Performance Improvement for Building Integrated Photovoltaics in Practice: A Review
Abstract
:1. Introduction
2. Performance of Different Types of PV Cells
2.1. Main Parameters for Consideration
2.2. Comparison of Different Types of PV Cells
3. Mitigation of Temperature Effects
3.1. Natural or Forced Ventilation
3.2. Water Circulation
Reference | Year | Location | PV Type | Research Method | PV Efficiency (%) | Max PV Temperature * | Heat Efficiency (%) | Season |
---|---|---|---|---|---|---|---|---|
Jie et al. [73] | 2007 | China | Poly-Si | Theoretical | 14.7 (Rated: 14.0) | 18 °C (5 °C, 700 W/m2) | - | Winter |
Jie et al. [74] | 2007 | China | Poly-Si | Experimental and theoretical | 10.4 (Rated: 14.0) | 44 °C (700 W/m2) | - | Winter |
Sun et al. [75] | 2011 | China | Poly-Si | Experimental and CFD | 12.0 | - | 21.0 | Winter |
Koyunbaba et al. [76] | 2013 | Turkey | A-Si | Experimental and CFD | 4.5 | 47 °C (21 °C, 751 W/m2) | 27.2 | Winter-spring |
Sharma and Kumari [69] | 2016 | Algeria | A-Si | CFD | 3.7–4.2 | 40 °C (460 W/m2) | - | Winter |
Ahmed et al. [77] | 2019 | Iraq | Poly-Si | Experimental and theoretical | 6.3/9.3 (without/with a fan) (Rated: 15.0) | 58 °C (without fan) 39 °C (with a fan) | 30.0 (without fan) 35.5 (with a fan) | Winter-spring |
3.3. Phase Change Materials
4. Effects of Mechanical Loading on PV Cells
4.1. Strain Effects on c-Si PV Cells and Their Structural Integrations
4.2. Strain Effects on Thin-Film Flexible PV Cells and Their Structural Integrations
5. Solar Irradiation Enhancement
5.1. Optimization of Location, Azimuth and Tilt
5.2. Transmittance of Surface Glazing
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
a-Si | Amorphous silicon |
A(t) | Projected area of PV cell to sunlight at time t |
BIPV | Building integrated Photovoltaic |
BIPVT | Building integrated Photovoltaic thermal collectors |
CIGS | Copper indium gallium selenide |
CdTe | Cadmium telluride |
CFD | Computational fluid dynamics |
c-Si | Crystalline silicon |
D | Depth of gap between PV cell and building envelope |
E(t) | Actual efficiency of the PV cell at time t |
EVA | Ethylene-vinyl acetate copolymer |
FEM | Finite element method |
FiT | Feed-in Tariff |
GFRP | Glass fibre reinforced polymer |
I(t) | Solar intensity at time t |
L | Length of gap between PV cell and building envelope |
Mono-Si | Monocrystalline silicon |
PCM | Phase change material |
Poly-Si | Polycrystalline silicon |
P(t) | Electricity generated by PV cells |
PV | Photovoltaic |
Si | Silicon |
t | Time |
ΔT | Temperature difference between PV cells and environment |
References
- Hotopp, R. Technical Requirements and Consultation Concept for Small Grid-Connected PV Plants within the German “1000-Roof PV Programme”; Springer: Dordrecht, the Netherlands, 1991. [Google Scholar]
- Sijm, J.P.M. The Performance of Feed-In Tariffs to Promote Renewable Electricity in European Countries; Energy Research Centre of the Netherlands ECN: Petten, The Netherlnds, 2002; Volume 7. [Google Scholar]
- Rickerson, W.H.; Sawin, J.L.; Grace, R.C. If the Shoe FITs: Using Feed-In Tariffs to Meet U.S. Renewable Electricity Targets. Electr. J. 2007, 20, 73–86. [Google Scholar] [CrossRef]
- Zhang, M.M.; Zhou, D.Q.; Zhou, P.; Liu, G.Q. Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis. Energy Policy 2016, 97, 181–192. [Google Scholar] [CrossRef]
- Martin, N.; Rice, J. The solar photovoltaic feed-in tariff scheme in New South Wales, Australia. Energy Policy 2013, 61, 697–706. [Google Scholar] [CrossRef]
- Dinwoodie, T.L.; Shugar, D.S. Optimizing roof-integrated photovoltaics: A case study of the PowerGuard roofing tile. In Proceedings of the 1994 IEEE First World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 5–9 December 1994. [Google Scholar]
