# Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- Hybrid system design is proposed for rural electrification in a rural village that comprises of SPV system with limited grid power supply and BESS.
- The modified multi-strategy fusion artificial bee colony (MFABC+) algorithm is proposed and its feasibility and superiority demonstrated in comparison to MFABC and other optimization method.
- The optimal capacity of the system components is determined using the proposed MFABC+ algorithm.
- An integrated renewable energy-based microgrid system is proposed for lowest possible LCOE.

## 2. Study Area

#### 2.1. Load Estimation

#### 2.2. Estimation of Resources

## 3. Mathematical Modeling

#### 3.1. SPV Panel

#### 3.2. Power Converter

#### 3.3. Battery Bank

#### 3.4. Diesel Generator (DG)

## 4. Problem Formulation

#### 4.1. Operational Strategy

#### 4.2. Objective Function

#### 4.3. Constraints

#### 4.3.1. Economic Criteria

#### 4.3.2. Power Balance Criteria

#### 4.3.3. Power Output Limit

#### 4.3.4. Battery Constraints

#### 4.4. Optimization Methodology

Algorithm 1 Pseudo-code of proposed MFABC+ method |

## 5. Results and Discussion

#### 5.1. Analysis of Results

#### 5.2. Effectiveness of MFABC+ Algorithm

#### 5.3. Battery’s Efficiency and LCOE

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

${C}_{acp}$ | Capital and installment cost ($/yr) |

${C}_{rp}$ | Replacement cost ($/yr) |

${C}_{bt}$ | Cost of battery (per unit) ($/yr) |

${C}_{n}$ | The capacity of a single battery (kW) |

${C}_{o}$ | Cost of solar PV panel ($) |

${C}_{o}^{acp}$ | Capital and installation cost of solar PV panel ($/yr) |

${C}_{o}^{rp}$ | The replacement cost of solar PV panel ($/yr) |

${C}_{o}^{ac}$ | The operational cost of solar PV panel ($/yr) |

${C}_{o}^{am}$ | The annual maintenance cost of the solar PV panel ($/yr) |

${C}_{o}^{slvg}$ | Salvage cost of solar PV panel ($/yr) |

${C}_{b}$ | The capacity of a single battery (kW) |

${C}_{bt}^{slvg}$ | Salvage cost of the battery (per unit) ($/yr) |

${C}_{bt}^{acp}$ | Capital and installation cost of battery (per unit) ($/yr) |

${C}_{bt}^{rp}$ | the replacement cost of the battery (per unit) ($/yr) |

${C}_{ac}^{bt}$ | The operational cost of the battery (per unit) ($/yr) |

${C}_{am}^{bt}$ | The annual maintenance cost of the battery (per unit) ($/yr) |

${C}_{con}$ | Cost of converter ($/yr) |

${C}_{con}^{acp}$ | Capital and installation cost of converter ($/yr) |

${C}_{con}^{rp}$ | The replacement cost of the converter ($/yr) |

${C}_{con}^{ac}$ | The operational cost of the converter ($/yr) |

${C}_{con}^{am}$ | The annual maintenance cost of the converter ($/yr) |

${C}_{con}^{slvg}$ | Salvage cost of converter ($/yr) |

${C}_{slvg}$ | Salvage cost ($) |

D | Number of dimensions to be optimized |

${E}_{gen}$ | Energy generated by the integrated renewable energy system in t-th hour (kWh) |

${F}_{DG}$ | Diesel fuel coefficient |

$FN$ | Number of food sources |

${f}_{loss}$ | Derating factor |

$G\left(t\right)$ | Solar radiation (w/m${}^{2}$) |

${G}_{h}\left(t\right)$ | Solar radiations incident hourly onto the solar panel (w/m${}^{2}$) |

