Magneto-Thermo-Structural Analysis of Power Transformers under Inrush and Short Circuit Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Method
2.2. Magnetic Modeling
2.3. Calculation of Losses in Transformer Windings
2.4. Calculation of Electromagnetic Forces in Windings
3. Main Transients in Transformers
3.1. Inrush
3.2. Short-Circuit
4. Results
4.1. Transformer Data
4.2. Simulation in Nominal Operation
4.3. Simulation with Inrush Current
4.4. Simulation with Short-Circuit Current
5. Conclusions
- Initially the transformer was simulated using a thermo-magnetic methodology and considering the nominal operating current. The results obtained were compared with values measured by sensors to validate the methodology.
- In the second case, a magneto-structural methodology was used to simulate the same equipment; however, in this case, the maximum peak of the inrush current was considered as a source of excitation. Even though the results obtained in this step were higher than the results found in the literature, this difference is perfectly justified in view of the way in which this methodology was constructed.
- In the last step of the methodology of this work, a magneto-thermo-structural methodology was developed where the 50 MVA transformer was simulated considering the maximum peak of the short-circuit current as an operating condition. In this case, it was considered the most severe case that can occur in the transformers. The results found showed internal temperatures that can melt the contours, in addition to deformations that can easily break the insulation of the turns to the transformer.
- The methodology used in this work is very promising and the results obtained describe a projection for the physical behavior of the transformer; however, there are still points to be improved in future works, such as the use of this coupling methodology in transient analyses considering the operation curves, as well as the variation of the phenomena over time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
FEM | Finite element method |
HTS | High-temperature superconducting |
SVP | Saturated vapor pressure |
CTC | Continuously transposed conductors |
References
- Jamali, M.; Mirzaie, M.; Gholamian, S.A.; Cherati, S.M. A Wavelet-Based Technique for Discrimination of Inrush Currents from Faults in Transformers Coupled with Finite Element Method. In Proceedings of the 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 18–19 April 2011; pp. 138–142. [Google Scholar]
- Sathya, M.A.; Thomas, A.J.; Usa, S. Prediction of Transformer Winding Displacement from Frequency Response Characteristics. In Proceedings of the IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems, Kolkata, India, 6–8 December 2013; pp. 303–307. [Google Scholar]
- León, F.F.; Jazebi, S. Analysis, Modeling, and Simulation of the Phase-Hop Condition in Transformers: The Largest Inrush Currents. IEEE Trans. Power Deliv. 2014, 29, 1918–1926. [Google Scholar]
- Yazdani-Asrami, M.; Taghipour-Gorjikolaie, M.; Razavi, S.M.; Gholamian, S.A. A novel intelligent protection system for power transformers considering possible electrical faults, inrush current, CT saturation and over-excitation. Int. J. Electr. Power Energy Syst. 2015, 64, 1129–1140. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Staines, M.; Sidorov, G.; Davies, M.; Bailey, J.; Allpress, N.; Glasson, N.; Gholamian, S.A. Fault current limiting HTS transformer with extended fault withstand time. Supercond. Sci. Technol. 2019, 32, 035006. [Google Scholar] [CrossRef]
- Yazdani-Asrami, M.; Staines, M.; Sidorov, G.; Eicher, A. Heat transfer and recovery performance enhancement of metal and superconducting tapes under high current pulses for improving fault current-limiting behavior of HTS transformers. Supercond. Sci. Technol. 2020, 33, 095014. [Google Scholar] [CrossRef]
- Daneshmand, S.V.; Heydari, H. Multiphysics Approach in HTS Transformers with Different Winding Schemes. IEEE Trans. Appl. Supercond. 2014, 24, 103–110. [Google Scholar] [CrossRef]
- Arjona, M.A.; Hernandez, C.; Escarela-Perez, R.; Melgoza, E. Thermal Analysis of a Dry-Type Distribution Power Transformer Using FEA. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 2270–2274. [Google Scholar]