- Liu, B.; Duan, S.; Cai, T. Photovoltaic DC-Building-Module-Based BIPV System—Concept and Design Considerations. IEEE Trans. Power Electron. 2011, 26, 1418–1429. [Google Scholar] [CrossRef]
- Peng, C.; Huang, Y.; Wu, Z. Building-Integrated Photovoltaics (BIPV) in Architectural Design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Hagemann, I. Architectural considerations for building-integrated photovoltaics. Prog. Photovolt. Res. Appl. 1996, 4, 247–258. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Zdyb, A.; Żelazna, A.; Krawczak, E. Photovoltaic System Integrated Into the Noise Barrier—Energy Performance and Life Cycle Assessment. J. Ecol. Eng. 2019, 20, 183–188. [Google Scholar] [CrossRef]
- Żelazna, A.; Gołębiowska, J.; Zdyb, A.; Pawłowski, A. A Hybrid vs. On-Grid Photovoltaic System: Multicriteria Analysis of Environmental, Economic, and Technical Aspects in Life Cycle Perspective. Energies 2020, 13, 3978. [Google Scholar] [CrossRef]
- Kotarela, F.; Kyritsis, A.; Papanikolaou, N. On the Implementation of the Nearly Zero Energy Building Concept for Jointly Acting Renewables Self-Consumers in Mediterranean Climate Conditions. Energies 2020, 13, 1032. [Google Scholar] [CrossRef] [Green Version]
- Torcellini, P.; Pless, S.; Deru, M.; Crawley, D.B. Zero Energy Buildings: A Critical Look at the Definition. In Proceedings of the 2006 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 14–18 August 2006. [Google Scholar]
- Kerdan, I.G.; Raslan, R.; Ruyssevelt, P.; Gálvez, D.M. An exergoeconomic-based parametric study to examine the effects of active and passive energy retrofit strategies for buildings. Energy Build. 2016, 133, 155–171. [Google Scholar] [CrossRef]
- Ming, H.; Qiu, Y. A comparison of building energy codes and policies in the USA, Germany, and China: Progress toward the net-zero building goal in three countries. Clean Technol. Environ. Policy 2019, 21, 291–305. [Google Scholar]
- Lan, H.; Cheng, B.; Gou, Z.; Yu, R. An evaluation of feed-in tariffs for promoting household solar energy adoption in Southeast Queensland, Australia. Sustain. Cities Soc. 2020, 53, 101942. [Google Scholar] [CrossRef]
- Ye, L.-C.; Rodrigues, J.F.D.; Lin, H.X. Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016. Appl. Energy 2017, 203, 496–505. [Google Scholar] [CrossRef]
- Hoppmann, J.; Huenteler, J.; Girod, B. Compulsive policy-making—The evolution of the German feed-in tariff system for solar photovoltaic power. Res. Policy 2014, 43, 1422–1441. [Google Scholar] [CrossRef]
- Ballif, C.; Perret-Aebi, L.-E.; Lufkin, S.; Rey, E. Integrated thinking for photovoltaics in buildings. Nat. Energy 2018, 3, 438–442. [Google Scholar] [CrossRef]
- IEC. Standard IEC 60904-3: Photovoltaic Devices. Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data; IEC: Geneve, Switzerland, 2019. [Google Scholar]
- ASTM. ASTM-G173-03. Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovolt. Res. Appl. 2020, 28. [Google Scholar] [CrossRef]
- Aaditya, G.; Pillai, R.; Mani, M. An insight into real-time performance assessment of a building integrated photovoltaic (BIPV) installation in Bangalore (India). Energy Sustain. Dev. 2013, 17, 431–437. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Maturi, L.; Belluardo, G.; Moser, D.; Del Buono, M. BiPV System Performance and Efficiency Drops: Overview on PV Module Temperature Conditions of Different Module Types. Energy Procedia 2014, 48, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Yang, H.X. Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong. Appl. Energy 2010, 87, 3625–3631. [Google Scholar] [CrossRef]
- Lamnatou, C.; Notton, G.; Chemisana, D.; Cristofari, C. Storage systems for Building-Integrated Photovoltaic (BIPV) and Building-Integrated Photovoltaic/Thermal (BIPVT) installations: Environmental profile and other aspects. Sci. Total Environ. 2019, 699, 134269. [Google Scholar] [CrossRef] [PubMed]
