Mathematical Modeling and Experimental Verification of a New Wave Energy Converter
Abstract
1. Introduction
2. Engineering Model
3. Water Oscillation Mathematical Model
4. Physical Model Regular Wave Experiment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Østergaard, P.A.; Duic, N.; Noorollahi, Y. Sustainable development using renewable energy technology. Renew. Energy 2020, 146, 2430–2437. [Google Scholar] [CrossRef]
- Mwasilu, F.; Jung, J. Potential for power generation from ocean wave renewable energy source: A comprehensive review on state-of-the-art technology and future prospects. IET Renew. Power Gener. 2019, 13, 363–375. [Google Scholar] [CrossRef]
- Segura, E.; Morales, R.; Somolinos, J.A. A strategic analysis of tidal current energy conversion systems in the European Union. Appl. Energy 2018, 212, 527–551. [Google Scholar] [CrossRef]
- Melikoglu, M. Current status and future of ocean energy sources: A global review. Ocean Eng. 2018, 148, 563–573. [Google Scholar] [CrossRef]
- Roy, A.; Auger, F.; Dupriez-Robin, F. Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies. Energies 2018, 11, 1904. [Google Scholar] [CrossRef]
- Lehmann, M.; Karimpour, F.; Goudey, C.A. Ocean wave energy in the United States: Current status and future perspectives. Renew. Sustain. Energy Rev. 2017, 74, 1300–1313. [Google Scholar] [CrossRef]
- Peiyue, L.; Lu, L.; Xiaohua, G. Talking about the issue of global warming. Environ. Sci. Manag. 2009, 34, 49–52. [Google Scholar]
- Aderinto, T.; Li, H. Ocean Wave Energy Converters: Status and Challenges. Energies 2018, 11, 1250. [Google Scholar] [CrossRef]
- Wang, Z.; Carriveau, R.; Ting, D.S.K. A review of marine renewable energy storage. Int. J. Energy Res. 2018, 43, 6108–6150. [Google Scholar] [CrossRef]
- Hemer, M.A.; Zieger, S.; Durrant, T. A revised assessment of Australia’s national wave energy resource. Renew. Energy 2017, 114, 85–107. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, N. Legal system for the development of marine renewable energy in China. Renew. Sustain. Energy Rev. 2017, 75, 192–196. [Google Scholar] [CrossRef]
- Chao, P. A Preliminary Study on the Sustainable Development of My Country’s Islands. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2006. [Google Scholar]
- Chongwei, Z.; Lin, Z.; Lijia, Z. The seasonal variation characteristics of waves and wave energy in Xisha and Nansha waters. Adv. Mar. Sci. 2011, 29, 419–426. [Google Scholar]
- Doyle, S.; Aggidis, G.A. Development of multi-oscillating water columns as wave energy converters. Renew. Sustain. Energy Rev. 2019, 107, 75–86. [Google Scholar] [CrossRef]
- Kaijian, F.; Guangtao, N.; Liyi, H. Research on Wave Energy Development and Utilization of South China Sea Islands. Eng. Technol. Res. 2020, 5, 216–217. [Google Scholar]
- Wan, Y.; Fan, C.; Dai, Y. Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea. Energies 2018, 11, 398. [Google Scholar] [CrossRef]
- Magagna, D.; Uihlein, A. Ocean energy development in Europe: Current status and future perspectives. Int. J. Mar. Energy. 2015, 11, 84–104. [Google Scholar] [CrossRef]
- Khan, N.; Kalair, A.; Abas, N. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604. [Google Scholar] [CrossRef]
- Li, Y.; Pan, D. The ebb and flow of tidal barrage development in Zhejiang Province, China. Renew. Sustain. Energy Rev. 2017, 80, 380–389. [Google Scholar] [CrossRef]
- Xiangnan, W.; Ning, J.; Caixia, X. Thoughts on the industrialization of marine renewable energy in my country. Ocean Dev. Manag. 2019, 36, 14–18. [Google Scholar]
- Weimin, L.; Lei, L.; Fengyun, C. Progress in China’s marine renewable energy technology. Sci. Technol. Rev. 2020, 38, 27–39. [Google Scholar]
- Qijuan, C.; Gongzheng, G.; Xuhui, Y. Opportunities and Challenges of Hydropower and New Energy: Research Progress of Wave Energy Technology. Hyd. New Energy 2020, 34, 1–6. [Google Scholar]
- Zhe, M.; Naibo, H.; Youxun, L. Research on the development status and countermeasures of marine renewable energy industry in Shandong Province. Sci. Technol. Ind. 2020, 20, 63–67. [Google Scholar]
- Linsheng, H.; Jing, W.; Jia, G. Analysis of wave energy resources in the northern waters of Chu Island, Shandong. Acta Energy Sol. Sin. 2020, 41, 165–171. [Google Scholar]
- Yong, W.; Chenqing, F.; Yongshou, D. Study on the wave energy development potential of the coastal waters around Shandong Peninsula. Acta Energy Sol. Sin. 2018, 39, 3311–3318. [Google Scholar]
- Shouwei, Z.; Qingping, L. Exploit ocean energy and build a maritime power. Sci. Technol. Rev. 2020, 38, 17–26. [Google Scholar]
- Qiu, S.; Liu, K.; Wang, D. A comprehensive review of ocean wave energy research and development in China. Renew. Sustain. Energy Rev. 2019, 113, 109271. [Google Scholar] [CrossRef]
- The 13th Five-Year Plan for Renewable Energy Development (Part 1). Solar Energy 2017, 2, 5–11.
- The 13th Five-Year Plan for Renewable Energy Development (Part 2). Solar Energy 2017, 3, 5–12.