- Zhang, H.; Yang, B.; Xu, W.; Wang, S.; Wang, G.; Huangfu, Y.; Zhang, J. Dynamic Deformation Analysis of Power Transformer Windings in Short-Circuit Fault by FEM. IEEE Trans. Appl. Supercond. 2014. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, W.; Jin, M.; Wen, T.; Xue, J.; Zhang, Q.; Chen, M. Short-Circuit Electromagnetic Force Distribution Characteristics in Transformer Winding Transposition Structures. IEEE Trans. Magn. 2020. [Google Scholar] [CrossRef]
- Fonseca, W.S.; Lima, D.S.; Lima, A.K.F.; Soeiro, N.S.; Nunes, M.V.A. Analysis of electromagnetic-mechanical stresses on the winding of a transformer under inrush currents conditions. Int. J. Appl. Electromagn. Mech. 2016, 50, 511–524. [Google Scholar] [CrossRef]
- Yana, C.; Hao, Z.; Zhang, S.; Zhang, B.; Zheng, T.; Li, Z. Computation and analysis of power transformer winding damage due to short circuit fault based on 3-D finite element method. Int. J. Appl. Electromagn. Mech. 2016, 51, 405–418. [Google Scholar] [CrossRef]
- Fonseca, W.S.; Lima, D.S.; Lima, A.K.F.; Nunes, M.V.A.; Bezerra, U.H.; Soeiro, N.S. Analysis of Structural Behavior of Transformer’s Winding Under Inrush Current Conditions. IEEE Trans. Ind. Appl. 2018, 54, 2285–2294. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Wang, S.; Li, H.; Yuan, D. Cumulative Deformation Analysis for Transformer Winding Under Short-Circuit Fault Using Magnetic—Structural Coupling Model. IEEE Trans. Appl. Supercond. 2016. [Google Scholar] [CrossRef]
- Gołebiowski, M.; Gołebiowski, L.; Smolen, A.; Mazur, D. Direct Consideration of Eddy Current Losses in Laminated Magnetic Cores in Finite Element Method (FEM) Calculations Using the Laplace Transform. Energies 2020, 13, 1174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lu, P.; Kong, J.; Liu, R.; Cao, Q.; Shao, H.; Deng, W.; Chen, J. Fault analysis and simulation of ground-fault accident on transformer in 500 kV AC/DC grids. Int. J. Appl. Electromagn. Mech. 2019, 60, 1–12. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Zhang, N.; Yuan, D.; Qiu, H. Calculation and Analysis of Mechanical Characteristics of Transformer Windings under Short-Circuit Condition. IEEE Trans. Magn. 2019, 55. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Wang, C.; Yang, Q.; Zhang, C. Eddy Current Loss Effect in Foil Winding of Transformer Based on Magneto-Fluid-Thermal Simulation. IEEE Trans. Magn. 2019, 55. [Google Scholar] [CrossRef]
- Gong, R.; Ruan, J.; Chen, J.; Quan, Y.; Wang, J.; Jin, S. A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias. Energies 2017, 10, 422. [Google Scholar] [CrossRef]
- Zhang, B.; Yan, N.; Ma, S.; Wang, H. Buckling Strength Analysis of Transformer Windings Based on Electromagnetic Thermal Structural Coupling Method. IEEE Trans. Appl. Supercond. 2019, 29, 2. [Google Scholar] [CrossRef]
- Lima, D.S.; Mahmud, L.S.; de Sousa, A.R.M.; Fonseca, W.S.; Bezerra, U.H.; Bezerra, F.V.V. Electromagnetic analysis of single-phase transformer banks under sympathetic inrush phenomenon. Int. J. Appl. Electromagn. Mech. 2020, 62, 541–556. [Google Scholar] [CrossRef]
- Hollauer, C. Modeling of Thermal Oxidation and Stress Effects. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2007. [Google Scholar]
- Dias, F.; Cruz, J.; Valente, R.; Sousa, R. Método dos Elementos Finitos: Técnicas de Simulação Numérica em Engenharia, 2nd ed.; ETEP-Edições Técnicas e Profissionais: Lisbon, Portugal, 2018. (In Portuguese) [Google Scholar]
- Ebrahimi, B.; Fereidunian, A.; Saffari, S.; Faiz, J. Analytical estimation of short circuit axial and radial forces on power transformers windings. IET Gener. Transm. Distrib. 2014, 8, 250–260. [Google Scholar] [CrossRef]
- Bastos, J.P.A. Eletromagnetismo e Cálculo de Campos, 3rd ed.; Editora da UFSC: Florianópolis, Brazil, 1996; 452p. (In Portuguese) [Google Scholar]
- Bastos, J.P.A.; Sadowski, N. Electromagnetic Modeling by Finite Element Methods; Marcel Dekker Inc.: New York, NY, USA, 2003. [Google Scholar]
- Meeker, D. Finite Element Method Magnetics; User’s Manual, Version 4.2; [Online]; Available online: http://femm.foster-miller.net (accessed on 16 May 2020).