${G}_{s}$ | Standard incident radiation (w/m${}^{2}$) |

${G}_{std}$ | Standard radiation for environment (w/m${}^{2}$) |

${I}_{mx}$ | Maximum battery charging current (A) |

$MaxFES$ | Maximum number of function evaluations |

$NP$ | Population size |

${N}_{bt}$ | Number of batteries |

${N}_{bt}^{s}$ | Batteries connected in series |

${N}_{o}$ | Solar photovoltaic system concerning total no of solution |

${N}_{batt}^{m}$ | Maximum number of batteries |

${N}_{sol}^{m}$ | Maximum number of solar PV panels |

${P}_{bt}\left(t\right)$ | Battery input/output power |

${P}_{bt,mn}$ | Minimum generated battery capacity range (kW) |

${P}_{bt,mx}$ | Maximum generated battery capacity range (kW) |

${P}_{pcf}$ | Power conversion function associated with the SPV system |

${P}_{con}$ | Size of the converter |

${P}_{DG,g}$ | Diesel fuel is consumed by diesel generator |

${P}_{dmp}$ | Excess or dump energy |

${P}_{grid}$ | Power output from grid |

$PNS$ | Energy not supplied |

${P}_{lm}$ | Peak power demand with respect to the time (kW) |

${P}_{pvs}$ | Total power produced by SPV system (kW) |

${P}_{sn}$ | Conversion function associated with the SPV |

${P}_{sr}$ | SPV panel rating (kW) |

${P}_{pL}^{m}\left(t\right)$ | Peak load (kW) |

${P}_{DG,r}\left(t\right)$ | Rated capacity of the DG (kW) |

${P}_{DG,g}\left(t\right)$ | Output power from DG (kW) |

${P}_{o}$ | Power output from solar PV (kW) |

$pf$ | Probability function |

${R}_{c}$ | Cut in radiation point (w/m${}^{2}$) |

$SO{C}_{mn}$ | Minimum value associated with the state of charge of the battery system |

$SO{C}_{mx}$ | Maximum value associated with the state of charge of the battery system |