- Uihlein, A.; Magagna, D. Wave and tidal current energy-A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Neill, S.P.; Vögler, A.; Goward-Brown, A.J. The wave and tidal resource of Scotland. Renew. Energy 2017, 114, 3–17. [Google Scholar] [CrossRef]
- Zhou, Z.; Benbouzid, M.; Charpentier, J. Developments in large marine current turbine technologies-A review. Renew. Sustain. Energy Rev. 2017, 71, 852–858. [Google Scholar] [CrossRef]
- Guillou, N.; Lavidas, G.; Chapalain, G. Wave Energy Resource Assessment for Exploitation-A Review. J. Mar. Sci. Eng. 2020, 8, 705. [Google Scholar] [CrossRef]
- Liu, Z.; Hyun, B.; Hong, K. Numerical Study of Air Chamber for Oscillating Water Column Wave Energy Convertor. China Ocean Eng. 2011, 25, 169–178. [Google Scholar] [CrossRef]
- Martin, D.; Li, X.; Chen, C. Numerical analysis and wave tank validation on the optimal design of a two-body wave energy converter. Renew. Energy 2020, 145, 632–641. [Google Scholar] [CrossRef]
- Martins, J.C.; Goulart, M.M.; Gomes, M.D.N. Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design. Renew. Energy 2018, 118, 727–741. [Google Scholar] [CrossRef]
- Ahamed, R.; Mckee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 2020, 204, 107248. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Wang, C.M.; Tay, Z.Y. Wave energy converter and large floating platform integration: A review. Ocean Eng. 2020, 213, 107768. [Google Scholar] [CrossRef]
- Li, N.; Cheung, K.F.; Cross, P. Numerical wave modeling for operational and survival analyses of wave energy converters at the US Navy Wave Energy Test Site in Hawaii. Renew. Energy 2020, 161, 240–256. [Google Scholar] [CrossRef]
- Vieira, F.; Cavalcante, G.; Campos, E. Wave energy flux variability and trend along the United Arab Emirates coastline based on a 40-year hindcast. Renew. Energy 2020, 160, 1194–1205. [Google Scholar] [CrossRef]
- Mctiernan, K.L.; Sharman, K.T. Review of Hybrid Offshore Wind and Wave Energy Systems. J. Phys. Conf. Ser. 2020, 1452, 12016. [Google Scholar] [CrossRef]
- Ocean Energy Systems. Annual Report Ocean Energy Systems 2016. 2017. Available online: https://report2016.ocean-energy-systems.org/ (accessed on 11 March 2018).
- Xiaochen, G.; Shuiwei, T.; Yihong, W. Research on the wave energy capture device in the flow channel of the double-click water wheel. J. Ocean Technol. 2014, 33, 17–24. [Google Scholar]
- Xiaochen, G.; Yihong, W. Research on power bandwidth design method of wave energy utilization device of direct drive turbine. J. Hydrog. Eng. 2013, 32, 197–203. [Google Scholar]
- Xiaochen, G. Theory and Practice of Research and Development of Double-Click Turbine Wave Energy Power Generation Device; China Water Resources and Hydropower Press: Beijing, China, 2017; pp. 23–25. [Google Scholar]
Country | Project Under Planning (kW) | Under Development (kW) | Running (kW) | Total (kW) |
---|---|---|---|---|
Canada | 0 | 0 | 11 | 11 |
New Zealand | 0 | 20 | 0 | 20 |
Denmark | 38 | 12 | 1 | 51 |
Italy | 0 | 150 | 0 | 150 |
Mexico | 100–200 | 0 | 0 | 200 |
Spain | 0 | 230 | 296 | 526 |
South Korea | 0 | 830 | 135 | 965 |
China | 0 | 400 | 300 | 700 |
Portugal | 350 | 0 | 400 | 750 |
United States | 1335 | 500 | 30 | 1865 |
Sweden | 0 | 0 | 3200 | 3200 |
Ireland | 5000 | 0 | 0 | 5000 |
Parameter | Engineering Prototype | Model Prototype | Unit |
---|---|---|---|
Total Height | 5443 | 1800 | mm |
Length of Power Generation Section | 6000 | 1100 | mm |
Width of Power Generation Section | 4412 | 900 | mm |
Height of Power Generation Section | 2948 | 920 | mm |
Rotor Diameter | 625 | 250 | mm |
Rotor Length | 2000 | 800 | mm |
Experiment Condition | Prototype Value | Model Value | ||
---|---|---|---|---|
Parameter | Wave Height H (m) | Cycle T (sec) | Wave Height H (m) | Cycle T (sec) |
Case 1 | 0.25 | 2 | 0.10 | 1.26 |
Case 2 | 0.30 | 2 | 0.12 | 1.26 |
Case 3 | 0.35 | 2 | 0.14 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Liu, Y.; Qin, J.; Chen, Y. Mathematical Modeling and Experimental Verification of a New Wave Energy Converter. Energies 2021, 14, 177. https://doi.org/10.3390/en14010177
Meng Z, Liu Y, Qin J, Chen Y. Mathematical Modeling and Experimental Verification of a New Wave Energy Converter. Energies. 2021; 14(1):177. https://doi.org/10.3390/en14010177
Chicago/Turabian StyleMeng, Zhongliang, Yanjun Liu, Jian Qin, and Yun Chen. 2021. "Mathematical Modeling and Experimental Verification of a New Wave Energy Converter" Energies 14, no. 1: 177. https://doi.org/10.3390/en14010177
APA StyleMeng, Z., Liu, Y., Qin, J., & Chen, Y. (2021). Mathematical Modeling and Experimental Verification of a New Wave Energy Converter. Energies, 14(1), 177. https://doi.org/10.3390/en14010177