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Abstract: Cementitious composites, including ferrocement and continuous fiber reinforced cement,
are increasingly considered for building construction and repair. One alternative in processing
of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a
flowable cementitious slurry. The relatively high density of cementitious binders, when compared
with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost,
fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective
means of reducing the density of cementitious composites. This approach, however, compromises
the mechanical properties of cementitious binders. An experimental program was undertaken in
order to assess the potential for production of aerated slurry with a desired balance of density,
mechanical performance, and barrier qualities. The potential for nondestructive monitoring of
strength development in aerated cementitious slurry was also investigated. This research produced
aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for
production of composites. The microstructure of these composites was also investigated.

Keywords: aerated cement slurry; foaming agent; microstructure; thermal conductivity; sorptivity;
density; compressive strength; lightweight structures; composites

1. Introduction

Continuous fiber reinforced cement composites and ferrocement are examples of composites used
in building construction and repair applications [1–4]. When compared with polymer composites,
cementitious composites offer improved fire and moisture resistance, and economics. The density of
cementitious matrices, however, is higher than that of polymeric matrices.

One approach to production of cementitious composites involves infiltration of the reinforcement
system with a cementitious slurry. Aeration of the slurry offers the opportunity to reduce the density of
cementitious matrices. While aeration tends to compromise the strength of cementitious materials, the
aerated matrices may still be able to meet the demands on their mechanical performance in the context
of composites with relatively high-volume fractions of continuous reinforcement with high specific
surface area. These demands are different from those placed on concrete in conventional reinforced
concrete structures. The combination of aeration and reinforcement of high specific surface area and
close spacing could also provide desired workability attributes (e.g., ease of screw application and
cutting) that would make some wood construction techniques applicable to the material.
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Efforts to reduce the density of slurry need to address (besides mechanical performance and
interactions with different reinforcement systems such as wire mesh reinforcement) two aspects of the
slurry behavior that are of practical significance in this application: (i) sorptivity for protecting the
insulation and the interior of the building against moisture transport; and (ii) thermal conductivity for
adding value towards enhancing the energy-efficiency of the building.

The synergy between fibers and organic polymers has been key to the emergence of composites
as widely used structural materials. In this synergistic action, fibers account for the distinctly high
strength and modulus of composites. Organic polymers, on the other hand, provide for stress transfer
to fibers, and stress redistribution among fibers upon early rupture of some statistically weaker ones [5].
These contributions of the polymer matrix rely heavily upon their strain capacity and desired adhesion
to fibers. Given the brittle nature of polymer matrices such as epoxy; it is their relatively low elastic
modulus that is responsible for their elongation capacity. The polymer matrix also contributes barrier
qualities to composites. The generally open molecular structures of both organic polymers and fibers
are responsible for the relatively low density of composites that benefits their ‘specific’ strength and
modulus. Weight saving has been a vital consideration in transition from metals to composites in
aerospace and other applications [5].

The work reported herein focuses on development of an inorganic matrix with reduced density
and elastic modulus that suits utilization as matrix in continuous fiber reinforced composites that
have similarities to ferrocement products. The matrix developed here is an aerated slurry that
offers desired rheological attributes for infiltrating fabric and mesh reinforcement systems. Aerated
cementitious materials (e.g., aerated concrete) have been developed mostly to provide thermal
insulation qualities [6–8]. This work focused on the development of aerated slurries with a relatively
low density and modulus and viable strength for use as matrix in structural composites as investigated
in our previous studies [9–13]. This aerated slurry-infiltrated mesh is developed as a construction
material that offers qualities intermediate between wood and concrete. It is intended to provide a
desired balance of relatively low density, ductility, toughness, strength, workability, moisture and fire
resistance, and durability under weathering exposure.

2. Materials and Methods

The aerated slurry was prepared by mixing the foaming agent (saponin). Saponins are natural
surfactants found abundantly in various plant species. More specifically, they are amphipathic
glycosides comprising one or more hydrophilic glycoside moieties combined with a lipophilic
triterpene derivative [14]. Figure 1 shows a saponin molecule obtained from the residues of sisal
defibering. It has been used in formulation of detergents [15].

Figure 1. Saponin molecule extracted from sisal waste [16].

