Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids
Abstract
:1. Introduction
2. Experimental Setup
2.1. Experimental Apparatus
2.2. Nanofluid Preparation
2.3. Nanofluid Properties
2.4. Stability of the Tested Nanofluids
2.5. Data Reduction and Measurement Uncertainty
3. Results
3.1. Validation of the Research Methods
3.2. Influence of Nanoparticle Concentration on Heat Transfer
3.3. Present Correlation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | Thermal diffusivity | (m2/s) |
cp | Specific heat | (J/(kg K)) |
D | Outer diameter of heated cylinder | (m) |
g | Gravitational acceleration | (m/s2) |
h | Heat transfer coefficient | (W/(m2 K)) |
HB | Distance between periphery of cylinder and bottom wall | (m) |
HT | Submersion depth | (m) |
k | Thermal conductivity | (W/(m K)) |
Nu number | (-) | |
Pr | Pr number | (-) |
q | Heat flux | (W/m2) |
Ra number related to temperature difference | (-) | |
Ra number related to heat flux | (-) | |
SW | Distance between periphery of cylinder and side wall | (m) |
t | Temperature | (°C) |
T | Temperature | (K) |
ΔT | Temperature difference | (K) |
Greek Symbols | ||
β | Thermal expansion coefficient | (1/K) |
μ | Dynamic viscosity | (Pa s) |
ν | Kinematic viscosity | (m2/s) |
φ | Nanoparticle concentration | (-) |
ρ | Density | (kg/m3) |
Subscripts | ||
bf | Base fluid | |
f | Fluid | |
m | Mass | |
nf | Nanofluid | |
p | Particle | |
v | Volume | |
w | Wall |
References
- Choi, S. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Developments and Applications of Non-Newtonian Flows; ASME: New York, NY, USA, 1995; Volume 231/MD, pp. 99–105. [Google Scholar]
- Taylor, R.; Coulombe, S.; Otanicar, T.; Phelan, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H. Small particles, big impacts. A review of the diverse applications of nanofluids. J. Appl. Phys. 2013, 113, 011301. [Google Scholar] [CrossRef]
- Sajid, M.U.; Ali, H.M. Recent advances in application of nanofluids in heat transfer devices: A critical review. Renew. Sustain. Energy Rev. 2019, 103, 556–592. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Taylor, R.A.; Abu-Nada, E.; Rashidi, S.; et al. Recent advances in modeling and simulation of nanofluid flows-Part II: Applications. Phys. Rep. 2019, 791, 1–59. [Google Scholar] [CrossRef]
- El-Kaddadi, L.; Asbik, M.; Zari, N.; Zeghmati, B. Experimental study of the sensible heat storage in the water/TiO2 nanofluid enclosed in an annular space. Appl. Therm. Eng. 2017, 122, 673–684. [Google Scholar] [CrossRef]
- Cieśliński, J.T.; Fabrykiewicz, M. Thermal energy storage using stearic acid as PCM material. J. Mech. Energy Eng. 2018, 2, 217–224. [Google Scholar]
- Hussein, A.M.; Sharma, K.V.; Bakar, R.A.; Kadirgama, K. A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid. Renew. Sustain. Energy Rev. 2014, 29, 734–743. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Siavashi, M.; Taylor, R.A.; Niazmand, H.; et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48. [Google Scholar] [CrossRef]
- Haddad, Z.; Oztop, H.F.; Abu-Nada, E.; Mataoui, A. A review on natural convective heat transfer of nanofluids. Renew. Sust. Energ. Rev. 2012, 16, 5363–5378. [Google Scholar] [CrossRef]
- Cieśliński, J.T.; Krygier, K. Free convection of water-Al2O3 nanofluid from horizontal porous coated tube. Key Eng. Mater. 2014, 597, 15–20. [Google Scholar] [CrossRef]
- Kiran, M.R.; Babu, S.R. Experimental investigation on natural convection heat transfer enhancement using transformer oil-TiO2 nano fluid. Int. Res. J. Eng. Technol. (IRJET) 2018, 5, 1412–1418. [Google Scholar]
- Habibi, M.R.; Amini, M.; Arefmanesh, A.; Ghasemikafrudi, E. Effects of viscosity variations on buoyancy-driven flow from a horizontal circular cylinder immersed in Al2O3-water nanofluid. Iran. J. Chem. Eng. 2019, 38, 213–232. [Google Scholar]
- Polidori, G.; Fohanno, S.; Nguyen, C.T. A note on heat transfer modelling of Newtonian nanofluids in laminar free convection. Int. J. Thermal Sci. 2007, 46, 739–744. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
- Maïga, S.E.B.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N. Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow 2005, 26, 530–546. [Google Scholar] [CrossRef]
- Cieśliński, J.T.; Smolen, S.; Sawicka, D. Free convection heat transfer from horizontal cylinders. Energies 2021, 14, 559. [Google Scholar] [CrossRef]