- Norton, B.; Eames, P.C.; Mallick, T.K.; Huang, M.J.; Mccormack, S.J.; Mondol, J.D.; Yohanis, Y.G. Enhancing the performance of building integrated photovoltaics. Sol. Energy 2011, 85, 1629–1664. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; He, W.; Ji, J.; Hu, D.; Lv, S.; Chen, H.; Shen, Z. Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system. Appl. Energy 2017, 194, 81–93. [Google Scholar] [CrossRef]
- Yin, H.M.; Yang, D.J.; Kelly, G.; Garant, J. Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings. Sol. Energy 2013, 87, 184–195. [Google Scholar] [CrossRef]
- Chen, A.; Yossef, M.; Zhang, C. Strain effect on the performance of amorphous silicon and perovskite solar cells. Sol. Energy 2018, 163, 243–250. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, Y.; He, X.; Hui, D.; Bai, Y. Continuous performance assessment of thin-film flexible photovoltaic cells under mechanical loading for building integration. Sol. Energy 2019, 183, 96–104. [Google Scholar] [CrossRef]
- Shang, C.; Wei, P. Enhanced support vector regression based forecast engine to predict solar power output. Renew. Energy 2018, 127, 269–283. [Google Scholar] [CrossRef]
- Ma, Y.; Li, G.; Tang, R. Optical performance of vertical axis three azimuth angles tracked solar panels. Appl. Energy 2011, 88, 1784–1791. [Google Scholar] [CrossRef]
- Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shepherd, R.; Nagy, Z.; Hofer, J.; Schlueter, A. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy 2019, 4, 671–682. [Google Scholar] [CrossRef]
- Evans, D.L. Simplified method for predicting photovoltaic array output. Sol. Energy 1981, 27, 555–560. [Google Scholar] [CrossRef]
- Jelle, B.P.; Breivik, C.; Røkenes, H.D. Building Integrated Photovoltaic Products: A State-of-the-Art Review and Future Research Opportunities. Sol. Energy Mater. Sol. Cells 2012, 100, 69–96. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, M.; Sadhu, P.K.; Panda, S.K. A critical review on building integrated photovoltaic products and their applications. Renew. Sustain. Energy Rev. 2016, 61, 451–465. [Google Scholar] [CrossRef]
- Feldman, D.; Margolis, R. Solar Industry Update Q4 2018/Q1 2019; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2019.
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Virtuani, A.; Pavanello, D.; Friesen, G. Overview of Temperature Coefficients of Different Thin Film Photovoltaic Technologies. In Proceedings of the 5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, 6–10 September 2010; pp. 4248–4252. [Google Scholar]
- Jungbluth, N.; Dones, R.; Frischknecht, R. Life Cycle Assessment of Photovoltaics Update of the ecoinvent Database. MRS Proc. 2007, 1041, R01–R03. [Google Scholar] [CrossRef]
- Pascual, C.; Castro, J.d.; Schueler, A.; Keller, T. Integration of dye solar cells in load-bearing translucent glass fiber-reinforced polymer laminates. J. Compos. Mater. 2016, 51. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Bhandari, S.; Selvaraj, P.; Mallick, T.K. Colour Comfort Evaluation of Dye Sensitized Solar Cell (DSSC) Based Building Integrated Photovoltaic (BIPV) Glazing after Two Years of Ambient Exposure. J. Phys. Chem. C 2019, 123, 23834–23837. [Google Scholar] [CrossRef] [Green Version]
- Gholami, H.; Røstvik, H.N.; Kumar, N.M.; Chopra, S.S. Lifecycle cost analysis (LCCA) of tailor-made building integrated photovoltaics (BIPV) façade: Solsmaragden case study in Norway. Sol. Energy 2020, 211, 488–502. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, H.; Jing, Y.; Fu, H.; Chang, P.; Li, D.; Yao, Y.; Fan, Z. Flexible photovoltaic technologies. J. Mater. Chem. C 2014, 2, 1233–1247. [Google Scholar] [CrossRef]