Aeration of cementitious materials can be accomplished via stabilization of entrapped air using
surfactants [17–19], or by the addition of fine powder that generates gas by undergoing chemical
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reactions with cementitious materials. Aerated concrete has been produced with a wide range of
densities (300 to 1800 kg/m3). The focus of this work is on achieving densities below 1000 kg/m3

that are generally viewed as insulating materials [20,21]. Saponin (a hydrolyzed protein extracted
from plants) [22–24] was used in this work as a surfactant for production of aerated slurry. Saponin
was mixed with the mixing water of slurry, and agitated to form foam, which was then mixed with
Portland cement type 1 to produce the aerated slurry. As a surfactant, saponin lowers the surface
tension of water. Surfactants are molecules with polar and nonpolar ends that attach to water and
air, respectively. Surfactants are molecules with polar and nonpolar ends that attach to water and air,
respectively. The orientation of surfactant molecules in bulk solution is random. Those occurring at the
air/liquid interfaces or adsorbed on cement particles, however, have preferred orientations that tend
to minimize the unfavorable interactions between the liquid phase and different molecular sections of
the surfactant. Figure 2 shows the alignment of a monolayer of surfactant molecules at the interface
between air and surrounding liquid phase. The hydrophobic tails of surfactant molecules stick out of
the solution to reduce the distortion of water molecules, and thus lower the overall free energy of the
system [25,26]. The mutual repulsion between the hydrophilic heads of surfactant molecules reduces
the attraction of the bulk liquid phase, producing a lower surface tension. Because of the electrostatic
component of the repulsion force of ionic surfactants, their effectiveness to reduce surface tension
is more significant than that provided by nonionic surfactants [27]. The nature and concentration
of surfactants determine the physical and chemical properties of the air bubble/liquid interfaces,
including surface tension (equals to free surface energy) and stability. The electrostatic and steric
repulsions between surfactants helps to stabilize the air bubbles that form within the liquid [28,29].
The hydrophilic ends of the surfactant molecules are also electrostatically attracted to cement particles,
this is also a factor in stabilizing the air bubbles within cement paste (Figure 3).

Figure 2. Surfactant molecules at the water–air interface [25,30].

Figure 3. Interaction between air bubbles and cement particles [25].

Saponin and water were mixed at 1200 rpm rotational speed, using a Craftsman® mixing blade
attached to a drill (Figure 4), to produce foamed water. The foamed mixing water was then added to
cement at water/cement ratio of 0.45 to 0.6. Mixing was accomplished in a mortar mixer for 2 min.
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The water/cement ratio of different aerated slurries was adjusted in order to produce a desired fresh
mix rheology for infiltrating multiple layers of chicken mesh. The required fresh mix rheology could
be defined by a viscosity of about 1900 cP and a yield strength of about 70. The resulting aerated slurry
was placed in 50 mm cube molds and kept in sealed condition at room temperature for 24 h. The cube
specimens were then demolded and cured at 95 ± 5% relative humidity and room temperature
for seven days. The aerated slurry mix proportions considered in this experimental program are
introduced in Table 1. For the non-aerated slurry (with 0% saponin content), water/cement ratio was
between (0.45–0.55).

Figure 4. Foam generation in water via high-speed mixing.

Table 1. The aerated slurry mixes proportions considered in this investigation.

Mix Saponin Dosage (by Weight of Cement) Water/Cement Ratio

1 0.005%
0.452 0.01%

3 0.02%
4 0.005%

0.505 0.01%
6 0.02%
7 0.005%

0.55

8 0.01%
9 0.015%
10 0.02%
11 0.025%
12 0.03%
13 0.02%

0.614 0.025%

Figure 5 shows examples of the aerated slurry cube specimens that were tested in compression
for measurement of the compressive strength of aerated slurry (at seven days of age). The density of
aerated slurry was measured by dividing the air-dried weight to the volume of these specimens.

Figure 5. Aerated slurry specimens.
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The aerated slurry would be the primary protection of the building interior and also the
indigenous insulation to be used within the structural panels against weathering effects. Moisture
would be transported through the aerated slurry skins (with chicken mesh reinforcement) via capillary
sorption. An experimental study was thus undertaken in order to measure the effects of aeration on
the capillary sorptivity of the slurry. Sorptivity tests were performed per ASTM C1585; the specimens
used for this purpose were cylinders of 100 mm diameter and 50 mm thickness. A schematic of the test
setup is shown in Figure 6a, and a picture of multiple specimens during sorptivity testing is shown in
Figure 6b. The specimens were demolded after 24 h of storage in sealed condition and were cured at
room temperature until the test age. This test method involves exposure of one flat surface of specimen
to water, which the remaining surfaces sealed against moisture loss. Mass gain over time is recorded
as a measure of moisture sorption. Sorptivity is expressed in terms of the sorption rate of moisture into
the aerated slurry. This test was continued for two days in order to gain further insight into schematic
time-history of capillary sorption [31,32].

