An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor
Abstract
:1. Introduction
2. Materials and Synthesis
2.1. Materials
2.2. Synthesis
2.2.1. Treatment of Nickel Foam
2.2.2. Synthesis of NiCo2O4
2.2.3. Synthesis of CuCo2O4 and CuCo2O4@NiCo2O4 on Nickel Foam
2.3. Characterizations
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conway, B. Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J. Electrochem. Soc. 1991, 138, 1539. [Google Scholar] [CrossRef]
- Ribeiro, P.; Johnson, B.; Crow, M.; Arsoy, A.; Liu, Y. Energy storage systems for advanced power applications. Proc. IEEE 2001, 89, 1744–1756. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical Capacitors for Energy Management. Sci. Mag. 2008, 321, 651–652. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P.F.; Mayes, R.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Iqbal, N.; Baig, M.M.; Noor, T.; Ali, G.; Gul, I.H. ZIF-67 derived nitrogen doped CNTs decorated with sulfur and Ni(OH)2 as potential electrode material for high-performance supercapacitors. Electrochim. Acta 2020, 364, 137147. [Google Scholar] [CrossRef]
- Kubra, K.T.; Sharif, R.; Patil, B.; Javaid, A.; Shahzadi, S.; Salman, A.; Siddique, S.; Ali, G. Hydrothermal synthesis of neodym-ium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application. J. Alloys Compd. 2020, 815, 152104. [Google Scholar] [CrossRef]
- Kubra, K.T.; Javaid, A.; Sharif, R.; Ali, G.; Iqbal, F.; Salman, A.; Shaheen, F.; Butt, A.; Iftikhar, F.J. Facile synthesis and electro-chemical study of a ternary hybrid PANI/GNP/MnO2 as supercapacitor electrode material. J. Mater. Sci. Mater. Electron. 2020, 31, 12455–12466. [Google Scholar] [CrossRef]
- Mordina, B.; Kumar, R.; Neeraj, N.S.; Srivastava, A.K.; Setua, D.K.; Sharma, A. Binder free high performance hybrid superca-pacitor device based on nickel ferrite nanoparticles. J. Energy Storage 2020, 31, 101677. [Google Scholar] [CrossRef]
- Obodo, R.M.; Shinde, N.; Chime, U.K.; Ezugwu, S.; Nwanya, A.C.; Ahmad, I.; Maaza, M.; Ejikeme, P.M.; Ezema, F.I. Recent advances in metal oxide/hydroxide on 3D nickel foam substrate for high performance pseudocapacitive electrodes. Curr. Opin. Electrochem. 2020, 21, 242–249. [Google Scholar] [CrossRef]
- Xiong, X.; Ding, D.; Chen, D.; Waller, G.; Bu, Y.; Wang, Z.; Liu, M. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy 2015, 11, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.-J. The 3D Co3O4/graphene/nickel foam electrode with enhanced electrochemical performance for supercapacitors. Mater. Lett. 2015, 139, 377–381. [Google Scholar]
- Yang, J.; Lian, L.; Ruan, H.; Xie, F.; Wei, M. Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application. Electrochim. Acta 2014, 136, 189–194. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, T.; Liu, Z.; Zhong, Q.; Qin, Y. Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors. J. Alloys Compd. 2020, 812, 152124. [Google Scholar] [CrossRef]
- Cai, D.; Huang, H.; Wang, D.; Liu, B.; Wang, L.; Liu, Y.; Li, Q.; Wang, T. High-performance supercapacitor electrode based on the unique ZnO@ Co3O4 core/shell heterostructures on nickel foam. ACS Appl. Mater. Interfaces 2014, 6, 15905–15912. [Google Scholar] [CrossRef]