- Aelenei, D.; Lopes, R.A.; Aelenei, L.; Goncalves, H. Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system. Renew. Energy 2019, 137, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Shahrestani, M.; Yao, R.; Essah, E.; Shao, L.; Oliveira, A.C.; Hepbasli, A.; Biyik, E.; Caño, T.d.; Rico, E.; Lechón, J.L. Experimental and numerical studies to assess the energy performance of naturally ventilated PV facade systems. Sol. Energy 2017, 147, 37–51. [Google Scholar] [CrossRef]
- Yang, J.; Banerjee, A.; Guha, S. Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett. 1997, 70, 2975–2977. [Google Scholar] [CrossRef]
- Sorgato, M.J.; Schneider, K.; Rüther, R. Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate. Renew. Energy 2018, 118, 84–98. [Google Scholar] [CrossRef]
- Aliyu, M.M.; Islam, M.A.; Hamzah, N.R.; Karim, M.R.; Matin, M.A.; Sopian, K.; Amin, N. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects. Int. J. Photoenergy 2012, 2012, 351381. [Google Scholar] [CrossRef]
- Alrashidi, H.; Ghosh, A.; Issa, W.; Sellami, N.; Mallick, T.K.; Sundaram, S. Thermal performance of semitransparent CdTe BIPV window at temperate climate. Sol. Energy 2020, 195, 536–543. [Google Scholar] [CrossRef]
- Major, J.D.; Treharne, R.E.; Phillips, L.J.; Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells. Nature 2014, 511, 334–337. [Google Scholar] [CrossRef]
- Savagatrup, S.; Printz, A.D.; O’Connor, T.F.; Zaretski, A.V.; Rodriquez, D.; Sawyer, E.J.; Rajan, K.M.; Acosta, R.I.; Root, S.E.; Lipomi, D.J. Mechanical degradation and stability of organic solar cells: Molecular and microstructural determinants. Energy Environ. Sci. 2014, 8, 55–80. [Google Scholar] [CrossRef]
- Ng, C.H.; Lim, H.N.; Hayase, S.; Zainal, Z.; Huang, N.M. Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review. Renew. Sustain. Energy Rev. 2018, 90, 248–274. [Google Scholar] [CrossRef]
- Eke, R.; Senturk, A. Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations. Appl. Energy 2013, 109, 154–162. [Google Scholar] [CrossRef]
- Saadon, S.; Gaillard, L.; Giroux, S.; Ménézo, C. Simulation Study of a Naturally Ventilated Building Integrated Photovoltaic (BIPV) Envelope. Energy Procedia 2015, 87, 517–531. [Google Scholar] [CrossRef]
- Brinkworth, B.J.; Cross, B.M.; Marshall, R.H.; Yang, H. Thermal regulation of photovoltaic cladding. Sol. Energy 1997, 61, 169–178. [Google Scholar] [CrossRef]
- Kaiser, A.S.; Zamora, B.; Mazón, R.; García, J.R.; Vera, F. Experimental study of cooling BIPV modules by forced convection in the air channel. Appl. Energy 2014, 135, 88–97. [Google Scholar] [CrossRef]
- Fossa, M.; Ménézo, C.; Leonardi, E. Experimental natural convection on vertical surfaces for building integrated photovoltaic (BIPV) applications. Exp. Thermal Fluid Sci. 2008, 32, 980–990. [Google Scholar] [CrossRef]
- Gan, G. Effect of air gap on the performance of building-integrated photovoltaics. Energy 2009, 34, 913–921. [Google Scholar] [CrossRef]
- Brinkworth, B.J.; Sandberg, M. Design procedure for cooling ducts to minimise efficiency loss due to temperature rise in PV arrays. Sol. Energy 2006, 80, 89–103. [Google Scholar] [CrossRef]
- Elsayed, M.S. Optimizing thermal performance of building-integrated photovoltaics for upgrading informal urbanization. Energy Build. 2016, 116, 232–248. [Google Scholar] [CrossRef]
- Brinkworth, B.J. Optimum depth for PV cooling ducts. Sol. Energy 2006, 80, 1131–1134. [Google Scholar] [CrossRef]
- Tonui, J.K.; Tripanagnostopoulos, Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol. Energy 2008, 82, 1–12. [Google Scholar] [CrossRef]