- Fand, R.M.; Morris, E.W.; Lum, M. Natural convection heat transfer from horizontal cylinders to air, water and silicone oils for Rayleigh numbers between 3 × 102 to 2 × 107. Int. J. Heat Mass Transf. 1997, 20, 1173–1184. [Google Scholar] [CrossRef]
- Ashjaee, M.; Yazdani, S.; Bigham, S.; Yousefi, T. Experimental and numerical investigation on free convection from a horizontal cylinder located above an adiabatic surface. Heat Transf. Eng. 2012, 33, 213–224. [Google Scholar] [CrossRef]
- Atayılmaz, Ş.Ö.; Teke, İ. Experimental and numerical study of the natural convection from a heated horizontal cylinder. Int. Commun. Heat Mass Transf. 2009, 36, 731–738. [Google Scholar] [CrossRef]
- Cieśliński, J.T.; Pudlik, W. Laminar free-convection from spherical segments. Int. J. Heat Fluid Flow. 1988, 9, 405–409. [Google Scholar] [CrossRef]
- Sawicka, D.; Cieśliński, J.T.; Smoleń, S. A comparison of empirical correlations of viscosity and thermal conductivity of water-ethylene glycol-Al2O3 nanofluids. Nanomaterials 2020, 10, 1487. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- ASHRAE. American Society of Heating, Refrigerating and Air-Conditioning Engineers. In ASHRAE Handbook—Fundamentals; ASHRAE: Atlanta, GA, USA, 2005. [Google Scholar]
- Buongiorno, J.; Venerus, D.C.; Prabhat, N.; McKrell, T.J.; Townsend, J.; Christianson, R.J.; Tolmachev, Y.V.; Keblinski, P.; Hu, L.-W.; Alvarado, J.L.; et al. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106, 094312. [Google Scholar] [CrossRef] [Green Version]
- Vajjha, R.S.; Das, D.K. Specific heat measurement of three nanofluids and development of new correlations. ASME J. Heat Transf. 2009, 131, 071601. [Google Scholar] [CrossRef]
- Ho, C.J.; Liu, W.K.; Chang, Y.S.; Lin, C.C. Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: An experimental study. Int. J. Therm. Sci. 2010, 49, 1345–1353. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H. A Review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2012, 2012, 435873. [Google Scholar] [CrossRef] [Green Version]
- Kouloulias, K.; Sergis, A.; Hardalupas, Y. Sedimentation in nanofluids during a natural convection experiment. Int. J. Heat Mass Transf. 2016, 101, 1193–1203. [Google Scholar] [CrossRef] [Green Version]
- Fuskele, V.; Sarviya, R.M. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Mater. Today: Proc. 2017, 4, 4049–4060. [Google Scholar] [CrossRef]
- Churchill, S.; Chu, H. Correlating equations for laminar and turbulent free convection from a horizontal cylinder. Int. J. Heat Mass Transf. 1975, 18, 1049–1053. [Google Scholar] [CrossRef]
- Putra, N.; Roetzel, W.; Das, S.K. Natural convection of nanofluids. Heat Mass Transf. 2003, 39, 775–784. [Google Scholar] [CrossRef]
- Xuan, Y.; Roetzel, W. Conceptions for heat transfer correlations of nanofluids. Int. J. Heat Mass Transf. 2000, 43, 3701–3707. [Google Scholar] [CrossRef]
- Ho, C.J.; Chen, M.W.; Li, Z.W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity. Int. J. Heat Mass Transf. 2008, 51, 4506–4516. [Google Scholar] [CrossRef]
Liquid | Correlation | Equation Number |
---|---|---|
Water | Equation (1) | |
EG | Equation (2) | |
Water/EG (60:40) | Equation (3) | |
Water/EG (50:50) | Equation (4) | |
Water/EG (40:60) | Equation (5) |
Liquid | Correlation | Equation Number |
---|---|---|
Water | Equation (6) | |
EG | Equation (7) | |
Water/EG (60:40) | Equation (8) | |
Water/EG (50:50) | Equation (9) | |
Water/EG (40:60) | Equation (10) |
Parameter | Water | EG |
---|---|---|
Thermal conductivity [W/(mK)] | ||
Viscosity [Pa s] | ||
Density [kg/m3] | ||
Specific heat [J/(kgK)] | ||
Thermal expansion coefficient [1/K] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawicka, D.; Cieśliński, J.T.; Smolen, S. Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids. Energies 2021, 14, 2909. https://doi.org/10.3390/en14102909
Sawicka D, Cieśliński JT, Smolen S. Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids. Energies. 2021; 14(10):2909. https://doi.org/10.3390/en14102909
Chicago/Turabian StyleSawicka, Dorota, Janusz T. Cieśliński, and Slawomir Smolen. 2021. "Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids" Energies 14, no. 10: 2909. https://doi.org/10.3390/en14102909
APA StyleSawicka, D., Cieśliński, J. T., & Smolen, S. (2021). Experimental Investigation of Free Convection Heat Transfer from Horizontal Cylinder to Nanofluids. Energies, 14(10), 2909. https://doi.org/10.3390/en14102909