An Innovative Approach to Energy Consumer Segmentation—A Behavioural Perspective. The Case of the Eco-Bot Project
Abstract
:1. Introduction
- The presentation of the authors’ original model of the segmentation of energy consumers according to behavioural factors, developed as a result of the review of the reference literature and the findings of the study conducted as part of the eco-bot interdisciplinary research project funded by the EU Programme Horizon 2020 (more information on the project: www.eco-bot.eu accessed on 14 June 2021);
- The analysis of the results obtained during the first stage of the empirical validation of the model and the discussion of general conclusions, laying the foundations for the evaluation of methodological assumptions aiming at the development of the universal model of behavioural segmentation.
2. Literature Review
3. Methodology, Theoretical and Design Assumptions of Behavioural Segmentation
3.1. Justification/Motivation and Assumptions of a Priori Segmentation
- a small research sample in the project, insufficient for the purpose of developing universal segmentation;
- the absence of the indifferent segment during empirical validation, which made it impossible to evaluate the functionality of the created segmentation fully;
- verification performed only in the partner countries participating in the pilot study (2 countries) cannot identify the entire array of energy consumer behaviours and attitudes.
3.2. Procedure for Energy Consumer Segmentation—A Statistical Approach
4. Results
- Variable Entropy (ve) Measure [100].
5. Discussion
6. Conclusions
- central and local authorities—in their efforts to create effective tools promoting sustainable consumption and encouraging the adoption of energy-saving measures;
- energy providers—to adopt their energy products and services so that they include renewable energy sources and to identify the needs of their customers more effectively;
- NGOs—to target their campaigns promoting sustainable lifestyles more adequately;
- consumer organisations—to be able to adapt information and communication to specific consumer groups, also for educational purposes;
- scientific institutions and research centres—as the starting point for further empirical research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
ID | good3 Distance to Centroid of Class EI | good3 Distance to Centroid of Class AE | good3 Distance to Centroid of Class DS | good3 Distance to Centroid of Class O | good3 Distance to Centroid of Class I | Segment |
---|---|---|---|---|---|---|
1 | 1 | 0.773 | 0.358 | 1 | 1 | DS |
2 | 1 | 1 | 0.784 | 1 | 0.253 | I |
3 | 0.782 | 0.773 | 0.559 | 1 | 1 | DS |
4 | 0.360 | 0.765 | 1 | 1 | 1 | EI |
5 | 0.360 | 1 | 0.784 | 1 | 1 | EI |
6 | 0.780 | 1 | 0.799 | 0.518 | 1 | O |
7 | 0.360 | 1 | 0.784 | 1 | 1 | EI |
8 | 1 | 0.773 | 0.574 | 0.766 | 1 | DS |
9 | 0.751 | 1 | 0.337 | 1 | 1 | DS |
10 | 1 | 1 | 0.121 | 1 | 1 | DS |
11 | 0.798 | 0.290 | 1 | 1 | 1 | AE |
12 | 0.580 | 0.773 | 0.784 | 1 | 1 | EI |
13 | 0.580 | 0.773 | 0.784 | 1 | 1 | EI |
14 | 0.780 | 0.765 | 1 | 0.504 | 1 | O |
References
- Neale, A. Zrównoważona konsumpcja. Źródła koncepcji i jej zastosowania. Pr. Geogr. 2015, 141, 141–158. [Google Scholar] [CrossRef]
- Wilk, I. Sustainable Consumer as a Reference Segment for the Company’s Market Activities. Zesz. Nauk. Uniw. Szczecińskiego Probl. Zarządzania Finans. Mark. 2015, 38, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Zalega, T. Sustainable Consumption in Consumer. Stud. Ekon. Zesz. Nauk. Uniw. Ekon. Katowicach 2019, 383, 82–107. [Google Scholar]
- Pineiro-Villaverde, G.; García-Álvarez, M.T. Sustainable consumption and production: Exploring the links with resources productivity in the EU-28. Sustainability 2020, 12, 8760. [Google Scholar] [CrossRef]
- O’Rourke, D.; Lollo, N. Transforming Consumption: From Decoupling, to Behavior Change, to System Changes for Sustainable Consumption. Annu. Rev. Environ. Resour. 2015, 40, 233–259. [Google Scholar] [CrossRef] [Green Version]
- Kryk, B. Konsumpcja zrównoważona a proekologiczne style życia. Stud. Proc. Polish Assoc. Knowl. Manag. 2011, 51, 206–218. [Google Scholar]