Figure 6. Sorptivity test setup. (a) Schematics; (b) picture of multiple specimens during the test.

The ultrasound pulse velocity (UPV) of aerated slurry was measured nondestructively using
a portable equipment (58-E4800 UPV tester, CONTROLS S.p.A, Milan, Itlay). The UPV test setup
is shown in Figure 7. In this test, an ultrasonic pulse is generated and transmitted to the surface
of concrete through the transmitter transducer. The time taken by the pulse to travel through the
aerated slurry, tus, is measured by the receiver transducer on the opposite side. The 54 kHz transducers
were positioned at the center of each opposing face. The propagation time of the ultrasonic waves
transmitted through the 150 mm long cylindrical specimens was measured with accuracy up to 0.1 s.
A thin couplant (solid blue kaolin-glycerol paste was used at the interface between transducers and the
aerated slurry specimen surfaces to ensure good contact. The pulse travel time (t) from the front side to
the rear side was automatically recorded. The ultrasound pulse velocity was measured approximately
50 h after mixing of the aerated slurry [33–35]. The specimens used for performance of the ultrasound
pulse velocity were prepared from aerated slurry mixes of similar proportions as those used for other
experiments; the mixes used for preparation of the ultrasound pulse velocity specimens, however,
were not the same as those used for preparation of the specimens used in other tests. All specimens
were cured at room temperature and 95 ± 5% relative humidity.

The thermal conductivity of aerated slurry test was measured at seven days of age in accordance
to ASTM C177 [36]. Aerated slurry cement specimens were oven dried for 24 h at a temperature of
105 ± 5 ◦C. Figure 8 shows the thermal conductivity testing configuration and test setup. The specimen
was placed between hot and cold plates with 40 and 18 ◦C, respectively, to simulate outdoor and indoor
temperatures. Temperatures on the hot and the cold plates as well as the heat flow were recorded
versus time over 24 h. The results, after the process reached equilibrium, were used to calculate the
thermal conductivity of aerated slurry.
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Figure 7. Ultrasound pulse velocity test setup.

Figure 8. (a) Thermal conductivity testing diagram and (b) test setup.

Furthermore, aerated slurry samples were subjected to Scanning Electron Measurement (SEM)
observation to evaluate microstructural features. SEM observations were carried out on JCM-5000
NeoScope™ (JEOL Ltd., Tokyo, Japan) at an accelerating voltage of 10–15 kV using a secondary electron
(SE) detector. The investigations were conducted on fracture surfaces of the paste of the samples after
28 days. Samples were sputtered with gold before the SEM measurements.

3. Experimental Results and Discussion

3.1. Compressive Strength

Table 2 presents the measured values of seven-day compressive strength and density for the
aerated slurry mix designs introduced earlier in Table 1. Lower values of density tend to correspond
with lower values of compressive strength. This is both because of the rise in air content and also
the increase in water/cement ratio for achieving viable fresh mix rheology. Mix 13 with density of
0.9 g/cm3 and 5.4 MPa compressive strength at seven days provides a viable balance of density and
strength for the targeted ferro-cement application. This paper strongly emphasizes the density of
aerated slurry in order to enhance the efficiency of seismic design [37,38] and also to enable manual
installation of the building structure.
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Table 2. Mix designs and performance characteristics of the aerated slurry.

Mix Seven-Day Compressive Strength, MPa Density, g/cm3

1 10.7 1.9
2 8.2 1.5
3 6.3 1.4
4 14.1 1.2
5 10.5 1.81
6 9.2 1.3
7 13.3 1.6
8 11.1 1.7
9 9.4 1.3

10 6.4 1.17
11 2.4 0.65
12 1.2 0.8
13 5.4 0.9
14 7.1 1.12

3.2. Sorptivity

The sorptivity test results are presented in Figure 9 as the capillary rise of moisture versus time for
aerated slurries prepared with different dosages of the foaming agent (saponin), with water/cement
ratio of 0.55. The two higher dosages of foaming agent (0.015% and 0.02%) are observed to produce
lower sorption rates and capacities. This is a positive trend, indicating that lowering the density of the
slurry via aeration would actually improve its barrier qualities for protecting the building interior as
well as the natural insulation against weathering effects.

Figure 9. Capillary sorption of aerated slurries versus the square root of time.