$SOC\left(t\right)$ | The SOC of the battery at any given tth hour. |

${V}_{bs}$ | Bus voltage (V) |

${V}_{bt}$ | Voltage associated with a single battery (V) |

${\eta}_{bt}$ | Round trip efficiency associated with a single battery |

${\eta}_{bt}^{c}$ | Charging efficiency of the battery |

${\eta}_{bt}^{d}$ | Discharging efficiency |

${\eta}_{inv}$ | Inverter efficiency |

${\alpha}_{DG}$ | Fuel curve intercept coefficient (L/h/$k{W}_{rated}$) |

${\beta}_{DG}$ | Diesel curve intercept coefficient (L/h/$k{W}_{output}$) |

$\gamma $ | Annual discount rate ($) |

$\tau $ | Life of the plant (year) |

## References

- Mamaghani, A.H.; Escandon, S.A.A.; Najafi, B.; Shirazi, A.; Rinaldi, F. Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renew. Energy
**2016**, 97, 293–305. [Google Scholar] [CrossRef] - Entering, A.; Gas, A.G.A.O. World Energy Outlook; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Bhatt, A.; Sharma, M.P.; Saini, R.P. Feasibility and sensitivity analysis of an off-grid micro hydro-photovoltaic-biomass and biogas-diesel-battery hybrid energy system for a remote area in Uttarakhand state, India. Renew. Sustain. Energy Rev.
**2016**, 61, 53–69. [Google Scholar] [CrossRef] - Chauhan, A.; Saini, R.P. Discrete harmony search based size optimization of integrated renewable energy system for remote rural areas of Uttarakhand state in India. Renew. Energy
**2016**, 94, 587–604. [Google Scholar] [CrossRef] - Castellanos, J.G.; Walker, M.; Poggio, D.; Pourkashanian, M.; Nimmo, W. Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion. Renew. Energy
**2015**, 74, 390–398. [Google Scholar] [CrossRef] [Green Version] - Halabi, L.M.; Mekhilef, S. Flexible hybrid renewable energy system design for a typical remote village located in tropical climate. J. Clean. Prod.
**2018**, 177, 908–924. [Google Scholar] [CrossRef] - Halabi, L.M.; Mekhilef, S.; Olatomiwa, L.; Hazelton, J. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Convers. Manag.
**2017**, 144, 322–339. [Google Scholar] [CrossRef] - Shezan, S.A.; Julai, S.; Kibria, M.A.; Ullah, K.R.; Saidur, R.; Chong, W.T.; Akikur, R.K. Performance analysis of an off-grid wind-PV (photovoltaic)-diesel-battery hybrid energy system feasible for remote areas. J. Clean. Prod.
**2016**, 125, 121–132. [Google Scholar] [CrossRef] - Rajanna, S.; Saini, R.P. Modeling of integrated renewable energy system for electrification of a remote area in India. Renew. Energy
**2016**, 90, 175–187. [Google Scholar] [CrossRef] - Chauhan, A.; Saini, R.P. A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renew. Sustain. Energy Rev.
**2014**, 38, 99–120. [Google Scholar] [CrossRef] - Mandelli, S.; Merlo, M.; Colombo, E. Novel procedure to formulate load profiles for off-grid rural areas. Energy Sustain. Dev.
**2016**, 31, 130–142. [Google Scholar] [CrossRef] - Ramchandran, N.; Pai, R.; Parihar, A.K.S. Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India. Renew. Energy
**2016**, 97, 197–209. [Google Scholar] [CrossRef] - Li, B.; Roche, R.; Miraoui, A. Microgrid sizing with combined evolutionary algorithm and MILP unit commitment. Appl. Energy
**2017**, 188, 547–562. [Google Scholar] [CrossRef] [Green Version] - Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers. Manag.
**2016**, 128, 178–190. [Google Scholar] [CrossRef] - Kim, H.; Jung, T.Y. Independent solar photovoltaic with Energy Storage Systems (ESS) for rural electrification in Myanmar. Renew. Sustain. Energy Rev.
**2018**, 82, 1187–1194. [Google Scholar] [CrossRef] - Mazzola, S.; Astolfi, M.; Macchi, E. The potential role of solid biomass for rural electrification: A techno economic analysis for a hybrid microgrid in India. Appl. Energy
**2016**, 169, 370–383. [Google Scholar] [CrossRef] - Upadhyay, S.; Sharma, M.P. Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India. Energy
**2016**, 94, 352–366. [Google Scholar] [CrossRef] - Maleki, A.; Pourfayaz, F.; Rosen, M.A. A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran. Energy
**2016**, 98, 168–180. [Google Scholar] [CrossRef] - Ogunjuyigbe, A.S.O.; Ayodele, T.R.; Akinola, O.A. Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building. Appl. Energy
**2016**, 171, 153–171. [Google Scholar] [CrossRef] - Ramli, M.A.; Hiendro, A.; Twaha, S. Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renew. Energy
**2015**, 78, 398–405. [Google Scholar] [CrossRef] - Kolhe, M.L.; Ranaweera, K.I.U.; Gunawardana, A.S. Techno-economic sizing of off-grid hybrid renewable energy system for rural electrification in Sri Lanka. Sustain. Energy Technol. Assess.
**2015**, 11, 53–64. [Google Scholar] [CrossRef] - Singh, S.S.; Fernandez, E. Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system. Energy
**2018**, 143, 719–731. [Google Scholar] [CrossRef] - Bordin, C.; Anuta, H.O.; Crossland, A.; Gutierrez, I.L.; Dent, C.J.; Vigo, D. A linear programming approach for battery degradation analysis and optimization in offgrid power systems with solar energy integration. Renew. Energy
**2017**, 101, 417–430. [Google Scholar] [CrossRef] [Green Version] - Lai, C.S.; Jia, Y.; Xu, Z.; Lai, L.L.; Li, X.; Cao, J.; McCulloch, M.D. Levelized cost of electricity for photovoltaic/biogas power plant hybrid system with electrical energy storage degradation costs. Energy Convers. Manag.
**2017**, 153, 34–47. [Google Scholar] [CrossRef] - Rajbongshi, R.; Borgohain, D.; Mahapatra, S. Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy
**2017**, 126, 461–474. [Google Scholar] [CrossRef] - Ahmadi, S.; Abdi, S. Application of the Hybrid Big Bang–Big Crunch algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery system. Sol. Energy
**2016**, 134, 366–374. [Google Scholar] [CrossRef] - Ahmad, J.; Imran, M.; Khalid, A.; Iqbal, W.; Ashraf, S.R.; Adnan, M.; Khokhar, K.S. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar. Energy
**2018**, 148, 208–234. [Google Scholar] [CrossRef] - Sandwell, P.; Chan, N.L.A.; Foster, S.; Nagpal, D.; Emmott, C.J.; Candelise, C.; Nelson, J. Off-grid solar photovoltaic systems for rural electrification and emissions mitigation in India. Sol. Energy Mater. Sol. Cells
**2016**, 156, 147–156. [Google Scholar] [CrossRef] - Nacer, T.; Hamidat, A.; Nadjemi, O.; Bey, M. Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas. Renew. Energy
**2016**, 96, 305–318. [Google Scholar] [CrossRef] - Maisanam, A.K.S.; Podder, B.; Biswas, A.; Sharma, K.K. Site-specific tailoring of an optimal design of renewable energy system for remote water supply station in Silchar, India. Sustain. Energy Technol. Assess.
**2019**, 36, 100558. [Google Scholar] [CrossRef] - Song, X.; Zhao, M.; Xing, S. A multi-strategy fusion artificial bee colony algorithm with small population. Expert Syst. Appl.
**2020**, 142, 112921. [Google Scholar] [CrossRef] - Chen, Y.; Roux, B. Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics-Monte Carlo simulations. J. Chem. Phys.
**2015**, 142, 024101. [Google Scholar] [CrossRef] [PubMed]

