finland, France, Malta, Norway, Slovakia, Slovenia, Switzerland | |
Non-financial incentives | Austria, Denmark, France, Spain, Ireland, Lithuania, Latvia, Germany, Norway, Poland, Portugal, Slovakia, Slovenia, Sweden, Hungary, United Kingdom, Italy |
Electrically Chargeable Vehicles (ECVs) | Country | No. of Units | Market Share (%) |
---|---|---|---|
Countries with the highest sales | Germany | 108,629 | 3 |
United Kingdom | 72,766 | 3.1 | |
Netherlands | 66,801 | 15 | |
Countries with the lowest sales | Estonia | 97 | 0.3 |
Latvia | 102 | 0.5 | |
Hybrid electric vehicles (HEVs) | Country | No. of units | Market share (%) |
Countries with the highest sales | Germany | 193,902 | 5.4 |
United Kingdom | 156,178 | 6.8 | |
Italy | 109,789 | 5.7 | |
Countries with the lowest sales | Latvia | 1468 | 7.5 |
Bulgaria | 1975 | 4.8 | |
Fuel cell electric vehicles (FCEVs) | Country | No. of units | Market share (%) |
Countries with the highest sales | Germany | 210 | 0 |
Netherlands | 156 | 0 | |
United Kingdom | 68 | 0 | |
Countries with the lowest sales | Italy | 0 | 0 |
Poland | 0 | 0 |
Goals of the Transport Policy | |
---|---|
Related to city planning and development | Stimulating mixed development of workplaces, services, and housing by putting areas with different purposes close by; introducing a new parking policy; |
identifying and earmarking locations for a park and ride scheme | |
Related to mass transit | Reinstating trams as the leading mode of transport; overhaul of selected sections of tram network; |
upgrading bus fleet and introduction of bus lanes on the main traffic routes | |
Related to the road network and traffic management | Road and bridge maintenance to prevent further deterioration; |
traffic restrictions for lorries in the city centre and selected housing estates; | |
temporal traffic restrictions for heavy traffic (lorries and delivery vans) on selected routes and in selected areas | |
Related to parking | Zone I—new multi-storey car parks; |
Zone II—new car parks in the vicinity of mass transit stops (including those of the park and ride scheme) | |
Related to environmental protection | Higher frequency and greater efficiency of road checks conducted by the police and city guards |
Scenario | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV | XVI | XVII | |
Percentage of BEVs in the total volume of cars | 0% | real | 1% | 2% | 3% | 4% | 5% | 7.5% | 10% | 15% | 20% | 30% | 40% | 50% | 75% | 100% |
Changes in Averages Differences between Optimal (Ideal, Theoretical) Driving Time in Comparison to Scenario I [%] | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | XIII | XIV | XV | XVI | XVII | |
Total | 0.0% | 0.0% | 0.0% | 0.1% | −0.3% | −0.4% | 0.7% | 0.9% | 0.7% | −1.6% | −2.6% | 0.9% | −2.9% | −2.2% | −0.8% | −1.2% |
Cars | 0.0% | 0.0% | 0.0% | 0.1% | −0.4% | −0.4% | 0.7% | 0.9% | 0.7% | −1.7% | −2.8% | 0.9% | −3.0% | −2.2% | −0.9% | −1.3% |