The initial sorption rate (Si) is the slope of the sorption curve shown in Figure 9 up to 6 h;
the secondary sorption rate is the slope of the curve after one day. Both these calculations are made
using a linear regression analysis (ASTM C1585) [39]:

I = Si ×
√

t + b

The resulting values of initial and secondary sorption rate are presented in Table 3 together
with the corresponding values of the aerated slurry density. These results confirm that lowering
the density of aerated slurry from 1.7 to 1.17–1.3 g/cm3 leads to a significant drop in the initial and
secondary sorption rates of the slurry. This can be explained by the fact that aeration introduces
isolated air bubbles into the slurry, which disrupt the continuity of capillary pores through which
sorption occurs [40–45]. An overall sorptivity value is also presented in Table 3, which is the slope of a
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regression line fit into the whole data points (using the above equation). The overall sorptivity values
further confirms the drop in sorption rate with reduction of the density of aerated slurry.

Table 3. Sorption rates and densities of slurries prepared with different dosages of the foaming agent.

Dosage of Foaming Agent % 0.01% 0.015% 0.02%
Initial sorption rate, mm/

√
s 0.0242 0.0188 0.0132

Secondary sorption rate, mm/
√

s 0.0044 0.0013 0.0019
R2 (Regression value) 0.951 0.950 0.958

Density, g/cm3 1.7 1.3 1.17
Sorptivity, mm/min0.5 0.75 0.5 0.34

In order to confirm the finding that aeration actually reduces the sorption rate and extent of
slurry (i.e., enhances its barrier qualities), tests were also performed on a slurry without any aeration.
The sorption test data presented in Figure 10 confirm that aeration reduces the rate and extent of
moisture sorption into the slurry. As schematically depicted in Figure 11, introduction of isolated air
bubble forces tortuous sorption paths through capillary pores, which reduce the sorption rate of the
slurry. The experience with entrained air bubbles indicates that individual air bubbles remain largely
empty of water even under long-term exposure to moist conditions. This phenomenon, as well as the
reduction in the rate of moisture sorption, explain the drop in the extent of moisture sorption with
introduction of individual air bubbles via aeration of slurry.

Figure 10. Sorptivity of non-aerated versus aerated slurries.

Figure 11. Sorption paths into non-aerated and aerated slurries. (a) Non-aerated; (b) aerated.

Optic microscope images were obtained from sections of aerated slurries prepared with different
dosages of the foaming agent in order to understand the morphology of air bubbles and explain their
effects on compressive strength. Figure 12a,b show microscopic images of slurries prepared with
0.005% and 0.02% concentrations of the foaming agent, respectively. A rise in the foaming agent dosage
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is observed to increase the size (as well as the volume fraction) of air bubble. It should be noted that
smaller and regularly formed air bubbles produce higher compressive strengths than coarser and
irregularly formed air bubbles [46]. Mechanical properties are strongly influenced by the distribution
of pores within the hardened aerated slurry [47,48]. The spherical and distributed nature of foams in
Figure 12b with higher air content led to a viable level of compressive strength which was not lower
than that provided by the aerated slurry shown in Figure 12b with lower content of irregularly-shaped
air bubbles. This observation confirms that microstructural properties are primary factors influencing
the material properties of aerated slurry [38]. An example optic microscope image of an exterior
surface of an aerated slurry of higher compressive strength is shown in Figure 13, where finer and
more uniformly dispersed air bubbles can be observed.

Figure 12. Optical microscope images of sections of aerated slurries with different dosages of the
foaming agent (saponin). (a) 0.005% foaming agent; (b) 0.02% foaming agent.

Figure 13. A typical microscopic image of the exterior surface of an aerated slurry with higher
compressive strength.
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3.3. SEM Observations

The spherical geometry of air voids is an important factor influencing the structural and functional
properties of aerated binders [49,50]. In addition, the voids should be distributed evenly in the mass to
produce homogenous binders of improved performance. Larger voids (macro-pores) would lower
the density of aerated slurry but could compromise its mechanical performance. Depending on the
type and dosage of the foaming agent, aerated cement slurries may incorporate both micro- and
macro-pores [51]. Macro-pores could be formed as a result of the merger of micro-pores. This is
because expansion of the matrix upon micro-pore formation generates pressure at the interfaces
between micro-pores [52]. Figure 14a shows an SEM image of an aerated slurry after hydration.

Figure 14. SEM images of the fractured surfaces of foam cements made from slurries after hydration
for 28 days with a density of (a) 1.0 g/cm3 (b) 0.75 g/cm3 (c) 1.3 g/cm3.

Aside from the gel pores (<10 nm) and capillary pores (10 nm to 10 µm), hollow shell pores have
been proposed as a third category of intrinsic pores in bulk of hydration products [52]. Hollow shells
have range in size from 1 to around 20 µm, about the size of smaller cement grains, embedded in
cement gel and channeled to the outside through capillary and gel pores.