- Micheletti, M. Political Virtue and Shopping; Palgrave Macmillan: New York, NY, USA, 2003. [Google Scholar]
- Bylok, F. Konsumpcja hedonistyczna a konsumpcja etyczna. Czy potrzebna jest społecznie odpowiedzialna konsumpcja? Stud. Pr. WNEiZ 2016, 43, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Carrigan, M.; Attalla, A. The myth of the ethical consumer—Do ethics matter in purchase behaviour? J. Consum. Mark. 2001, 18, 560–578. [Google Scholar] [CrossRef] [Green Version]
- Toti, J.-F.; Moulins, J.-L. How to measure ethical consumption behaviors? Rev. Interdiscip. Manag. Homme Entrep. 2016, 24, 45. [Google Scholar] [CrossRef]
- Lorek, S.; Fuchs, D. Strong sustainable consumption governance—Precondition for a degrowth path? J. Clean. Prod. 2013, 38, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Matel, A. Przesłanki ekologizacji konsumpcji z perspektywy zachowań konsumenckich. Zarządzanie. Teor. Prakt. 2016, 16, 55–61. [Google Scholar]
- Kiełczewski, D. Wpływ ekologizacji konsumpcji na zmiany w zarządzaniu organizacjami. Han. Wew. 2016, 6, 55–63. [Google Scholar]
- Seyfang, G. The New Economics of Sustainable Consumption. Seeds of Change; Palgrave Macmillan: New York, NY, USA, 2011. [Google Scholar]
- Rumianowska, I. Ekokonsumpcja jako warunek efektywniejszego wykorzystania zasobów przyrodniczych a świadomość i zachowania konsumentów polskich. Res. Pap. Wrocław Univ. Econ. 2013, 318, 364–375. [Google Scholar] [CrossRef]
- Choi, S.; Feinberg, R.A. The LOHAS lifestyle and marketplace behavior: Establishing valid and reliable measurements. In Handbook of Engaged Sustainability; Springer International Publishing: Cham, Switzerland, 2018; Volume 2, pp. 1069–1086. [Google Scholar] [CrossRef]
- Zhang, T.; Siebers, P.O.; Aickelin, U. A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK. Energy Policy 2012, 47, 102–110. [Google Scholar] [CrossRef]
- Frankel, D.; Heck, S.; Tai, H. Using a Consumer Segmentation Approach to Make Energy Efficiency Gains in the Residential Market; McKinsey and Company: Chicago, IL, USA, 2013; pp. 1–9. [Google Scholar]
- Smart Energy Consumer Collaborative. Consumer Pulse and Marketing Segmentation Wave 7. 2019. Available online: https://smartenergycc.org/consumer-pulse-and-market-segmentation-wave-7-report/ (accessed on 14 June 2021).
- Guthridge, G.S. Understanding Consumer Preferences in Energy Efficiency: Accenture End-CONSUMER Observatoryon Electricity Management; Accenture: Dublin, Ireland, 2010. [Google Scholar]
- Black, I.; Eiseman, D. Climate Change Behaviours—Segmentation Study; University of Stirling: Stirling, UK, 2019. [Google Scholar]
- Xu, S.; Chu, C.; Zhang, Y.; Ye, D.; Wang, Y.; Ju, M. Entangled stakeholder roles and perceptions of sustainable consumption: An evaluation of sustainable consumption practices in Tianjin, China. J. Environ. Manag. 2018, 223, 841–848. [Google Scholar] [CrossRef]
- Falcone, P.M.; Lopolito, A.; Sica, E. Instrument mix for energy transition: A method for policy formulation. Technol. Forecast. Soc. Chang. 2019, 148, 119706. [Google Scholar] [CrossRef]
- Falcone, P.M. Analysing stakeholders’ perspectives towards a socio-technical change: The energy transition journey in Gela Municipality. AIMS Energy 2018, 6, 645–657. [Google Scholar] [CrossRef]
- Albert, A.; Maasoumy, M. Predictive segmentation of energy consumers. Appl. Energy 2016, 177, 435–448. [Google Scholar] [CrossRef]
- Tumbaz, M.N.M.; Moğulkoç, H.T. Profiling energy efficiency tendency: A case for Turkish households. Energy Policy 2018, 119, 441–448. [Google Scholar] [CrossRef]
- Sütterlin, B.; Brunner, T.A.; Siegrist, M. Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics. Energy Policy 2011, 39, 8137–8152. [Google Scholar] [CrossRef]
- Fjałkowski, K. Rola psychologii w ekonomiczej teorii zachowań ludzkich Gary’ego S. Beckera. Ekonomia 2013, 4, 54–63. [Google Scholar]
- Jakob, M. Marginal costs and co-benefits of energy efficiency investments. The case of the Swiss residential sector. Energy Policy 2006, 34, 172–187. [Google Scholar] [CrossRef]