- Martin-Escudero, K.; Salazar-Herran, E.; Campos-Celador, A.; Diarce-Belloso, G.; Gomez-Arriaran, I. Solar Energy system for heating and domestic hot water supply by means of a heat pump coupled to a photovoltaic ventilated façade. Sol. Energy 2019, 183, 453–462. [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Thirumalaiswamy, N. Performance Evaluation of PV-trombe Wall for Sustainable Building Development. Procedia CIRP 2015, 26, 624–629. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.L.; Kumari, K. Numerical study of natural ventilation in BIPV trombe wall. GRD J. 2016, 1, 34–41. [Google Scholar]
- Xu, X. Modeling of Natural Ventilation in Built-in Photovoltaic-Trombe Wall. Appl. Mech. Mater. 2013, 448–453, 1537–1541. [Google Scholar] [CrossRef]
- Pereira, R.; Aelenei, L. Optimization assessment of the energy performance of a BIPV/T-PCM system using Genetic Algorithms. Renew. Energy 2019, 137, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Ji, J.; Luo, K.; Li, Z.; Xu, R.; Huang, S. Annual analysis of a multi-functional BIPV/T solar wall system in typical cities of China. Energy 2020, 197, 117098. [Google Scholar] [CrossRef]
- Jie, J.; Hua, Y.; Wei, H.; Gang, P.; Jianping, L.; Bin, J. Modeling of a novel Trombe wall with PV cells. Build. Environ. 2007, 42, 1544–1552. [Google Scholar] [CrossRef]
- Jie, J.; Hua, Y.; Gang, P.; Jianping, L. Study of PV-Trombe wall installed in a fenestrated room with heat storage. Appl. Thermal Eng. 2007, 27, 1507–1515. [Google Scholar] [CrossRef]
- Sun, W.; Ji, J.; Luo, C.; He, W. Performance of PV-Trombe wall in winter correlated with south façade design. Appl. Energy 2011, 88, 224–231. [Google Scholar] [CrossRef]
- Koyunbaba, B.K.; Yilmaz, Z.; Ulgen, K. An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy Build. 2013, 67, 680–688. [Google Scholar] [CrossRef]
- Ahmed, O.K.; Hamada, K.I.; Salih, A.M. Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study. Energy 2019, 171, 14–26. [Google Scholar] [CrossRef]
- Zondag, H.A.; de Vries, D.W.; van Helden, W.G.J.; van Zolingen, R.J.C.; van Steenhoven, A.A. The yield of different combined PV-thermal collector designs. Sol. Energy 2003, 74, 253–269. [Google Scholar] [CrossRef]
- Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application. Appl. Energy 2009, 86, 689–696. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, S.-H.; Kang, J.-G.; Kim, J.-T. Experimental Performance of Heating System with Building-integrated PVT (BIPVT) Collector. Energy Procedia 2014, 48, 1374–1384. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Fudholi, A.; Sopian, K.; Othman, M.Y.; Ruslan, M.H. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system. Energy Convers. Manag. 2014, 77, 527–534. [Google Scholar] [CrossRef]
- Pugsley, A.; Zacharopoulos, A.; Mondol, J.D.; Smyth, M. BIPV/T facades—A new opportunity for integrated collector-storage solar water heaters? Part 2: Physical realisation and laboratory testing. Sol. Energy 2020, 206, 751–769. [Google Scholar] [CrossRef]
- Yao, J.; Xu, H.; Dai, Y.; Huang, M. Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel. Sol. Energy 2020, 197, 279–291. [Google Scholar] [CrossRef]
- Marta, K.; Dominika, M.; Michał, W.T. The role of phase change materials for the sustainable energy. E3S Web Conf. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Cekon, J.C.M. Climate response of a BiPV faade system enhanced with latent PCM-based thermal energy storage. Renew. Energy 2020, 152, 368–384. [Google Scholar]
- Huang, M.J. The effect of using two PCMs on the thermal regulation performance of BIPV systems. Sol. Energy Mater. Sol. Cells 2011, 95, 957–963. [Google Scholar] [CrossRef]
- Maiti, S.; Banerjee, S.; Vyas, K.; Patel, P.; Ghosh, P.K. Self regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix. Sol. Energy 2011, 85, 1805–1816. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 2010, 84, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Aelenei, L.; Pereira, R.; Gonçalves, H.; Athienitis, A. Thermal Performance of a Hybrid BIPV-PCM: Modeling, Design and Experimental Investigation. Energy Procedia 2014, 48, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, T.; Leigh, S.-B. Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions. Sol. Energy 2014, 105, 561–574. [Google Scholar] [CrossRef]