- Chee, W.; Lim, H.; Harrison, I.; Chong, K.; Zainal, Z.; Ng, C.; Huang, N. Performance of flexible and binderless polypyr-role/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 2015, 157, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Du, X.; Wu, R.; Zhang, Y.; Xu, C.; Chen, H. Bundlelike CuCo2O4 Microstructures Assembled with Ultrathin Nanosheets As Battery-Type Electrode Materials for High-Performance Hybrid Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 8026–8037. [Google Scholar] [CrossRef]
- Teng, Y.; Yu, D.; Li, Y.; Meng, Y.; Wu, Y.; Feng, Y.; Hua, Y.; Wang, C.; Zhao, X.; Liu, X. Facile Synthesis of Hierarchical MgCo2O4@MnO2 Core-Shell Nanosheet Arrays on Nickel Foam as an Advanced Electrode for Asymmetric Supercapacitors. J. Electrochem. Soc. 2020, 167, 020510. [Google Scholar] [CrossRef]
- Ma, L.; Chang, Z.; Guo, L.; Li, T.; Li, G.; Wang, K. String-like core-shell ZnCo2O4@NiWO4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes. Ionics 2020, 26, 2537–2547. [Google Scholar] [CrossRef]
- Chen, H.C.; Qin, Y.; Cao, H.; Song, X.; Huang, C.; Feng, H.; Zhao, X. Synthesis of amorphous nickel–cobalt–manganese hy-droxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater. 2019, 17, 194–203. [Google Scholar] [CrossRef]
- Du, C.; Han, E.; Gao, L.; Li, L.; Qiao, S.; Sun, L.; Liu, J. Soft-template and simple hydrothermal method to synthesize Fe-Co oxide on nickel foam and apply it to supercapacitors. Ionics 2020, 26, 4009–4018. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, A.; Che, H.; Mu, J.; Guo, Z.; Zhang, X.; Bai, Y.; Zhang, Z.; Wang, G.; Pei, Z. Three-dimensional interconnected MnCo2O4 nanosheets@ MnMoO4 nanosheets core-shell nanoarrays on Ni foam for high-performance supercapacitors. Chem. Eng. J. 2018, 336, 64–73. [Google Scholar] [CrossRef]
- Kuang, M.; Liu, X.Y.; Dong, F.; Zhang, Y.X. Tunable design of layered CuCo2O4 nanosheets@MnO2 nanoflakes core–shell arrays on Ni foam for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21528–21536. [Google Scholar] [CrossRef]
- Lin, L.; Huang, M.; Ning, M.; Wu, K.; Li, H.; Hussain, S.; Zhao, S. Facile ordered ZnCo2O4@MnO2 nanosheet arrays for su-perior-performance supercapacitor electrode. Solid State Sci. 2018, 84, 51–56. [Google Scholar] [CrossRef]
- Chen, S.; Yang, G.; Zheng, H. Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices. Electrochim. Acta 2016, 220, 296–303. [Google Scholar] [CrossRef]
- Su, D.; Tang, Z.; Xie, J.; Bian, Z.; Zhang, J.; Yang, D.; Zhang, D.; Wang, J.; Liu, Y.; Yuan, A.; et al. Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Appl. Surf. Sci. 2019, 469, 487–494. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, D.; Lian, J.; Pan, J.; Wei, T.; Sun, Y. Cedar leaf-like CuCo2O4 directly grow on nickel foam by a hydrother-mal/annealing process as an electrode for a high-performance symmetric supercapacitor. J. Alloys Compd. 2018, 735, 2046–2052. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Xia, X.; Shi, S.; Lu, Y.; Wang, X.; Gu, C.; Tu, J. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J. Power Sources 2013, 239, 157–163. [Google Scholar] [CrossRef]
- Vishnukumar, P.; Saravanakumar, B.; Ravi, G.; Ganesh, V.; Guduru, R.K.; Yuvakkumar, R. Synthesis and characterization of NiO/Ni3V2O8 nanocomposite for supercapacitor applications. Mater. Lett. 2018, 219, 114–118. [Google Scholar] [CrossRef]
- Jung, N.; Kwon, S.; Lee, D.; Yoon, D.M.; Park, Y.M.; Benayad, A.; Choi, J.Y.; Park, J.S. Synthesis of chemically bonded gra-phene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors. Adv. Mater. 2013, 25, 6854–6858. [Google Scholar] [CrossRef] [PubMed]
