Discrete-Ordinates Modelling of the Radiative Heat Transfer in a Pilot-Scale Rotary Kiln
Abstract
1. Introduction
2. Methodology
2.1. Modelling
2.2. Data Gathering and Usage
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
cell area in radial direction | polar angle | ||
cell area in angular direction | cell angle | ||
cell area in axial direction | absorption coefficient | ||
unit vectors in Cartesian coordinates | wave number | ||
radiative intensity | Stefan-Boltzmann constant | ||
cell type | scattering coefficient | ||
cell type | scattering phase function | ||
conductive heat transfer coefficient | azimuthal angle | ||
furnace length | space variable | ||
number of cells | solid angle | ||
total number of directions used | |||
Nusselt number | Subscripts | ||
radius | black body | ||
Prandtl number | conductive heat transfer | ||
heat transfer | furnace diameter | ||
radiative heat flux | radial position | ||
Rayleigh number | angular position | ||
unit vector in a given direction | axial position | ||
temperature | discrete direction | ||
cell volume | outer | ||
angular quadrature weight | node point | ||
radial cell | |||
Greek Symbols | wall | ||
angular derivative coefficient | axial cell | ||
cell angle | ambient | ||
emissivity | |||
direction cosine |
References
- Boateng, A.A. Rotary Kilns Transport. Phenomena and Transport. Processes; Butterworth-Heinmann: Oxford, UK, 2008. [Google Scholar]
- Cross, M.; Young, R.W. Mathematical model of rotary kilns used in the production of iron ore pellets. Ironmak. Steelmak. 1976, 3, 129–137. [Google Scholar]
- Gorog, J.P.; Brimacombe, J.K.; Adams, T.N. Radiative heat transfer in rotary kilns. Met. Trans. B 1981, 12, 55–70. [Google Scholar] [CrossRef]
- Gorog, J.P.; Adams, T.N.; Brimacombe, J.K. Regenerative Heat Transfer in Rotary Kilns. Met. Trans. B 1982, 13, 153–163. [Google Scholar] [CrossRef]
- Gorog, J.P.; Adams, T.N.; Brimacombe, J.K. Heat Transfer from Flames in a Rotary Kiln. Met. Trans. B 1983, 14, 411–424. [Google Scholar] [CrossRef]
- Thornton, G.J.; Batterham, R.J. The Transfer of Heat in Kilns. In Proceedings of the Tenth Australian Chemical Engineering Conference, Sydney, Australia, 24–26 August 1982; pp. 260–266. [Google Scholar]
- Barr, P.V.; Brimacombe, J.K.; Watkinson, A.P. A Heat-Transfer Model for the Rotary Kiln: Part I. Pilot Kiln Trials. Met. Mater. Trans. B 1989, 20, 391–402. [Google Scholar] [CrossRef]
- Barr, P.V.; Brimacombe, J.K.; Watkinson, A.P. A heat transfer model for the rotary kiln: Part II. Development of the cross section model. Met. Mater. Trans. B 1989, 20, 403–419. [Google Scholar] [CrossRef]
- Boateng, A.A.; Barr, P.V. A thermal model for the rotary kiln including heat transfer within the bed. Int. J. Heat Mass Transf. 1996, 39, 2131–2147. [Google Scholar] [CrossRef]
- Herz, F.; Mitov, I.; Specht, E.; Stanev, R. Influence of the Motion Behavior on the Contact Heat Transfer Between the Covered Wall and Solid Bed in Rotary Kilns. Exp. Heat Transf. 2015, 28, 174–188. [Google Scholar] [CrossRef]
- Wes, G.W.J.; Drinkenburg, A.A.H.; Stemerding, S. Heat Transfer in a Horizontal Rotary Drum Reactor. Powder Technol. 1976, 13, 185–192. [Google Scholar] [CrossRef]
- Li, S.Q.; Ma, L.B.; Wan, W.; Yao, Q. A mathematical model of heat transfer in a rotary kiln thermo-reactor. Chem. Eng. Technol. 2005, 28, 1480–1489. [Google Scholar] [CrossRef]
- Njeng, S.A.B.; Vitu, S.; Clausse, M.; Dirion, J.; Debacq, M. Wall-to-solid heat transfer coefficient in flighted rotary kilns: Experimental determination and modeling. Exp. Ther. Fluid Sci. 2018, 91, 197–213. [Google Scholar] [CrossRef]
- Tscheng, S.H.; Watkinson, A.P. Convective Heat Transfer in a Rotary Kiln. Can. J. Chem. Eng. 1979, 57, 433–443. [Google Scholar] [CrossRef]
- Specht, E. Heat and Mass Transfer in Thermoprocessing; Vulkan Verlag GmbH: Essen, Germany, 2017. [Google Scholar]
- Georgallis, M.; Nowak, P.; Salcudean, M.; Gartshore, I.S. Modelling the Rotary Lime Kiln. Can. J. Chem. Eng. 2008, 83, 212–223. [Google Scholar] [CrossRef]
- Mujumdar, K.S.; Ranade, V.V. CFD modeling of rotary cement kilns. Asia-Pac. J. Chem. Eng. 2008, 3, 106–118. [Google Scholar]
- Mouangue, R.; Ngako, S.; Tégawendé Zaida, J.; Kuitche, A. Heavy Fuel Oil Combustion in a Cement Rotary Kiln: Measurement and Modelling. Ind. Combust. J. Int. Flame Res. Found. 2020, 1–29. [Google Scholar]