- Knight, R.L.; Lutzenhiser, L.; Lutzenhiser, S. Why Comprehensive Residential Energy Efficiency Retrofits Are Undervalued. In Proceedings of the American Council for an Energy-Efficient Economy Summer Study Conference, London, 21–23 June 2006; pp. 1–10. [Google Scholar]
- Witek, L. Typologia konsumentów na rynku produktów ekologicznych. Probl. Zarządzania, Finans. Mark. 2014, 35, 209–218. [Google Scholar]
- Poortinga, W.; Darnton, A. Segmenting for sustainability: The development of a sustainability segmentation model from a Welsh sample. J. Environ. Psychol. 2016, 45, 221–232. [Google Scholar] [CrossRef] [Green Version]
- do Paço, A.; Raposo, M. “Green” segmentation: An application to the Portuguese consumer market. Mark. Intell. Plan. 2009, 27, 364–379. [Google Scholar] [CrossRef]
- Department for Environment Food and Rural Affairs. A Framework for Pro-Environmental Behaviours; DEFRA (Department for Environment, Food and Rural Affairs): London, UK, 2008; p. 76.
- Wind, Y. Issues and advances in segmentation research. J. Mark. Res. 1978, 15, 317–337. [Google Scholar] [CrossRef]
- Kotler, P.; Wong, V.; Saunders, J.; Armstrong, G. Principles of Marketing, 4th European ed.; Pearson Education Limited: Essex, UK, 2005. [Google Scholar]
- Tabi, A.; Hille, S.L.; Wüstenhagen, R. What makes people seal the green power deal?—Customer segmentation based on choice experiment in Germany. Ecol. Econ. 2014, 107, 206–215. [Google Scholar] [CrossRef]
- Hille, S.L. The Myth of the Unscrupulous Energy User’s Dilemma: Evidence from Switzerland. J. Consum. Policy 2016, 39, 327–347. [Google Scholar] [CrossRef]
- Lutzenhiser, L. Social and Behavioral Aspects of energy use. Annu. Rev. Energy Environ. 1993, 28, 247–289. [Google Scholar] [CrossRef]
- Straughan, R.D.; Roberts, J.A. Environmental segmentation alternatives: A look at green consumer behavior in the new millennium. J. Consum. Mark. 1999, 16, 558–575. [Google Scholar] [CrossRef]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour. Renew. Sustain. Energy Rev. 2015, 41, 1385–1394. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Solgaard, H.S.; Haider, W. Value seeking, price sensitive, or green? Analyzing preference heterogeneity among residential energy consumers in Denmark. Energy Res. Soc. Sci. 2015, 6, 15–28. [Google Scholar] [CrossRef]
- Axsen, J.; TyreeHageman, J.; Lentz, A. Lifestyle practices and pro-environmental technology. Ecol. Econ. 2012, 82, 64–74. [Google Scholar] [CrossRef]
- Hayn, M.; Bertsch, V.; Fichtner, W. Electricity load profiles in Europe: The importance of household segmentation. Energy Res. Soc. Sci. 2014, 3, 30–45. [Google Scholar] [CrossRef]
- Santin, O.G. Behavioural patterns and user profiles related to energy consumption for heating. Energy Build. 2011, 43, 2662–2672. [Google Scholar] [CrossRef]
- Vicente, P.; Reis, E. Segmenting households according to recycling attitudes in a Portuguese urban area. Resour. Conserv. Recycl. 2007, 52, 1–12. [Google Scholar] [CrossRef]
- Steg, L. Promoting household energy conservation. Energy Policy 2008, 36, 4449–4453. [Google Scholar] [CrossRef]
- Sorrell, S.; Dimitropoulos, J.; Sommerville, M. Empirical estimates of the direct rebound effect: A review. Energy Policy 2009, 37, 1356–1371. [Google Scholar] [CrossRef]
- Wiser, R.H. Using contingent valuation to explore willingness to pay for renewable energy: A comparison of collective and voluntary payment vehicles. Ecol. Econ. 2007, 62, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Kollmuss, A.; Agyeman, J. Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.O. Measuring consumption in households: Interpretations and strategies. Ecol. Econ. 2008, 68, 353–361. [Google Scholar] [CrossRef]
- Gupta, S.; Ogden, D.T. To buy or not to buy? A social dilemma perspective on green buying. J. Consum. Mark. 2009, 26, 378–393. [Google Scholar] [CrossRef]
- Edelson, E.; Olsen, M. Potential Social, Institutional, and Environmental Impacts of Selected Energy-Conservation Measures in Two Washington Communities. [Seatle and Yakima]; Battelle Pacific Northwest Labs: Richland, WA, USA, 1980. [Google Scholar]