- Alim, M.A.; Tao, Z.; Abden, M.J.; Rahman, A.; Samali, B. Improving performance of solar roof tiles by incorporating phase change material. Sol. Energy 2020, 207, 1308–1320. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.J.; Huang, M.J.; Sarwar, J.; Norton, B. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Sol. Energy 2015, 115, 264–276. [Google Scholar] [CrossRef]
- Maturi, L.; Lollini, R.; Moser, D.; Sparber, W. Experimental investigation of a low cost passive strategy to improve the performance of Building Integrated Photovoltaic systems. Sol. Energy 2015, 111, 288–296. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Alnoman, H.; Abdelbaqi, S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol. Energy 2017, 146, 417–429. [Google Scholar] [CrossRef]
- Jones, R.; Johnson, T.; Jordan, W.; Wagner, S.; Guha, S. Effects of mechanical strain on the performance of amorphous silicon triple-junction solar cells. In Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, LA, USA, 19–24 May 2002. [Google Scholar]
- Sugar, J.G.; Scaffaro, R.; Guo, Z.; Maung, J.K.; Hahn, H.T. Photovoltaic performance of amorphous silicon flexible solar modules under mechanical loading. In Proceedings of the 6th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 11–13 September 2007. [Google Scholar]
- Kim, J.; Choi, I.; Kim, D.; Cheong, S. Development of Single Crystalline Silicon Solar Cells Lay-Down Process on Composites. In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, Korea, 21–26 August 2011. [Google Scholar]
- Scotta, R.; Lazzari, M.; Stecca, E.; Di Massimo, R.; Vitaliani, R. Membranes with embedded photovoltaic flexible cells: Structural and electrical performances under uniaxial and biaxial stresses. Compos. Struct. 2016, 157, 111–120. [Google Scholar] [CrossRef]
- Dai, Y.; Bai, Y.; Keller, T. Stress mitigation for adhesively bonded photovoltaics with fibre reinforced polymer composites in load carrying applications. Compos. Part B Eng. 2019, 177, 107420. [Google Scholar] [CrossRef]
- IEC. IEC-61215-1:2016. Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval—Part 1: Test Requirements; IEC: Geneva, Swizerland, 2016. [Google Scholar]
- ASTM. ASTM-E1830-15. Standard Test Methods for Determining Mechanical Integrity of Photovoltaic Modules; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Kang, J. Structural Integration of Silicon Solar Cells and Lithium-Ion Batteries Using Printed Electronics; Hahn, H.T., Carman, G., Chiou, P.-Y., Pei, Q., Eds.; ProQuest Dissertations Publishing: Los Angeles, CA, USA, 2012. [Google Scholar]
- Rion, J.; Leterrier, Y.; Manson, J.-A.E.; Blairon, J.-M. Ultra-light asymmetric photovoltaic sandwich structures. Composites Part A Appl. Sci. Manuf. 2009, 40, 1167–1173. [Google Scholar] [CrossRef] [Green Version]
- Guin, L.; Cabarrocas, P.R.I.; Jabbour, M.E.; Triantafyllidis, N. Effect of strain on the dark current-voltage characteristic of silicon heterojunction solar cells. Sol. Energy 2020, 196, 457–461. [Google Scholar] [CrossRef]
- Yossef, M.; Chen, A. Strain Effect on the Performance of Solar Cells. In Proceedings of the 15th Biennial ASCE International Conference on Engineering, Science, Construction and Operations in Challenging Environments, Orlando, FL, USA, 11–15 April 2016. [Google Scholar]
- Dai, Y.; Dai, X.; Bai, Y.; He, X. Aerodynamic Performance of an Adaptive GFRP Wind Barrier Structure for Railway Bridges. Materials 2020, 13, 4214. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Dai, Y.; Jiang, J. Flexural behavior investigation of steel-GFRP hybrid-reinforced concrete beams based on experimental and numerical methods. Eng. Struct. 2020, 206, 110117. [Google Scholar]