An ideal microstructure of aerated cement minimizes the extent of water transport by uniformly
distributing the discrete micro-size pores generated by the foaming agent within the cement slurry.
The coalescence of many irregular-shaped pores, however, may create a disturbed microstructure,
triggering a high degree of water mobility. In order to verify this, two fractured samples of aerated
slurries with 0.75 and 1.3 g/cm3 bulk densities were examined using a scanning electron microscope
(Figure 14b,c, respectively). The image on the right, for the slurry with 1.3 g/cm3 bulk density, shows
a microstructure of uniformly distributed disjunctive pores. In contrast, a different microstructure was
observed for the aerated slurry with 0.75 g/cm3 bulk density (left) where an anomalous coalescence
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developed, yielding a channeled pore structure. This structure allows water to pervade easily through
the aerated slurry. A possible explanation for the formation of such an anomalous pore structure is
the inclusion of tremendous numbers of air bubble cells using an excess amount of foaming agent,
which promotes the coalescence of air bubbles as a result of the collapse of the slurry walls separating
these bubbles.

3.4. Ultrasound Pulse Velocity

Ultrasound pulse velocity (UPV) is a simple, nondestructive means of evaluating concrete, which
could be used to assess the aerated slurry quality and its development over time. Figure 15 shows the
evolution of ultrasound pulse velocity over time (up to 50 h) after mixing for three aerates slurries with
different densities. UPV is observed to be higher for aerated slurries of higher density. At earlier ages,
lower-density aerated slurries exhibit a minor rise in UPV for more than 10 h while the higher-density
slurry exhibits a clear trend towards UPV increase as soon as 1 h after mixing.

Figure 15. UPV time-history for aerated slurries of different densities.

In order to assess the variability of UPV measurements, three replicated aerated slurry specimens
were prepared with the same mix design (Mix 13) and density (0.9 g/cm3). The evolution of UPV
with time is presented in Figure 16 for the three replicated specimens. The variations in UPV for these
three test specimens are less than 6%, pointing at the potential value of UPV as a reliable method of
monitoring the quality of aerated slurry (and its evolution with time of curing).

Figure 16. Reproducibility check on three UPV tests for the same mix design (Mix 13).
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3.5. Thermal Conductivity

The lightweight aerated slurry is expected to make some contributions towards thermal insulation
of the building. The measured values of thermal conductivity are shown in Figure 17 versus the
density of aerated slurries. As expected, slurries of lower density offer lower values of thermal
conductivity [8,53,54]. Air bubbles act as barriers against thermal conduction; the isolated air bubbles
do not make any significant contributions to heat transfer via convection [7].

Figure 17. Thermal conductivity of aerated slurries versus their density.

4. Conclusions

Aerated slurry is developed as a lightweight matrix for production of cementitious composites
embodying reinforcement of high specific surface area for structural applications. A highly flowable
slurry is needed for thorough infiltration of the structural volume that is congested with fine
reinforcement systems. This work developed and characterized an aerated slurry comprising a
cementitious material of relatively high water/cement ratio that incorporated a foaming agent
(saponin). High-speed mixing of the mixing water incorporating saponin produces the foamed
water that is then used to prepare the aerated slurry by mixing with cement. The following conclusions
were derived by conducting an experimental program on slurries of various densities (adjusted by
varying the saponin content).

1. While lowering the density of the aerated slurry by increasing the dosage of foaming agent
tends to lower its compressive strength, this relationship is not consistent. Production of fine,
spherical and uniformly distributed air bubbles in aerated slurry favors achievement of higher
compressive strengths.

2. Aeration of slurry benefits its moisture barrier qualities, which benefits its durability. The isolated
air bubbles in aerated slurry seem to act as barriers against capillary sorption of moisture into
the slurry, thus forcing tortuous diffusion paths. The extent of moisture sorption by slurry also
decreases with increasing air content. This could be attributed to the tendency of the isolated air
bubbles to remain largely filled with air when the aerated slurry is exposed to moisture.

3. Aeration of the cement slurry significantly reduces its thermal conductivity, which benefits
the energy-efficiency of building systems. The low thermal conductivity of air in the bubbles
introduced via aeration, and the lack of effective convection due to the isolated nature of air
bubbles, explain the benefits of aeration towards the insulation value of aerated slurry.



Materials 2018, 11, 597 13 of 15

4. Ultrasound pulse velocity provides an effective nondestructive means of controlling the quality
of aerated slurry and its evolution over time. This method can be conveniently implemented in
field conditions for assessing the quality of aerated slurry and its evolution over time.
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