- Mirek, J. Kryteria segmentacji rynku. Zesz. Nauk. Akad. Ekon. Krakowie 2000, 543, 105–115. [Google Scholar]
- Kotchen, M.J.; Moore, M.R. Private provision of environmental public goods: Household participation in green-electricity programs. J. Environ. Econ. Manag. 2007, 53, 1–16. [Google Scholar] [CrossRef]
- Ben, H.; Steemers, K. Household archetypes and behavioural patterns in UK domestic energy use. Energy Effic. 2018, 11, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Darnton, A.; Verplanken, B.; White, P.; Whitmarsh, L. Habits, Routines and Sustainable Lifestyles: A Summary Report to the Department for Environment, Food and Rural Affairs; AD Research & Analysis for Defra: London, UK, 2011. [Google Scholar]
- Breukers, S.; Mourik, R.; Heiskanen, E. Changing Energy Demand Behavior: Potential of Demand-Side Management. In Handbook of Sustainable Engineering; Kauffman, J., Lee, K.-M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 773–792. [Google Scholar] [CrossRef]
- Waris, I.; Hameed, I. An empirical study of purchase intention of energy-efficient home appliances: The influence of knowledge of eco-labels and psychographic variables. Int. J. Energy Sect. Manag. 2020, 14, 1297–1314. [Google Scholar] [CrossRef]
- Botetzagias, I.; Malesios, C.; Poulou, D. Electricity curtailment behaviors in Greek households: Different behaviors, different predictors. Energy Policy 2014, 69, 415–424. [Google Scholar] [CrossRef]
- Michelsen, C.C.; Madlener, R. Motivational factors influencing the homeowners’ decisions between residential heating systems: An empirical analysis for Germany. Energy Policy 2013, 57, 221–233. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Schlegelmilch, B.B.; Sinkovics, R.R.; Bohlen, G.M. Can socio-demographics still play a role in profiling green consumers? A review of the evidence and an empirical investigation. J. Bus. Res. 2003, 56, 465–480. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. How do socio-demographic and psychological factors relate to households’ direct and indirect energy use and savings? J. Econ. Psychol. 2009, 30, 711–720. [Google Scholar] [CrossRef]
- Sardianou, E. Estimating energy conservation patterns of Greek households. Energy Policy 2007, 35, 3778–3791. [Google Scholar] [CrossRef]
- Yang, S.; Shipworth, M.; Huebner, G. His, hers or both’s? The role of male and female’s attitudes in explaining their home energy use behaviours. Energy Build. 2015, 96, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Q.; Wei, H.H.; Chi, H.L.; Ma, Y.; Jian, I.Y. Psychological and demographic factors affecting household energy-saving intentions: A TPB-based study in northwest China. Sustainability 2020, 12, 836. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; Rajagopal, R. Smart meter driven segmentation: What your consumption says about you. IEEE Trans. Power Syst. 2013, 28, 4019–4030. [Google Scholar] [CrossRef]
- Gouveia, J.P.; Seixas, J. Unraveling electricity consumption profiles in households through clusters: Combining smart meters and door-to-door surveys. Energy Build. 2016, 116, 666–676. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Yin, J.; Zhang, Y. Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China. Energy Policy 2011, 39, 3550–3557. [Google Scholar] [CrossRef]
- Gamel, J.; Menrad, K.; Decker, T. Which factors influence retail investors’ attitudes towards investments in renewable energies? Sustain. Prod. Consum. 2017, 12, 90–103. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Hadush, T.; Healyd, S. Attitudes to Renewable Energy Technologies: A Survey of Irish Households. In Energy Challenges for the Next Decade, Proceedings of the 16th IAEE European Conference, Ljubljana, Slovenia, 25–28 August 2019; International Association for Energy Economics: Ljubljana, Slovenia, 2019. [Google Scholar]
- Bell, S.; Judson, E.; Bulkeley, H.; Powells, G.; Capova, K.A.; Lynch, D. Sociality and electricity in the United Kingdom: The influence of household dynamics on everyday consumption. Energy Res. Soc. Sci. 2015, 9, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M. Segmenting residential customers: Energy and conservation behaviors. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 7–22 August 2008; pp. 229–241. [Google Scholar]
