Modeling Solar Cells Operating at Waste Light †
Abstract
:1. Introduction
2. Measurement of the Solar Cells Spectral Response
3. Measurements of Spectra of Light Sources
4. Solar Cell Model
5. Results of Measurements and Computations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | the coefficient depending on the spectrum of the light irradiating the solar cell |
c | speed of optical radiation in a vacuum |
h | Planck’s constant |
ISC | short circuit current |
P | irradiation of the solar cell |
POPT | optical power of incident radiation |
Pnopt | normalized optical power |
q | electron charge |
QE | external quantum efficiency |
S | the solar cell active area |
SR | spectral response |
Ta | ambient temperature |
Tj | junction temperature |
T0 | reference temperature |
αT | the temperature coefficient of photocurrent |
φ | the angle of incidence of solar beams on the surface of the solar cell |
λ | wavelength |
η | watt-hour efficiency of photovoltaic conversion |
References
- Klugmann-Radziemska, E. Fotowoltaika w Teorii i Praktyce; Wydawnictwo BTC: Legionowo, Poland, 2010. [Google Scholar]
- Piotrowicz, M.; Marańda, M. Sizing of Photovotaic Array for Low Feed-in Tariffs. In Proceedings of the 21th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Lublin, Poland, 19–21 June 2014; pp. 405–408. [Google Scholar]
- Rashid, M.H. Power Electronic Handbook; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Mulvaney, D. Solar’s Green Dilemma. IEEE Spectrum 2014, 51, 30–33. [Google Scholar] [CrossRef]
- Górecki, P. Voltage Regulators for the Laptop’s Power Supply Station with Photovoltaic Modules. In Proceedings of the 22nd International Conference Mixed Design of Integrated Circuits and Systems MIXDES, Toruń, Poland, 25–27 June 2015; pp. 571–575. [Google Scholar]
- Górecki, P.; Górecki, K.; Krac, E.; Zarębski, J. The use of photo-voltaic panels to charge mobile electronic devices. In Proceedings of the 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015), Oludeniz, Turkey, 19–23 October 2015; Springer: Cham, Switzerland, 2017; pp. 229–234. [Google Scholar]
- Castaner, L.; Silvestre, S. Modelling Photovoltaic Systems Using Pspice; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Szul, T.; Lis, S.; Tomasik, M. Ocena efektywności energetycznej i ekonomicznej systemu grzewczego opartego na pompach ciepła typu powietrze woda współpracującego z mikroinstalacją fotowoltaiczną. Przegląd Elektrotechniczny 2020, 96, 94–97. [Google Scholar] [CrossRef]
- Górecki, K.; Górecki, P.; Krac, E. Modelling simple photovoltaic systems with thermal phenomena taken into account. In Proceedings of the 23rd International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2016, Łódź, Poland, 23–25 June 2016; pp. 276–281. [Google Scholar]
- Górecki, K.; Dąbrowski, J.; Krac, E.; Zarębski, J. Modelling the influence of weather conditions on properties of the photovoltaic installation. In Proceedings of the 24th International Conference Mixed Design of Integrated Circuits and Systems Mixdes 2017, Bydgoszcz, Poland, 22–24 June 2017; pp. 366–371. [Google Scholar]
- Alford, A.; Nichol, P.; Frisby, B. The Development of a Small High Speed Steam Microturbine Generator System. IOP Conf. Ser. Mater. Sci. Eng. 2015, 90, 012062. [Google Scholar] [CrossRef] [Green Version]
- Suankramdee, W.; Thongtip, T.; Aphornratana, S. Development of a sliding vane expander in a micro-scale ORC system for utilizing low-grade heat. Energy Procedia 2017, 138, 817–822. [Google Scholar] [CrossRef]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste Heat Recovery Technologies and Applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Woolley, E.; Luo, Y.; Simeneo, A. Industrial waste heat recovery: A systematic approach. Sustain. Energy Technol. Assess. 2018, 29, 50–59. [Google Scholar] [CrossRef]
- Sultana, A.; Alam, M.; Middya, T.R.; Mandal, D. A pyroelectric generator as a self-powered temperature sensor forsustainable thermal energy harvesting from waste heat and human bodyheat. Appl. Energy 2018, 221, 299–307. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, M.; Xu, P.; Zhao, Z.; Wang, Z.; Huang, H.; Ouyang, T. Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review. Energy Convers. Manag. 2021, 229, 113769. [Google Scholar] [CrossRef]
- Habbe, B. Thermal Energy Harvesting, Ready to Compete with Batteries? Available online: https://media.ivam.de/mikrotechnik-11/pdf/07_1430_Micropelt.pdf (accessed on 15 May 2021).