- Bianchi, N. Electrical Machine Analysis Using Finite Elements: Basic Principles of Finite Element Methods; Taylor & Francis Group: New York, NY, USA, 2005. [Google Scholar]
- Salon, S.J. Finite Element Analysis of Electrical Machines; Rensselaer Polytechnic Institute: Troy, NY, USA, 1995. [Google Scholar]
- Zhang, B.; Yan, N. Stability Analysis of Inner Windings in Transformers Based on Electromagnetic-Thermal-Structural Coupling Method 2p. In Proceedings of the IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Tianjin, China, 15–18 April 2018. [Google Scholar]
- Ahn, H.; Oh, Y.; Kim, J.; Song, J.; Hahn, S. Experimental Verification and Finite Element Analysis of Short-Circuit Electromagnetic Force for Dry-Type Transformer 4. IEEE Trans. Magn. 2012, 48, 819–822. [Google Scholar] [CrossRef]
- Kulkarni, S.V.; Khaparde, S.A. Transformer Engineering: Design and Practice; Marcel Dekker, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Heathcote, M. J&P Transformer Book, 12th ed.; Oxford, Elsevier Science Ltd.: Madras, India, 1998. [Google Scholar]
- Waters, M. The Short-Circuit Strength of Power Transformers; McDonald & Co. Ltd.: London, UK, 1966. [Google Scholar]
- Fonseca, W.S. Análise de Esforços Eletromagneto-mecânicos nos Enrolamentos de um Transformador sob Condições de Correntes de Inrush. Ph.D. Thesis, Electrical Engineering Graduate Program. Federal University of Pará, Belém, Brazil, 2016. (In Portuguese). [Google Scholar]
- Azevedo, A.C. Estresse Eletromecânico em Transformadores causado por Curtos- Circuitos “Passantes” e Correntes de Energização. Ph.D. Thesis, Electrical Engineering Graduate Program. Federal University of Uberlândia, Uberlândia, Brazil, 2007. [Google Scholar]
- Hibbeler, R.C. Strength of Materials, 5th ed.; Tech. Sci. Books Publ.: São Paulo, Brazil, 2006. [Google Scholar]
- Kulkarni, S.V.; Khaparde, S.A. Transformer Engineering: Design, Technology, and Diagnostics, 2nd ed.; Marcel Dekker: New York, NY, USA, 2013. [Google Scholar]
- Faiz, J.; Ebrahimi, B.; Noori, T. Three- and Two-Dimensional Finite-Element Computation of Inrush Current and Short-Circuit Electromagnetic Forces on Windings of a Three-Phase Core-Type Power Transformer. IEEE Trans. Magn. 2008, 44, 590–597. [Google Scholar] [CrossRef]
- Das, J.C. Power System Analysis: Short-Circuit Load Flow and Harmonics; Amec, Inc.: Atlanta, GA, USA, 2002. [Google Scholar]
- Feng, J.Q.; Ma, C.; Tang, W.H.; Smith, J.S.; Wu, Q.H. A transformer predictive maintenance system based on agent-oriented programming. In Proceedings of the 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian, China, 5 December 2005. [Google Scholar]
Characteristics | Windings | |
---|---|---|
External | Internal | |
Inner diameter (mm) | 1406 | 1096 |
External diameter (mm) | 1599 | 1262 |
Axial height (mm) | 2080 | 2080 |
Radial height (mm) | 96 | 83 |
Number of turns | 572 | 191 |
Frequency (Hz) | 60 | 60 |
Power (MVA) | 50 | 50 |
Phase voltage (kV) | 132.80 | 39.84 |
Phase current (A) | 376.55 | 1255.12 |
Connection | Star | Star |
Temperature (°C) | Windings | |
---|---|---|
External | Internal | |
Measurement | 52.0 | 53.1 |
Simulation | 41.7 | 43.7 |
Margin of error | 19.8% | 17.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, A.R.M.d.; Nunes, M.V.A.; Fonseca, W.d.S.; Araujo, R.C.F.; Lima, D.d.S. Magneto-Thermo-Structural Analysis of Power Transformers under Inrush and Short Circuit Conditions. Energies 2021, 14, 3266. https://doi.org/10.3390/en14113266
Sousa ARMd, Nunes MVA, Fonseca WdS, Araujo RCF, Lima DdS. Magneto-Thermo-Structural Analysis of Power Transformers under Inrush and Short Circuit Conditions. Energies. 2021; 14(11):3266. https://doi.org/10.3390/en14113266
Chicago/Turabian StyleSousa, Antonio Roniel Marques de, Marcus Vinicius Alves Nunes, Wellington da Silva Fonseca, Ramon Cristian Fernandes Araujo, and Diorge de Souza Lima. 2021. "Magneto-Thermo-Structural Analysis of Power Transformers under Inrush and Short Circuit Conditions" Energies 14, no. 11: 3266. https://doi.org/10.3390/en14113266
APA StyleSousa, A. R. M. d., Nunes, M. V. A., Fonseca, W. d. S., Araujo, R. C. F., & Lima, D. d. S. (2021). Magneto-Thermo-Structural Analysis of Power Transformers under Inrush and Short Circuit Conditions. Energies, 14(11), 3266. https://doi.org/10.3390/en14113266