- Han, Q.; Nieuwenhijsen, I.; de Vries, B.; Blokhuis, E.; and Schaefer, W. Intervention strategy to stimulate energy-saving behavior of local residents. Energy Policy 2013, 52, 706–715. [Google Scholar] [CrossRef]
- Boudet, H.S.; Flora, J.A.; Armel, K.C. Clustering household energy-saving behaviours by behavioural attribute. Energy Policy 2016, 92, 444–454. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, D.; Van Eeden, T.S.; Christie, L. A psychographic framework for determining south african consumers’ green hotel decision formation: Augmenting the theory of planned behaviour. J. Consum. Sci. 2020, 5, 1–18. [Google Scholar]
- Timofeeva, T.S.; Serova, O.F.; Golub, O.V. Study of Psychographic Characteristics of Consumers of Credit Products. In Proceedings of the International Scientific Conference “Far East Con” (ISCFEC 2020), Vladivostok, Russia, 1–4 October 2019; Atlantis Press: Dordrecht, The Netherlands; Volume 128, pp. 720–725. [Google Scholar]
- Rai, R.; Dhar, P.; Jha, A. Impact of psychographic factors on energy consciousness. AIP Conf. Proc. 2020, 2273, 020013. [Google Scholar]
- Sanguinetti, A.; Karlin, B.; Ford, R. Understanding the path to smart home adoption: Segmenting and describing consumers across the innovation-decision process. Energy Res. Soc. Sci. 2018, 46, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Maréchal, K.; Holzemer, L. Unravelling the ‘ingredients’ of energy consumption: Exploring home-related practices in Belgium. Energy Res. Soc. Sci. 2018, 39, 19–28. [Google Scholar] [CrossRef]
- Webb, D.; Soutar, G.N.; Mazzarol Saldaris, P. Self-determination theory and consumer behavioural change: Evidence fromahousehold energy-saving behaviour study. J. Environ. Psychol. 2013, 35, 59–66. [Google Scholar] [CrossRef]
- Pasini, D.; Reda, F.; Häkkinen, T. User engaging practices for energy saving in buildings: Critical review and new enhanced procedure. Energy Build. 2017, 148, 74–88. [Google Scholar] [CrossRef]
- Bastida, L.; Cohen, J.J.; Kollmann, A.; Moya, A.; Reichl, J. Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming. Renew. Sustain. Energy Rev. 2019, 103, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Hatzl, S.; Brudermann, T.; Reinsberger, K.; Posch, A. Do public programs in ‘energy regions’ affect citizen attitudes and behavior? Energy Policy 2014, 69, 425–429. [Google Scholar] [CrossRef]
- Schleich, J. Energy efficient technology adoption in low-income households in the European Union—What is the evidence? Energy Policy 2019, 125, 196–206. [Google Scholar] [CrossRef]
- Liobikienė, G.; Minelgaitė, A. Energy and resource-saving behaviours in European Union countries: The Campbell paradigm and goal framing theory approaches. Sci. Total Environ. 2021, 750, 141745. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T. Motivating Sustainable Consumption: A Review of Evidence on Consumer Behavior and Behavioral Change; A Report to the Sustainable Development Research Network; Centre for the Understanding of Sustainable Prosperity: Guild-ford, UK, 2005. [Google Scholar]
- Martiskainen, M. Affecting Consumer Behaviour on Energy Demand; Final Report; EdF Energy: Brighton, UK, 2007. [Google Scholar]
- Stern, P.C. Toward a coherent theory of environmentally significant behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Triandis, H.C. Interpersonal Behavior; Brooks/Cole Publishing Company: Monterey, CA, USA, 1977. [Google Scholar]
- Sagan, A. Podejścia do badań segmentacji rynku. Zesz. Nauk. Akad. Ekon. Krakowie 1995, 457, 19–35. [Google Scholar]
- Słupik, S.; Kos-Łabędowicz, J.; Trzęsiok, J. Report on Findings from Consultations and Online-Survey. Personalised ICT-Tools for the Active Engagement of Consumers towards Sustainable Energy; Report on Findings from Consultations and Online-Survey; Eco-Bot. Project; 2019; Available online: http://eco-bot.eu/ (accessed on 14 June 2021).