- Kishi, Y.; Inoue, H.; Murata, K.; Tanaka, H.; Kouzuma, S.; Morizane, M.; Fukuda, Y.; Nishiwaki, H.; Nakano, K.; Takeoka, A.; et al. Ultralight flexible amorphous silicon solar cell and its application to an airplane. Sol. Energy Mater. 1991, 23, 312–318. [Google Scholar] [CrossRef]
- Kaltenbrunner, M.; White, M.S.; Glowacki, E.D.; Sekitani, T.; Someya, T.; Sariciftci, N.S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reikard, G. Predicting solar radiation at high resolutions: A comparison of time series forecasts. Sol. Energy 2009, 83, 342–349. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. A comprehensive review on design of building integrated photovoltaic system. Energy Build. 2016, 128, 99–110. [Google Scholar] [CrossRef]
- Kang, H.; Hong, T.; Jung, S.; Lee, M. Techno-economic performance analysis of the smart solar photovoltaic blinds considering the photovoltaic panel type and the solar tracking method. Energy Build. 2019, 193, 1–14. [Google Scholar] [CrossRef]
- Rodríguez-Gallegos, C.D.; Liu, H.; Gandhi, O.; Singh, J.P.; Krishnamurthy, V.; Kumar, A.; Stein, J.S.; Wang, S.; Li, L.; Reindl, T.; et al. Global Techno-Economic Performance of Bifacial and Tracking Photovoltaic Systems. Joule 2020, 4, 1514–1541. [Google Scholar] [CrossRef]
- Pascual, C.; de Castro, J.; Schueler, A.; Vassilopoulos, A.P.; Keller, T. Total light transmittance of glass fiber-reinforced polymer laminates for multifunctional load-bearing structures. J. Compos. Mater. 2014, 48, 3591–3604. [Google Scholar] [CrossRef] [Green Version]
- Hee, J.Y.; Kumar, L.V.; Danner, A.J.; Yang, H.; Bhatia, C.S. The Effect of Dust on Transmission and Self-cleaning Property of Solar Panels. Energy Procedia 2012, 15, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Adinoyi, M.J.; Said, S.A.M. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Sutha, S.; Suresh, S.; Raj, B.; Ravi, K.R. Transparent alumina based superhydrophobic self–cleaning coatings for solar cell cover glass applications. Sol. Energy Mater. Sol. Cells 2017, 165, 128–137. [Google Scholar] [CrossRef]
PV Technologies | c-Si | a-Si | CIGS | CdTe | Organic |
---|---|---|---|---|---|
Cell efficiency (%) [23] | 26.7 ± 0.5 | 10.2 ± 0.3 * | 23.35 ± 0.5 | 21.0 ± 0.4 | 13.45 ± 0.2 |
Area of the cell (cm2) [23] | 79.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Module efficiency (%) [23] | 24.4 ± 0.5 | 12.3 ± 0.3 | 19.2 ± 0.5 | 19.0 ± 0.9 | 8.7 ± 0.3 |
Area of the module (cm2) [23] | 13,177 | 14,322 | 841 | 23,573 | 802 |
Temperature coefficient (%) [42] | −0.37 to −0.52 | −0.10 to −0.30 | −0.33 to −0.50 | −0.18 to −0.36 | / |
Efficiency of commercial panel (%) [41] | 14.9 to 19.0 | 9.5 | 12.7 to 16.0 | 8.5 to 14.0 | / |
Energy payback time (year) ** [43] | 2.9 to 3.3 | 3.1 | 2.9 | 2.5 | / |
Market share (%) [40] | 95.70 | 0.05 | 1.13 | 3.12 | / |
Suggested Gap Depth | Method | Ventilation Method | Scenario | Year |
---|---|---|---|---|
D = 14–16 cm when L = 120 cm; D = 12–15 cm when L = 360 cm [62] | CFD | Natural | Roof pitches | 2009 |
22 cm [64] | CFD | Natural | Facades | 2016 |
D = 23 cm when L = 400 cm [59] | CFD | Natural | Roof pitches | 1997 |
D = 10 when L = 160 cm [61] | Experimental | Natural | Facades | 2008 |
D/L = 0.05 [63,65] | Experimental and theoretical | Natural | Roof pitches | 2006 |
D = 5–10 cm when L = 100 cm [66] | Experimental and theoretical | Natural | Roof pitches | 2008 |
D/L = 0.11 [60] | Onsite tests | Forced | Roof pitches | 2014 |
Reference | Year | Location | Research Method | PV Type | PV Efficiency (%) | Heat Efficiency | Scenario | Comment |
---|---|---|---|---|---|---|---|---|