- Miro, L.; Gasia, J.; Cabeza, L.F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Appl. Energy 2016, 179, 284–301. [Google Scholar] [CrossRef] [Green Version]
- Gnutek, Z.; Poprawski, W. Niekonwencjonalne źródła energii w budowie maszyn dla budownictwa i górnictwa skalnego. Inżynieria Masz. 2014, 19, 55–62. [Google Scholar]
- Żagan, W. Podstawy Techniki Świetlnej; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2005. [Google Scholar]
- Płocki, A. Funkcja sinus i nasłonecznienie. In Matematyka w Przyrodzie i Sztuce-Matematyka, Przyroda i Sztuka w Kształceniu Powszechnym, Tom 4, 1st ed.; Wydawnictwo Naukowe Państwowej Wyższej Szkoły Zawodowej w Nowym Sączu: Nowy Sącz, Poland, 2016; Chapter: Funkcja sinus i nasłonecznienie. [Google Scholar]
- Matuszko, D.; Soroka, S. Spostrzeżenia dotyczące wpływu zachmurzenia na maksymalne wartości natężenia całkowitego promieniowania słonecznego. Pr. Geogr. 2009, 122, 39–48. [Google Scholar]
- Kusznier, J. Właściwości widmowe źródeł światła typu smart LED. Zesz. Naukowe Wydziału Elektrotechniki i Autom. Politech. Gdańskiej 2018, 59, 123–126. [Google Scholar]
- Ghazi, S.; Ip, K. The effect of weather conditions on the efficiency of PV panels in southeast of UK. Renew. Energy 2014, 69, 50–59. [Google Scholar] [CrossRef]
- Liu, K.; Liu, W.; Gan, T.; Lai, D. Effects of Space Geometry, Season and Weather Condition on Different Components of Outdoor Thermal Radiation. In Environmental Science and Engineering Book Series (ESE); Springer: Singapore, 2020. [Google Scholar]
- Sarkar, M.N.I. Effect of various model parameter on solar photovoltaic cell simulation: A SPICE analysis. Renevables Wind Water Sol. 2016, 3, 13. [Google Scholar] [CrossRef]
- Gadjeva, E.; Hristov, M. Behavioral Parametrized SPICE Models of Photovoltaic Modules. In Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems MIXDES, Gdynia, Poland, 20–22 June 2013; pp. 355–359. [Google Scholar]
- Górecki, K.; Górecki, P.; Paduch, K. Modelling solar cells with thermal phenomena taken into account. J. Phys. Conf. Ser. 2014, 494, 012007. [Google Scholar] [CrossRef] [Green Version]
- Gontean, A.; Lica, S.; Bularka, S.; Szabo, R.; Lascu, D. A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation. Energies 2018, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Krac, E.; Górecki, K. Modelling characteristics of photovoltaic panels with thermal phenomena taken into account. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 39th International Microelectronics and Packaging IMAPS Poland 2015 Conference, Gdansk, Poland, 20–23 September 2015; IOP Publishing: Bristol, UK, 2016; Volume 104, p. 012013. [Google Scholar] [CrossRef]
- Górecki, K.; Dąbrowski, J. Modelling properties of solar cells irradiated from different lighting sources. In Proceedings of the 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Sonderborg, Denmark, 23–25 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Available online: https://www.newport.com/p/TLS-300XU (accessed on 15 May 2021).
- Available online: https://www.ophiropt.com (accessed on 15 May 2021).
- Available online: https://www.troteclaser.com (accessed on 15 May 2021).
- Talukdar, B.; Buragohain, S.; Kumar, S.; Umakanth, V.; Sarmah, N.; Mahapatra, S. Effect of spectral response of solar cells on the module output when individual cells are shaded. Solar Energy 2016, 137, 303–307. [Google Scholar] [CrossRef]
- Available online: https://oceanoptics.com/product/flame-spectrometer/ (accessed on 15 May 2021).
- Available online: https://oceanoptics.com/product/oceanview/ (accessed on 15 May 2021).
- The Spectroradiometric Measurement of Light Sources, Standard by Commission Internationale De L’Eclairage; CIE 063-1984; International Commission on Illumination: Geneva, Switzerland, 1984.
- Tabaka, P.; Jakubowski, P.; Fryc, I. Analiza wpływu czułości widmowej spektroradiometru na niedokładność pomiarów kolorymetrycznych. Przegląd Elektrotechniczny 2017, 93, 93–96. [Google Scholar] [CrossRef]
- Zong, Y.; Brown, S.W.; Johnson, B.C.; Lykke, K.R.; Ohno, Y. Simple spectral stray light correction method for array spectroradiometers. Appl. Optics 2006, 45, 1111–1119. [Google Scholar] [CrossRef]
- Available online: https://research.ng-london.org.uk/scientific/spd/?page=info (accessed on 15 May 2021).
- Deuterium-Halogen Calibration Light Source, Installation and Operation Manual, Ocean Optics. 2017. Available online: https://www.oceaninsight.com/globalassets/catalog-blocks-and-images/manuals--instruction-old-logo/radiometrically-calibrated-ls/dh-3p-installation-and-operation-manual-v1.0.pdf (accessed on 15 May 2021).