- Boriah, S.; Chandola, V.; Kumar, V. Similarity measures for categorical data: A comparative evaluation. In Proceedings of the 2008 SIAM International Conference on Data Mining, Atlanta, GA, USA, 24–26 April 2008; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008; Volume 1, pp. 243–254. [Google Scholar]
- Aldenderfer, M.; Blashfield, R. Cluster Analysis; Sage Publications: Beverly Hills, CA, USA, 1984. [Google Scholar]
- Everitt, B.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Sokal, R.; Michener, C. A statistical method for evaluating systematic relationships. Sci. Bull. 1958, 38, 1409–1438. [Google Scholar]
- Goodall, D.W. A New Similarity Index Based on Probability. Biometrics 1966, 22, 882–907. [Google Scholar] [CrossRef]
- Spark-Jones, K. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21. [Google Scholar] [CrossRef]
- Lin, D. An information-theoretic definition of similarity. In Proceedings of the 15th International Conference on Machine Learning (ICML ’98), Madison, WI, USA, 24–27 July 1998; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1998; pp. 296–304. [Google Scholar]
- Šulc, Z.; Řezanková, H. Comparison of Similarity Measures for Categorical Data in Hierarchical Clustering. J. Classif. 2019, 36, 58–72. [Google Scholar] [CrossRef]
- Sulc, Z.; Cibulkova, J.; Rezankova, H. Nomclust: Hierarchical Cluster Analysis of Nominal Data, R package version 2.2.1. 2020. Available online: https://cran.r-project.org/web/packages/nomclust/nomclust.pdf (accessed on 14 June 2021).
- Hubert, L.; Arabie, P. Comparing partitions. J. Classif. 1985, 2, 193–218. [Google Scholar] [CrossRef]
- Randall, D.M.; Fernandes, M.F. The social desirability response bias in ethics research. J. Bus. Ethics 1991, 10, 805–817. [Google Scholar] [CrossRef]
- Attari, S.Z.; DeKay, M.L.; Davidson, C.I.; De Bruin, W.B. Public perceptions of energy consumption and savings. Proc. Natl. Acad. Sci. USA 2010, 107, 16054–16059. [Google Scholar] [CrossRef] [Green Version]
Study | Segments | Motivations Behind Energy Saving | Factors | Approach | Location |
---|---|---|---|---|---|
Frankel et al. (2013) [18] |
|
| Attitudes and behaviours (held or demonstrated) | Comprehensive ethnographic in-home interviews, along with a detailed, 2500-person national survey to quantify behavioural trends | The United State of America |
Sütterlin et al. (2011) [27] |
|
| Energy-related behavioural characteristics (purchase- and curtailment-related energy-saving behaviour, acceptance of policy measures and energy-related psychosocial factors) | Cluster analytic approach, energy-saving behaviour and energy-related attitudes as a basis for the classification, a mail-in survey on a random sample of Swiss households | Switzerland |
Tabi et al. (2014) [37] |
|
| Socio-demographic, psychographic and behavioural variables | Latent class segmentation analysis based on choice-based conjoint data, comparison customers who have already purchased a green product with three different potential adopter segments along with socio-demographic variables, psychographic and behavioural characteristics, 4968 experimental choices of a representative sample of 414 German consumers | Germany |
Pedersen (2008) [73] |
|
| Characteristics and features of customers’ homes, the different ways in which electricity is used, opinions, attitudes and behaviours of residents relating to electricity, conservation and the environment | Quantitative end-use studies among BC Hydro residential customers across the British Columbia province/Canada sample—4191 completed surveys received cluster analysis | Canada |
Yang et al. (2015) [42] |
|