Zondag et al. [78] | 2003 | Netherland | Experimental and theoretical | Poly-Si | 5.8–6.7 (Rated: 10.3) | 35–39% | Roof | Nine configurations were investigated. |
Chow et al. [79] | 2009 | China | Experimental and theoretical | Poly-Si | 9.4 (Rated: 13.0) | 38% | Wall | Cost payback time was 14 years. |
Kim et al. [80] | 2013 | Korean | Experimental | Mono-Si | 17.0 | 30% | Roof | Max PV cell temperature: 45 °C (at 900 W/m2) |
Yin et al. [31] | 2013 | USA | Experimental (indoor) | Mono-Si | 14.5 at 850 W/m2 11.4 at 1100 W/m2 | 54% (1000 W/m2) 44% (850 W/m2) | Roof | Two intensities were applied. Phase change materials (PCMs) were used. |
Ibrahim et al. [81] | 2014 | Malaysia | Theoretical | Poly-Si | 10.4–11.3 (Rated: 13.0) | 45–51% | Roof | Max PV cell temperature: 54 °C (at 900 W/m2) |
Pugsley et al. [82] | 2020 | UK | Experimental and theoretical | Mono-Si | (Rated: 11.4) | - | Facade | Max PV cell temperature: 89 °C (at 870 W/m2) |
Xu et al. [72] | 2020 | China | Experimental and theoretical | C-Si/CdTe | C-Si: 11.2; CdTe: 8.3 | >38% | Wall | Performance in three cities was compared. |
Yao et al. [83] | 2020 | China | Theoretical | - | 9.2 (Rated: 17.8) | 57% | - | PCMs were used. |
Reference | Year | Location | PV Type | Rise of Power Output | Research Method | Season | Scenario | PCM |
---|---|---|---|---|---|---|---|---|
Hasan et al. [88,89] | 2010 | Ireland | Poly-Si | - | Experimental | Indoor | Roof | Calcium chloride hexahydrate |
Aelenei et al. [85,89] | 2014 | Portugal | Poly-Si | - | Experimental and theoretical | Winter | Facade | Gypsum board |
Park et al. [90,91] | 2014 | South Korean | Poly-Si | 1.0–1.5% (annual) | Experimental and theoretical | Annual | Facade | Paraffinic hydrocarbon |
Hasan et al. [92] | 2015 | Ireland Pakistan | Poly-Si | 6.2% (Ireland) 14.3% (Pakistan) | Experimental | Autumn | Roof | Capric–palmitic acid Calcium chloride hexahydrate |
Maturi et al. [93] | 2015 | Italy | CIGS | 2.3% | Experimental and FEM | Annual | Facade | - |
Hasan et al. [94] | 2017 | United Arab Emirates | Poly-Si | 6.0% | Experimental | Annual | Roof | PCM RT42 |
Alim et al. [91] | 2020 | Australia | Mono-Si | 4.1% (winter) 2.2–4.3% (summer) | Experimental | Winter and summer | Roof tile | Methyl stearate |
Curpek et al. [85] | 2020 | Czech Republic | CIGS | - | Experimental | Summer | Facade | Rubitherm PCM RT 27 |
Reference | Year | PV Type | Test Method | Cell Dimension | Critical Tensile Strain | Critical Compressive Strain |
---|---|---|---|---|---|---|
Jones et al. [95] | 2003 | A-Si | Bending | 100 mm2 | 0.75% | >1.70% |
Sugar et al. [96] | 2007 | A-Si | Tension | 98 × 36 mm2 | 1.4% | |
Kim et al. [97] | 2011 | Mono-Si | Tension | 86 × 25 mm2 | 0.3% | |
Scotta et al. [98] | 2016 | A-Si | Tension | 1700 × 1000 mm2 | 1.5% | |
Chen et al. [32] | 2018 | A-Si | Tension and compression | 64 × 13 mm2 | 0.50% | |
Perovskite | Tension | 100 × 13 mm2 | >3.0% | |||
Dai et al. [33] | 2019 | A-Si | Tension | 270 × 45 mm2 | 1.6% | |
Organic | Tension | 20 mm wide | 1.4% | |||
Dai et al. [99] | 2019 | A-Si | Compression | 180 × 60 mm2 | <0.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Bai, Y. Performance Improvement for Building Integrated Photovoltaics in Practice: A Review. Energies 2021, 14, 178. https://doi.org/10.3390/en14010178
Dai Y, Bai Y. Performance Improvement for Building Integrated Photovoltaics in Practice: A Review. Energies. 2021; 14(1):178. https://doi.org/10.3390/en14010178
Chicago/Turabian StyleDai, Yiqing, and Yu Bai. 2021. "Performance Improvement for Building Integrated Photovoltaics in Practice: A Review" Energies 14, no. 1: 178. https://doi.org/10.3390/en14010178
APA StyleDai, Y., & Bai, Y. (2021). Performance Improvement for Building Integrated Photovoltaics in Practice: A Review. Energies, 14(1), 178. https://doi.org/10.3390/en14010178