Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples
Abstract
:1. Introduction
2. Methods
2.1. CNNs and Pre-Trained Model
2.2. Real Seismic Patches for Transfer Learning
- Step 1: Calculating fault enhancement attribute
- Step 2: generating fault and non-fault samples
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Wang, Y.; Yang, D.; Wang, X. Characterization of paleo-karst reservoir and faulted karst reservoir in Tahe Oilfield, Tarim Basin, China. Adv. Geo-Energy Res. 2020, 4, 339–348. [Google Scholar] [CrossRef]
- Bahorich, M.S.; Farmer, S.L. 3D seismic discontinuity for faults and stratigraphic features. Lead. Edge 1995, 14, 1053–1058. [Google Scholar] [CrossRef]
- Wu, X. Directional structure-tensor based coherence to detect seismic faults and channels. Geophysics 2017, 82, A13–A17. [Google Scholar] [CrossRef] [Green Version]
- Van Bemmel, P.P.; Pepper, R.E. Seismic Signal Processing Method and Apparatus for Generating a Cube of Variance Values. U.S. Patent 6,151,555, 21 November 2000. [Google Scholar]
- Di, H.; Gao, D. Efficient volumetric extraction of most positive/negative curvature and flexure for fracture characterization from 3d seismic data. Geophys. Prospect. 2016, 64, 1454–1468. [Google Scholar] [CrossRef]
- Aqrawi, A.A.; Boe, T.H. Improved Fault Segmentation Using a Dip Guided and Modified 3D Sobel Filter; SEG Expanded Abstracts: San Antonio, TX, USA, 2011; pp. 999–1003. [Google Scholar]
- Araya-Polo, M.; Dahlke, T.; Frogner, C.; Zhang, C.; Poggio, T.; Hohl, D. Automated fault detection without seismic processing. Lead. Edge 2017, 36, 208–214. [Google Scholar] [CrossRef]
- Huang, L.; Dong, X.; Clee, T.E. A scalable deep learning platform for identifying geologic features from seismic attributes. Lead. Edge 2017, 36, 249–256. [Google Scholar] [CrossRef]
- Guitton, A. 3D convolutional neural networks for fault interpretation. In Proceedings of the 80th Annual Conference and Exhibition, EAGE, Extended Abstracts, Copenhagen, Denmark, 11–14 June 2018; pp. 1–5. [Google Scholar]
- Guo, B.; Li, L.; Luo, Y. A New Method for Automatic Seismic Fault Detection Using Convolutional Neural Network; SEG Expanded Abstracts: Anaheim, CA, USA, 2018; pp. 1951–1955. [Google Scholar]
- Xiong, W.; Ji, X.; Ma, Y.; Wang, Y.; AlBinHassan, N.M.; Ali, M.N.; Luo, Y. Seismic fault detection with convolutional neural network. Geophysics 2018, 83, O97–O103. [Google Scholar] [CrossRef]
- Di, H.; Shafiq, M.; AlRegib, G. Patch-Level Mlp Classification for Improved Fault Detection; SEG Expanded Abstracts: Anaheim, CA, USA, 2018; pp. 2211–2215. [Google Scholar]
- Wu, X.; Shi, Y.; Fomel, S.; Liang, L. Convolutional Neural Networks for Fault Interpretation in Seismic Images; SEG Expanded Abstracts: Anaheim, CA, USA, 2018; pp. 1946–1950. [Google Scholar]
- Wu, X.; Liang, L.; Shi, Y.; Fomel, S. FaultSeg3D: Using synthetic datasets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [Google Scholar] [CrossRef]
- Wu, X.; Liang, L.; Shi, Y.; Geng, Z.; Fomel, S. Multitask learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge-preserving, and seismic normal estimation by using a single convolutional neural network. Geophys. J. Int. 2019, 219, 2097–2109. [Google Scholar] [CrossRef]
- Saad, O.M.; Chen, Y. Deep denoising autoencoder for seismic random noise attenuation. Geophysics 2020, 85, V367–V376. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Liu, H.; Cai, Y.; Peng, Z. Seismic data denoising based on sparse and low-rank regularization. Energies 2020, 13, 372. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Liu, Q.; Liu, W.; Liu, Y.; Chen, X.; Pan, M. 3D Reservoir Geological Modeling Algorithm Based on a Deep Feedforward Neural Network: A Case Study of the Delta Reservoir of Upper Urho Formation in the X Area of Karamay, Xinjiang, China. Energies 2020, 13, 6699. [Google Scholar] [CrossRef]
- Pan, S.; Yan, K.; Lan, H.; Badal, J.; Qin, Z. A sparse spike deconvolution algorithm based on a recurrent neural network and the iterative shrinkage-thresholding algorithm. Energies 2020, 13, 3074. [Google Scholar] [CrossRef]
- Chai, X.; Tang, G.; Wang, S.; Lin, K.; Peng, R. Deep Learning for Irregularly and Regularly Missing 3-D Data Reconstruction. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- El Zini, J.; Rizk, Y.; Awad, M. A deep transfer learning framework for seismic data analysis: A case study on bright spot detection. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3202–3212. [Google Scholar] [CrossRef]
- Wu, B.; Meng, D.; Wang, L.; Liu, N.; Wang, Y. Seismic impedance inversion using fully convolutional residual network and transfer learning. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2140–2144. [Google Scholar] [CrossRef]
- Cunha, A.; Pochet, A.; Lopes, H.; Gattass, M. Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Comput. Geosci. 2020, 135, 104344. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Pedersen, S.I.; Randen, T.; Sønneland, L.; Steen, O. Automatic Fault Extraction Using Artificial Ants; SEG Expanded Abstracts: Salt Lake City, UT, USA, 2002; pp. 512–515. [Google Scholar]
- Yan, Z.; Gu, H.; Cai, C. Automatic fault tracking based on ant colony algorithms. Comput. Geosci. 2013, 51, 269–281. [Google Scholar] [CrossRef]
- Machado, G.; Alali, A.; Hutchinson, B.; Olorunsola, O.; Marfurt, K.J. Display and enhancement of volumetric fault image. Interpretation 2016, 4, SB51–SB61. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Liu, S.; Gu, H. Fault image enhancement using a forward and backward diffusion method. Comput. Geosci. 2019, 131, 1–14. [Google Scholar] [CrossRef]
- Barnes, A.E. A filter to improve seismic discontinuity data for fault interpretation. Geophysics 2006, 71, P1–P4. [Google Scholar] [CrossRef]
- Wu, X.; Hale, D. 3D seismic image processing for faults. Geophysics 2016, 81, IM1–IM11. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Zhang, Z.; Liu, S. Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples. Energies 2021, 14, 3650. https://doi.org/10.3390/en14123650
Yan Z, Zhang Z, Liu S. Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples. Energies. 2021; 14(12):3650. https://doi.org/10.3390/en14123650
Chicago/Turabian StyleYan, Zhe, Zheng Zhang, and Shaoyong Liu. 2021. "Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples" Energies 14, no. 12: 3650. https://doi.org/10.3390/en14123650
APA StyleYan, Z., Zhang, Z., & Liu, S. (2021). Improving Performance of Seismic Fault Detection by Fine-Tuning the Convolutional Neural Network Pre-Trained with Synthetic Samples. Energies, 14(12), 3650. https://doi.org/10.3390/en14123650