| Individuals’ perceptions, attitudes, values as well as socio-demographic variables | Danish households Latent class modelling, self-administered questionnaires, sample 1012 usable questionnaires among 7000+ Danish consumers | Denmark |
Accenture end–consumer observatory on electricity management (2010) [20] |
|
| Attitudinal, demographic and behavioural factors on electricity consumption | Quantitative global survey of consumers’ opinions and preferences toward electricity management programs, 9108 individuals, 17 countries conjoint analysis | Australia, Brazil, Canada, China, Denmark, France, Germany, Italy, Japan, Netherlands, Singapore, South Africa, South Korea, Spain, Sweden, United Kingdom, The United States |
Han et al. (2013) [74] |
|
| context opportunity, motivation, knowledge, curtailment behaviour, investment behaviour, the social-demographic factors and the dwelling characteristic | Energy-saving behaviour—preferences for interventions latent class model analyses sample: Eindhoven region of the Netherlands—1500 households, an online questionnaire | The Netherlands |
Stage 1 | Stage 2 | Stage 3 | |||
---|---|---|---|---|---|
Action | Outcome | Action | Outcome | Action | Outcome |
| Adaptation of segmentation from Frankel et al. (2013) [18] | Preliminary empirical validation of methodological assumptions Analysis of the survey results (06–09 2018) Supplementary literature review | The authors’ original behavioural segmentation—an attempt to create a universal model | Verification of segmentation:
| Verification of the validity and universality of the proposed behavioural segmentation Or Further research and modifications |
Completed | Completed | Completed | Completed | In progress | Started |
Segment | Environmental Awareness | Financial Motivation | Commitment | Description |
---|---|---|---|---|
Ecological Idealist (EI) | High | Low | High |
|
Aspiring Ecologist (AE) | High | Low | Average |
|
Dedicated Saver (DS) | Average | High | High |
|
Opportunist (O) | Low | Low | Low |
|
Indifferent (I) | None | None | None |
|
Segment | ||||
---|---|---|---|---|
Ecological Idealist (EI) | a | b | a | d |
Aspiring Ecologist (AE) | c | a | b | b |
Dedicated Saver (DS) | b | d | d | c |
Opportunist (O) | d | c | e | a |
Indifferent (I) | e | e | c | e |
ID | sm | good1 | good2 | good3 | good4 | iof | of | lin | lin1 | ve |
---|---|---|---|---|---|---|---|---|---|---|
1 | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS |
2 | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS |
3 | EI | EI | EI | EI | EI | EI | EI | EI | EI | EI |
4 | AE | AE | AE | AE | DS | AE | AE | AE | EI | AE |
5 | EI | EI | EI | EI | EI | EI | EI | EI | O | EI |
6 | EI DS O I | I | DS | O | EI | I | DS | O | O | DS |
7 | EI AE DS O | O | EI | O | DS | DS | EI | O | I | EI |
8 | EI | EI | EI | EI | EI | EI | EI | EI | AE | EI |
9 | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS |
10 | EI | EI | EI | EI | EI | EI | EI | EI | EI | EI |
11 | EI AE DS O | AE | EI | AE | DS | O | EI | AE | DS | O |
12 | O | O | O | O | AE | O | O | O | I | O |
ID | sm | good1 | good2 | good3 | good4 | iof | of | lin | lin1 | ve |
---|---|---|---|---|---|---|---|---|---|---|
sm | 1 | 0.849 | 0.717 | 0.853 | 0.430 | 0.827 | 0.688 | 0.791 | 0.244 | 0.793 |
good1 | 0.849 | 1 | 0.745 | 0.990 | 0.369 | 0.792 | 0.685 | 0.829 | 0.221 | 0.856 |
good2 | 0.717 | 0.745 | 1 | 0.749 | 0.420 | 0.705 | 0.675 | 0.645 | 0.181 | 0.826 |
good3 | 0.853 | 0.990 | 0.749 | 1 | 0.371 | 0.796 | 0.680 | 0.832 | 0.224 | 0.862 |
good4 | 0.430 | 0.369 | 0.420 | 0.371 | 1 | 0.486 | 0.509 | 0.391 | 0.206 | 0.399 |
iof | 0.827 | 0.792 | 0.705 | 0.796 | 0.486 | 1 | 0.647 | 0.681 | 0.241 | 0.769 |
of | 0.688 | 0.685 | 0.675 | 0.680 | 0.509 | 0.647 | 1 | 0.658 | 0.262 | 0.690 |
lin | 0.791 | 0.829 | 0.645 | 0.832 | 0.391 | 0.681 | 0.658 | 1 | 0.273 | 0.741 |