BEVs | −43.5% | −39.0% | −20.1% | 13.4% | −0.8% | 22.1% | 9.3% | 12.2% | −1.2% | −1.5% | −3.0% | −9.3% | −10.5% | −6.9% | −1.3% | |
Other cars | 0.0% | 0.3% | 0.4% | 0.4% | −0.7% | −0.4% | 0.3% | 0.9% | 0.2% | −1.8% | −3.0% | 2.3% | 1.3% | 6.8% | 20.3% | |
Buses | 0.0% | 0.0% | 0.0% | −0.7% | 0.9% | 0.9% | 0.7% | 0.7% | 0.6% | 0.6% | −2.0% | 0.6% | −1.9% | −1.5% | 0.9% | 0.9% |
Average durations of the state ”in queue” of the vehicle in comparison to scenario I [%] | ||||||||||||||||
Total | 0.0% | 0.0% | 0.0% | 0.1% | −0.3% | −0.3% | 0.8% | 1.1% | 0.8% | −1.4% | −2.7% | 0.9% | −3.3% | −2.7% | −1.2% | −1.7% |
Cars | 0.0% | 0.0% | 0.0% | 0.2% | −0.3% | −0.4% | 0.9% | 1.2% | 0.8% | −1.4% | −2.9% | 0.9% | −3.3% | −2.7% | −1.3% | −1.8% |
BEVs | - | −43.3% | −36.4% | −15.3% | 19.2% | 2.5% | 27.3% | 12.5% | 15.0% | −0.1% | −3.2% | −4.8% | −11.5% | −12.8% | −8.3% | −1.8% |
Other cars | 0.0% | 0.3% | 0.4% | 0.4% | −0.8% | −0.4% | 0.2% | 1.0% | 0.1% | −1.6% | −2.8% | 2.9% | 2.3% | 8.4% | 23.6% | - |
Buses | 0.0% | 0.0% | 0.0% | −1.3% | 0.8% | 0.8% | 0.5% | 0.6% | 0.8% | 0.4% | −2.8% | 0.2% | −2.3% | −2.7% | 1.0% | 0.3% |
Average frequencies of changes to the state ”in queue” in comparison to scenario I [%] | ||||||||||||||||
Total | 0.0% | 0.0% | 0.0% | −3.0% | −3.3% | −3.5% | −2.2% | −2.6% | −1.0% | −3.7% | −4.9% | −0.1% | −2.3% | −1.6% | 0.9% | 0.1% |
Cars | 0.0% | 0.0% | 0.0% | −3.1% | −3.5% | −3.6% | −2.3% | −2.6% | −1.2% | −4.2% | −5.2% | −0.4% | −2.4% | −1.6% | 1.1% | 0.0% |
BEVs | - | −36.0% | −48.8% | −36.0% | −9.3% | −20.0% | 9.8% | 2.8% | 14.3% | −7.4% | 0.4% | 1.3% | −5.3% | −2.4% | −1.0% | 0.0% |
Other cars | 0.0% | 0.2% | 0.5% | −2.5% | −3.3% | −3.1% | −2.1% | −2.2% | −1.6% | −3.7% | −6.4% | −1.0% | −0.5% | −0.7% | 8.5% | - |
Buses | 0.0% | 0.0% | 0.0% | −1.8% | −1.8% | −1.8% | −1.8% | −3.6% | 1.8% | 1.8% | −3.6% | 3.6% | −1.8% | −1.8% | −1.8% | 1.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowska-Stefańska, M.; Kowalski, M.; Kurzyk, P.; Mikušová, M.; Wiśniewski, S. Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland. Energies 2021, 14, 3838. https://doi.org/10.3390/en14133838
Borowska-Stefańska M, Kowalski M, Kurzyk P, Mikušová M, Wiśniewski S. Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland. Energies. 2021; 14(13):3838. https://doi.org/10.3390/en14133838
Chicago/Turabian StyleBorowska-Stefańska, Marta, Michał Kowalski, Paulina Kurzyk, Miroslava Mikušová, and Szymon Wiśniewski. 2021. "Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland" Energies 14, no. 13: 3838. https://doi.org/10.3390/en14133838
APA StyleBorowska-Stefańska, M., Kowalski, M., Kurzyk, P., Mikušová, M., & Wiśniewski, S. (2021). Privileging Electric Vehicles as an Element of Promoting Sustainable Urban Mobility—Effects on the Local Transport System in a Large Metropolis in Poland. Energies, 14(13), 3838. https://doi.org/10.3390/en14133838