SN | Domestic Electrical Load | No of Load | Power (W) | Summer (May–August) | Autumn (September–October) | Winter (November–Feburary) | Spring (Feburary–April) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|

h/day | Watt-h/day | h/day | Watt-h/day | h/day | Watt-h/day | h/day | Watt-h/day | ||||

1 | CFL-I | 4 | 23 | 8 | 736 | 8 | 736 | 8 | 736 | 8 | 736 |

2 | CFL-II | 1 | 11 | 8 | 88 | 8 | 88 | 8 | 88 | 8 | 88 |

3 | Ceiling Fan | 1 | 120 | 20 | 2400 | 2 | 240 | 0 | 0 | 8 | 960 |

4 | Kitchen fan | 1 | 100 | 6 | 600 | 2 | 200 | 0 | 0 | 6 | 600 |

5 | Cooler | 2 | 120 | 10 | 2400 | 0 | 0 | 0 | 0 | 0 | 0 |

6 | Television | 1 | 100 | 8 | 800 | 8 | 800 | 8 | 800 | 8 | 800 |

7 | Computer | 1 | 300 | 4 | 1200 | 4 | 1200 | 4 | 1200 | 4 | 1200 |

8 | Exhaust | 1 | 15 | 5 | 75 | 5 | 75 | 5 | 75 | 5 | 75 |

9 | Table fan | 1 | 15 | 8 | 120 | 0 | 0 | 0 | 0 | 5 | 75 |

10 | Room Heater | 1 | 120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

11 | Bulb | 1 | 100 | 1 | 100 | 1 | 100 | 1 | 100 | 1 | 100 |

6119 | 3439 | 2999 | 4634 |

S.No. | Objective Components | Objective Parameters | Value | Unit |
---|---|---|---|---|