lin1 | 0.244 | 0.221 | 0.181 | 0.224 | 0.206 | 0.241 | 0.262 | 0.273 | 1 | 0.198 |
ve | 0.793 | 0.856 | 0.826 | 0.862 | 0.399 | 0.769 | 0.690 | 0.741 | 0.198 | 1 |
ID | sm | good1 | good2 | good3 | good4 | iof | of | lin | lin1 | ve | final segment |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS |
2 | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS |
3 | EI | EI | EI | EI | EI | EI | EI | EI | EI | EI | EI |
4 | AE | AE | AE | AE | DS | AE | AE | AE | EI | AE | AE |
5 | EI | EI | EI | EI | EI | EI | EI | EI | O | EI | EI |
6 | EI DS O I | I | DS | O | EI | I | DS | O | O | DS | DS O |
7 | EI AE DS O | O | EI | O | DS | DS | EI | O | I | EI | EI O |
8 | EI | EI | EI | EI | EI | EI | EI | EI | AE | EI | EI |
9 | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS | DS |
10 | EI | EI | EI | EI | EI | EI | EI | EI | EI | EI | EI |
11 | EI AE DS O | AE | EI | AE | DS | O | EI | AE | DS | O | AE |
12 | O | O | O | O | AE | O | O | O | I | O | O |
Motivations | Frankel et al. (2013) [18] | Sütterlin et al. (2011) [27] | Tabi et al. (2014) [37] | Pedersen (2008) [73] | Yang et al. (2015) [42] | Accenture end–Consumer Observatory on Electricity Management (2010) [20] | Ha et al. (2013) [74] | Proposed Segmentation |
---|---|---|---|---|---|---|---|---|
Mostly pro-ecological motivation with different levels of knowledge and dedication | GAES (19%) | IES (15.6%) | PA-TG (28.3%) | DC (25.6%) | GC (22%) | ER (12%) | EMR (19%) | EI (33.9%) |
SIES (26.4%) | SP (19.9%) | PO (16%) | CR (43%) | AE (17.2%) | ||||
PAWOEC (13.6%) | ||||||||
Sum | (19%) | (55.6%) | (28.3%) | (45.5%) | (22%) | (28%) | (62%) | (51.1%) |
Mostly financial motivation with different levels of knowledge and dedication | TCFES (20%) | TES (14%) | PA-PSG (18.8%) | CCP (21.7%) | PSC (25%) | CC (17%) | CFR (20%) | DS (33.1%) |
H-FS-ES (25%) | MEC (25.1%) | VSC (53%) | PA (21%) | |||||
Sum | (45%) | (39.1%) | (18.8%) | (21.7%) | (78%) | (38%) | (20%) | (33.1%) |
Comfort/ease of implementation as a potential drivers/barriers | N-GSES (17%) | COIEC (5.3%) | - | CS (9.1%) | - | S (21%) | EDR (18%) | O (7%) |
Not interested/Not engaged | DEW (19%) | - | LNA (19.8%) | TO C (12.7%) | - | I (13%) | - | I (4.9%) |
Sum | (36%) | (5.3%) | (19.8%) | (21.8%) | - | (34%) | (18%) | (13.9%) |
Other Motivations | - | - | PA-LP (26.1%) | EL (5.4%) | - | - | - | - |
A (7%) | ||||||||
Sum | - | - | (33.1%) | (5.4%) | - | - | - | |
Total | (100%) | (100%) | (100%) | (94%) * | (100%) | (100%) | (100%) | (96.1%) ** |
Motivation | Average Share for Segments from the Compared 7 Segmentations | Proposed Segmentation |
---|---|---|
Mostly pro-ecological motivation with different levels of knowledge and dedication | 37.2% | 51.1% |
Mostly financial motivation with different levels of knowledge and dedication | 37% | 33.1% |
Comfort/ease of implementation as a potential drivers/barriers | 8% | 7% |
Not interested/Not engaged | 19% | 4.9% |
Other motivations | 5.50%e | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słupik, S.; Kos-Łabędowicz, J.; Trzęsiok, J. An Innovative Approach to Energy Consumer Segmentation—A Behavioural Perspective. The Case of the Eco-Bot Project. Energies 2021, 14, 3556. https://doi.org/10.3390/en14123556
Słupik S, Kos-Łabędowicz J, Trzęsiok J. An Innovative Approach to Energy Consumer Segmentation—A Behavioural Perspective. The Case of the Eco-Bot Project. Energies. 2021; 14(12):3556. https://doi.org/10.3390/en14123556
Chicago/Turabian StyleSłupik, Sylwia, Joanna Kos-Łabędowicz, and Joanna Trzęsiok. 2021. "An Innovative Approach to Energy Consumer Segmentation—A Behavioural Perspective. The Case of the Eco-Bot Project" Energies 14, no. 12: 3556. https://doi.org/10.3390/en14123556