- Gouvêa, E.C.; Sobrinho, P.M.; Souza, T.M. Spectral Response of Polycrystalline Silicon Photovoltaic Cells under Real-Use Conditions. Energies 2017, 10, 1178. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Andrés, J.; Romero, J.; Nieves, J.L.; Lee, R.L., Jr. Color and spectral analysis of daylight in southern Europe. JOSA A 2001, 18, 1325–1335. [Google Scholar] [CrossRef]
- Available online: https://oceanoptics.com/product/lab-grade-patch-cords/ (accessed on 15 May 2021).
- Kambezidis, H.D. The solar resource. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 18, pp. 27–83. [Google Scholar]
- McVeigh, J.C.; Mech, F.I. Solar Radiation. In Sun Power, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Kusznier, J. Spectral properties of smart LED light sources. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG 2018, 59, 123–126. [Google Scholar] [CrossRef]
- American Society for Testing and Materials, ASTM G173-03 Reference Spectra (2013). Available online: http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html. (accessed on 15 May 2021).
- Codecasa, L.; d’Alessandro, V.; Magnani, A.; Irace, A. Circuit-based electrothermal simulation of power devices by an ultrafast nonlinear MOS approach. IEEE Trans. Power Electron. 2016, 31, 5906–5916. [Google Scholar] [CrossRef]
- Górecki, P.; Górecki, K. Modelling dynamic characteristics of the IGBT with thermal phenomena taken into account. Microelectron. Int. 2017, 34, 160–164. [Google Scholar] [CrossRef]
- Wu, R.; Wang, H.; Pedersen, K.B.; Ma, K.; Ghimire, P.; Iannuzzo, F.; Blaabjerg, F. A Temperature-Dependent Thermal Model of IGBT Modules Suitable for Circuit-Level Simulations. IEEE Trans. Ind. Appl. 2016, 52, 3306–3314. [Google Scholar] [CrossRef] [Green Version]
- Górecki, K.; Zarębski, J.; Górecki, P.; Ptak, P. Compact thermal models of semiconductor devices–a review. Int. J. Electron. Telecommun. 2019, 65, 151–158. [Google Scholar]
- Vassighi, A.; Sachdev, M. Thermal and Power Management of Integrated Circuits; Springer Science + Business Media: New York, NY, USA, 2006. [Google Scholar]
- Dąbrowski, J.; Krac, E.; Górecki, K. New model of solar cells for SPICE. In Proceedings of the 25th International Conference Mixed Design of Integrated Circuits and Systems MIXDES 2018, Gdynia, Poland, 21–23 June 2018; pp. 338–342. [Google Scholar]
- Osterwald, C.R.; Campanelli, M.; Moriarty, T.; Emery, K.A.; Williams, R. Temperature-dependent spectral mismatch corrections. IEEE J. Photovolt. 2015, 5, 1692–1697. [Google Scholar] [CrossRef]
- Datasheet DeltaOhm HD2302. Available online: https://www.deltaohm.com/en/wp-content/uploads/document/DeltaOHM-2302.0-Portabe-Luxmeter-Datasheet-en.pdf (accessed on 12 October 2020).
- Górecki, K.; Krac, E. Badanie wpływu temperatury na charakterystyki fotoogniw. Elektronika 2014, 9, 95–98. [Google Scholar]
Light Source | Bulb | Halogen Lamp | Fluorescent Lamp | Warm LED Lamp | Cold LED Lamp | Daylight |
---|---|---|---|---|---|---|
normalized power of emitted radiation | 338.4 | 362.9 | 15.5 | 138.9 | 122.3 | 396.1 |
Lighting Source | Bulb | Halogen Lamp | Fluorescent Lamp | Warm LED Lamp | Cold LED Lamp | Daylight |
---|---|---|---|---|---|---|
normalized optical power | 153.9 | 162.6 | 3.83 | 41.8 | 33.2 | 126.9 |
parameter a | 1.66 | 0.75 | 0.18 | 0.27 | 0.23 | 1 |
Lighting Sources | Fluorescent Lamp | Halogen Lamp | Cold LED Lamp | Warm LED Lamp | Bulb |
---|---|---|---|---|---|
irradiation (W/m2) | 13.58 | 33.13 | 28.86 | 22.8 | 91.07 |
luminous flux (lm) | 1100 | 915 | 1070 | 1050 | 1000 |
nominal electric power (W) | 18 | 57 | 11.5 | 11.5 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górecki, K.; Dąbrowski, J.; Krac, E. Modeling Solar Cells Operating at Waste Light. Energies 2021, 14, 2871. https://doi.org/10.3390/en14102871
Górecki K, Dąbrowski J, Krac E. Modeling Solar Cells Operating at Waste Light. Energies. 2021; 14(10):2871. https://doi.org/10.3390/en14102871
Chicago/Turabian StyleGórecki, Krzysztof, Jacek Dąbrowski, and Ewa Krac. 2021. "Modeling Solar Cells Operating at Waste Light" Energies 14, no. 10: 2871. https://doi.org/10.3390/en14102871
APA StyleGórecki, K., Dąbrowski, J., & Krac, E. (2021). Modeling Solar Cells Operating at Waste Light. Energies, 14(10), 2871. https://doi.org/10.3390/en14102871