1 | SPV | Photovoltaic Power Rating | 1 | kW |

PV Capital Expenses | 933.33 | $ | ||

PV Replacement Cost | 800.00 | $ | ||

Operation and Maintenance Cost | 13.33 | $/kW | ||

Derating Factor | 88 | % | ||

Photovoltaic Life | 20 | years | ||

2 | Converter | Converter Power Rating | 1 | kW |

Capital cost of the converter | 133.33 | $ | ||

Replacement Cost of the converter | 106.67 | $ | ||

Operation and Maintenance Cost | 160 | $\$/$yr | ||

Overall Converter Efficiency | 90 | % | ||

Converter Life | 20 | Years | ||

3 | BESS | Battery Capital-Cost | 133.33 | $ |

Replacement Cost | 56.00 | $ | ||

Operation and Maintenance Cost | 1.33 | $ | ||

Size of the unit battery | 2.1 | kW | ||

Battery Rated voltage | 6 | Volt | ||

Minimum SOC | 30 | % | ||

Maximum SOC | 100 | % | ||

Efficiency | 95 | % | ||

Life of Battery | 5 | Year | ||

4 | DGs | Capital Expenses | 9467 | $ |

Replacement Cost | 28.35 | $ | ||

Operation and Maintenance Cost | 2449.5 | $/kw | ||

Efficiency | 80 | % | ||

Life | 25 | year | ||

4 | Grid | Supply Cost | 10 | $ |

5 | Other | Rate for discount | 6 | % |

Life of Project | 20 | Year |

PSO Algorithm | MFABC Algorithm | MFABC+ Algorithm |
---|---|---|

Dimension (D): 4 | Dimension (D1): 4 | Dimension (D2): 4 |

Propulsion size (N): 20 | Employed Bees = Onlooker bees:10 | Employed bees (ABC/best) = Onlooker bees(CABC):12 |

Initial weight (${W}_{mn}$): 0.3 | Colony size (NP): 20 | Colony size (NP1): 40 |

Final weight (${W}_{mn}$): 0.8 | Food Number: NP/2 | Food number: NP1/4 |

Maximum Iteration ($I{t}_{mx}$): 100 | Maximum cycle: 100 | Maximum Iteration: 100 |

Weighting factor: (C1 and C2):2 | Limit: 100 | Limit: 100 |

Parameters | PSO | HOMER | MFABC | MFABC+ |
---|---|---|---|---|

PV units | 235 | 244 | 232 | 230 |

Battery units | 800 | 1000 | 1000 | 800 |

Inverter sizing (kW) | 110 | 110 | 110 | 110 |

ASC($/yr) | 61,584 | 63,573 | 61,006 | 56,002 |

TNPC ($) | 730,011 | 739,980 | 723,378 | 700,000 |

LCOE ($/kWh) | 0.198 | 0.201 | 0.196 | 0.195 |

Components | HOMER (kWh/yr) | PSO (kWh/yr) | MFABC (kWh/yr) | MFABC+ (kWh/yr) |
---|---|---|---|---|

Solar | 492,134 | 410,024 | 400,201 | 421,257 |

Battery in | 178,840 | 241,580 | 287,348 | 280,243 |

Battery out | 158,470 | 121,542 | 145,203 | 160,232 |

Total demand served | 291,678 | 345,167 | 321,450 | 355,230 |

Excess electricity | 128,087 | 7540 | 6897 | 5320 |

Components | Capital Cost ($/yr) | Replacement Cost ($/yr) | Maintenance Cost ($/yr) | Salvage Cost ($/yr) | Total Cost ($/yr) |
---|---|---|---|---|---|

PV | 51,014 | - | 3716 | 464 | 55,194 |

Batteries | 33,765 | 9876 | 176 | - | 43,817 |

Inverter | 10,925 | 1012 | 862 | - | 12,799 |

Total | 95,704 | 10,888 | 4,754 | 464 | 111,810 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Singh, S.; Slowik, A.; Kanwar, N.; Meena, N.K.
Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm. *Energies* **2021**, *14*, 190.
https://doi.org/10.3390/en14010190

**AMA Style**

Singh S, Slowik A, Kanwar N, Meena NK.
Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm. *Energies*. 2021; 14(1):190.
https://doi.org/10.3390/en14010190

**Chicago/Turabian Style**

Singh, Sweta, Adam Slowik, Neeraj Kanwar, and Nand K. Meena.
2021. "Techno-Economic Feasibility Analysis of Grid-Connected Microgrid Design by Using a Modified Multi-Strategy Fusion Artificial Bee Colony Algorithm" *Energies* 14, no. 1: 190.
https://doi.org/10.3390/en14010190