Improved Model Predictive Current Control of Single-Phase Five-Level PWM Rectifier
Abstract
:1. Introduction
2. Mathematical Model of Single-Phase Five-Level PWM Rectifier
2.1. Discrete Model of Single-Phase Five-Level PWM Rectifier
2.2. Single-Phase Five-Level Rectifier Space Voltage Vector
3. Improved Model Predictive Current Control
3.1. Building the Objective Function
3.2. Introduce Modulation Function
3.3. Deadbeat Compensation Control
3.4. Solving the Best Modulation Function
3.5. Implementation of Improved MPCC Algorithm
- (1)
- Sampling to obtain the grid-side voltage, current value and DC-side capacitor voltage value at the (k + 2) moment.
- (2)
- The DC-side voltage value is processed by the PI controller and the standardization grid-side voltage measurement operation is used to generate a reference current.
- (3)
- The modulation wave of the system is calculated through Equation (25), and the modulation wave is output to the subsequent modulation module. The modulation module distributes the corresponding PWM pulses to each power switch to complete the control of the system for one cycle.
4. Simulation Results
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Zhang, C. PWM Rectifier and Control; China Machine Press: Beijing, China, 2012; pp. 1–13. [Google Scholar]
- Lu, Z.; Ge, Q. A Novel Single-Phase Five-Level Rectifier with Coupled Inductors. In Proceedings of the 2013 International Conference on Electrical Machines and Systems, Busan, Korea, 26–29 October 2013; pp. 1814–1819. [Google Scholar]
- Jose, R.; Patricio, C. Predictive Control of Converters and Electrical Drives; China Machine Press: Beijing, China, 2015; pp. 45–53. [Google Scholar]
- Dahono, P.A. New hysteresis current controller for single-phase full bridge inverters. IET Power Electron. 2009, 2, 585–594. [Google Scholar] [CrossRef]
- Papafotiou, G.; Kley, J.; Papadopoulos, K.G. Model predictive direct torque control-Part II: Implementation and experimental evaluation. IEEE Tran. Ind. Electron. 2009, 56, 1906–1915. [Google Scholar] [CrossRef]
- Kouro, S.; Cortes, P.; Vargas, R.; Ammann, U. Model predictive control—A simple and powerful method to control power converters. IEEE Tran. Ind. Electron. 2009, 56, 1826–1838. [Google Scholar] [CrossRef]
- Vazquez, S.I.; Leon, J.G.; Franquelo, L.; Rodriguez, J. Model predictive control: A review of its applications in power electronics. IEEE Tran. Ind. Electron. 2014, 8, 16–31. [Google Scholar] [CrossRef]
- Cortés, P.; Rodríguez, J. Predictive current control strategy with imposed load current spectrum. IEEE Tran. Power Electron. 2008, 23, 612–618. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y. Model Predictive current control with optimal duty cycle for three-phase grid-connected AC/DC converters. In Proceedings of the 2014 International Power Electronics and Application Conference and Exposition, Shanghai, China, 5–8 November 2014; pp. 837–842. [Google Scholar]
- Geyer, T.; Oikonomou, N.; Papafotiou, G.; Kieferndorf, F.D. Model predictive pulse pattern control. IEEE Trans. Ind. Appl. 2012, 42, 663–676. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, Z. Improved voltage-vector sequences on dead-beat predictive direct power control of reversible three-phase grid-connected voltage-sourced converters. IEEE Trans. Power Electron. 2013, 28, 254–267. [Google Scholar] [CrossRef]
- Antoniewicz, P.; Kazmierkowski, M.P. Virtual-flux-based predictive direct power control of ac/dc converters with online inductance estimation. IEEE Trans. Ind. Electron. 2008, 55, 4381–4390. [Google Scholar] [CrossRef]