- Salunkhe, R.R.; Jang, K.; Lee, S.-w.; Ahn, H. Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudo-capacitor applications. RSC Adv. 2012, 2, 3190–3193. [Google Scholar] [CrossRef]
- Yedluri, A.K.; Kim, H.-J. Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv. 2019, 9, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.S.; Dai, S.; Wang, M.; Xi, Y.; Lang, Q.; Guo, D.; Hu, C. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale 2015, 7, 13610–13618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Wang, Z.; Lin, T.; Zhu, X.; Luo, B.; Hu, H.; Xing, W.; Yan, Z.; Wang, L. Lithiation-Induced Vacancy Engi-neering of Co3O4 with Improved Faradic Reactivity for High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172. [Google Scholar] [CrossRef]
- Kim, T.; Ramadoss, A.; Saravanakumar, B.; Veerasubramani, G.K.; Kim, S.J. Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors. Appl. Surf. Sci. 2016, 370, 452–458. [Google Scholar] [CrossRef]
- Sethi, M.; Bhat, D.K. Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods. J. Alloys Compd. 2019, 781, 1013–1020. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, S.; Zheng, L.; Zhang, G.; Hao, Z.; Kang, L.; Liu, Z.-H. Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance. Electrochim. Acta 2013, 87, 546–553. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Priyadharshini, T.; Ravi, G.; Ganesh, V.; Sakunthala, A.; Yuvakkumar, R. Hydrothermal synthesis of spherical NiCO2O4 nanoparticles as a positive electrode for pseudocapacitor applications. J. Sol Gel Sci. Technol. 2017, 84, 297–305. [Google Scholar] [CrossRef]
- Krishnan, S.G.; Reddy, M.; Harilal, M.; Vidyadharan, B.; Misnon, I.I.; Ab Rahim, M.H.; Ismail, J.; Jose, R. Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim. Acta 2015, 161, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Yedluri, A.K.; Anitha, T.; Kim, H.-J. Fabrication of Hierarchical NiMoO4/NiMoO4 Nanoflowers on Highly Conductive Flexible Nickel Foam Substrate as a Capacitive Electrode Material for Supercapacitors with Enhanced Electrochemical Performance. Energies 2019, 12, 1143. [Google Scholar] [CrossRef] [Green Version]
Electrode Material | Scan Rate (mV s−1) | Current Density (A g−1) | Specific Capacitance F g−1 | Reference |
---|---|---|---|---|
NiCo2O4 nanoplates | 0.325 | 132 | [34] | |
NiCo2O4 nanorods | 1 | 233 | [35] | |
NiMn2O4 spinel | 5 | 243 | [36] | |
NiCo2O4 nanoparticles | 1 | 294 | [37] | |
Aggregated CuCo2O4 | 0.5 | 133 | [38] | |
NiCo2O4 | 1 | 334 | This work | |
CuCo2O4 | 1 | 320 | This work | |
CuCo2O4@NiCo2O4 | 1 | 422 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, B.; Ullah, M.O.; Ali, G. An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor. Energies 2021, 14, 3237. https://doi.org/10.3390/en14113237
Nawaz B, Ullah MO, Ali G. An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor. Energies. 2021; 14(11):3237. https://doi.org/10.3390/en14113237
Chicago/Turabian StyleNawaz, Bushra, Muhammad Obaid Ullah, and Ghulam Ali. 2021. "An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor" Energies 14, no. 11: 3237. https://doi.org/10.3390/en14113237
APA StyleNawaz, B., Ullah, M. O., & Ali, G. (2021). An Investigation of the Electrochemical Properties of CuCo2O4@NiCo2O4 Composite as Binder-Free Electrodes of a Supercapacitor. Energies, 14(11), 3237. https://doi.org/10.3390/en14113237