- Gregor, R.; Barrero, F.; Toral, S.; Duran, M.J.; Arahal, M.; Prieto, J.; Mora, J. Predictive-space vector PWM current control method for asymmetrical dual three-phase induction motor drives. IET Electr. Power Appl. 2010, 4, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Barrero, F.; Arahal, M.; Gregor, R.; Toral, S.; Durán, M.J. One step modulation predictive current control method for the asymmetrical dual three-phase induction machine. IEEE Trans. Ind. Electron. 2009, 56, 1974–1983. [Google Scholar] [CrossRef]
- Vazquez, S.; Montero, C.; Bordons, C.; Franquelo, L.G. Model predictive control of a VSI with long prediction horizon. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 1805–1810. [Google Scholar]
- Stolze, P.; Landsmann, P.; Kennel, R.; Mouton, T. Finite-set model predictive control with heuristic voltage vector preselection for higher prediction horizons. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; pp. 1–9. [Google Scholar]
- Marks, N.D.; Summers, T.J.; Betz, R.E. Finite control set model predictive control with increased prediction horizon for a 5-level cascaded H-bridge STATCOM model predictive control for power converters. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications, Lille, France, 2–6 September 2013; pp. 1–10. [Google Scholar]
- Vazquez, S.; Montero, C.; Bordons, C.; Franquelo, L.G. Design and experimental validation of a model predictive control strategy for a VSI with long prediction horizon. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 5788–5793. [Google Scholar]
- Fang, H.; Zhang, Z.; Feng, X. Ripple-reduced model predictive direct power control for active front-end power converters with extended switching vectors and time-optimised control. IET Power Electron. 2016, 9, 1914–1923. [Google Scholar] [CrossRef]
- Oettmeier, M.; Heising, C.; Staudt, V.; Steimel, A. Dead-beat control algorithm for single-phase 50-kW AC railway grid representation. IEEE Trans. Power Electron. 2010, 25, 1184–1192. [Google Scholar] [CrossRef]
- Deng, Z.; Song, W.; Cao, M. A Model Predictive Current Control Scheme for Single- phase PWM Rectifiers. Proc. CSEE 2016, 36, 2996–3004. [Google Scholar]
- Yang, L.; Yang, S.; Zhang, W. The Improved Deadbeat Predictive Current Control Method for Single-phase PWM Rectifiers. Proc. CSEE 2015, 35, 5842–5850. [Google Scholar]
Vector | Switch Status | |
---|---|---|
V2 | (100) | + |
V1 | (110) (101) | +0.5 |
V0 | (111) (000) | 0 |
V−1 | (010) (001) | −0.5 |
V−2 | (011) | − |
Name | Description | Value | |
---|---|---|---|
us | Supply voltage peak value | 48 | V |
udc | DC-link Voltage | 68 | V |
f | Switching Frequency | 2.5 | [kHz] |
R | DC-link load | 11.7 | [Ω] |
L | Line Inductance | 1.2 | [mH] |
C | DC-link capacitor | 4.3 | [mF] |
La | Coupling inductance self-inductance | 3 | [mH] |
M | Coupling inductance mutual inductance | 3 | [mH] |
Description | FCS-MPC | PI | IMPCC |
---|---|---|---|
THD | 9.22% | 4.37% | 2.43% |
Current loop recovery time(ms) | - | 0.9 | 0.5 |
Voltage loop recovery time(ms) | 70 | 100 | 70 |
Steady-state error | large | large | small |
Calculation (time) | 256 | 71 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yue, H.; Zhao, H.; Xu, H. Improved Model Predictive Current Control of Single-Phase Five-Level PWM Rectifier. Energies 2020, 13, 2214. https://doi.org/10.3390/en13092214
Zhu Y, Yue H, Zhao H, Xu H. Improved Model Predictive Current Control of Single-Phase Five-Level PWM Rectifier. Energies. 2020; 13(9):2214. https://doi.org/10.3390/en13092214
Chicago/Turabian StyleZhu, Yifeng, Hao Yue, Hailong Zhao, and Huichun Xu. 2020. "Improved Model Predictive Current Control of Single-Phase Five-Level PWM Rectifier" Energies 13, no. 9: 2214. https://doi.org/10.3390/en13092214
APA StyleZhu, Y., Yue, H., Zhao, H., & Xu, H. (2020). Improved Model Predictive Current Control of Single-Phase Five-Level PWM Rectifier. Energies, 13(9), 2214. https://doi.org/10.3390/en13092214