- Witt, P.J.; Sinnott, M.D.; Cleary, P.W.; Schwarz, M.P. A hierarchical simulation methodology for rotary kilns including granular fl ow and heat transfer. Min. Eng. 2018, 119, 244–262. [Google Scholar] [CrossRef]
- Forsmo, S.P.E.; Forsmo, S.-E.; Samskog, P.-O.; Björkman, B.M.T. Mechanisms in oxidation and sintering of magnetite iron ore green pellets. Powder Technol. 2008, 183, 247–259. [Google Scholar] [CrossRef]
- Jonsson, C.Y.C.; Stjernberg, J.; Wiinikka, H.; Lindblom, B.; Boström, D.; Öhman, M. Deposit formation in a grate-kiln plant for iron-ore pellet production. Part 1: Characterization process gas particles. Energy Fuels 2013, 27, 6159–6170. [Google Scholar] [CrossRef]
- Carlson, B.G.; Lathrop, K.D. Transport Theory The Method of Discrete Ordinates. In Computing Methods in Reactor Physics; Greenspan, H., Kelber, C.N., Okrent, D., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1968; pp. 171–265. [Google Scholar]
- Coelho, P.J. Advances in the discrete ordinates and finite volume methods for the solution of radiative heat transfer problems in participating media. J. Quant. Spectrosc. Radiat. Transf. 2014, 145, 121–146. [Google Scholar] [CrossRef]
- Jamaluddin, A.S.; Smith, P.J. Predicting Radiative Transfer in Axisymmetric Cylindrical Enclosures Using the Discrete Ordinates Method. Combust. Sci. Technol. 1988, 62, 173–186. [Google Scholar] [CrossRef]
- Jamaluddin, A.S.; Smith, P.J. Discrete-Ordinates Solution of Radiative Transfer Equation in Nonaxisymmetric Cylindrical Enclosures. J. Ther. Heat Transf. 1992, 6, 242–245. [Google Scholar] [CrossRef]
- Kim, M.Y.; Baek, S.W. Modeling of radiative heat transfer in an axisymmetric cylindrical enclosure with participating medium. J. Quant. Spectrosc. Radiat. Transf. 2005, 90, 377–388. [Google Scholar] [CrossRef]
- Adams, B.R.; Smith, P.J. Three dimensional discrete ordinates modelling of Radiative transfer in a geometrically complex furnace. Combust. Sci. Technol. 1993, 88, 293–308. [Google Scholar] [CrossRef]
- Byun, D.Y.; Baek, S.W.; Kim, M.Y. Investigation of Radiative Heat Transfer in Complex Geometries Using Blocked-Off, Multiblock, and Embedded Boundary Treatments. Numer. Heat Transf. 2003, 43, 807–825. [Google Scholar] [CrossRef]
- Seo, S.-H.; Kim, T.-K. Study on Interpolation Schemes of the Discrete Ordinates Interpolation Method for Three-Dimensional Radiative Heat Transfer with Nonorthogonal Grids. J. Heat Transf. 1998, 120, 1091–1094. [Google Scholar] [CrossRef]
- Howell, L.H.; Beckner, V.E. A Discrete Ordinates Algorithm for Domains with Embedded Boundaries. J. Ther. Heat Transf. 1997, 11, 549–555. [Google Scholar] [CrossRef][Green Version]
- Liu, J.; Shang, H.M.; Chen, Y.S.; Wang, T.S. Prediction of Radiative Transfer in General Body-Fitted Coordinates. Numer. Heat Transf. 1997, 31, 423–439. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Andersson, K.; Adams, B.R.; Fredriksson, C. Full-scale 3D-modelling of the radiative heat transfer in rotary kilns with a present bed material. Int. J. Heat Mass Transf. 2019, 147. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Andersson, K.; Bradley, A. 3D-Modelling of the Radiative Heat Transfer in Rotary Kilns with a Present Bed Material. In Proceedings of the 6th International Conference on Computational Thermal Radiation in Participating Media, Cascais, Portugal, 11–13 April 2018. [Google Scholar]
- Gunnarsson, A.; Bäckström, D.; Johansson, R.; Fredriksson, C.; Andersson, K. Radiative Heat Transfer Conditions in a Rotary Kiln Test Furnace Using Coal, Biomass, and Cofiring Burners. Energy Fuels 2017, 31, 7482–7492. [Google Scholar] [CrossRef]
- Bäckström, D.; Johansson, R.; Andersson, K.; Wiinikka, H.; Fredriksson, C. On the use of alternative fuels in rotary kiln burners—An experimental and modelling study of the effect on the radiative heat transfer conditions. Fuel Process. Technol. 2015, 138, 210–220. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Fiveland, W.A. Three-Dimensional Radiative Heat-Transfer Solutions by the Discrete-Ordinates Method. J. Ther. Heat Transf. 1988, 2, 309–316. [Google Scholar] [CrossRef]
- Liu, J.; Shang, H.M.; Chen, Y.S. Development of an unstructured radiation model applicable for two-dimensional planar, axisymmetric, and three-dimensional geometries. J. Quant. Spectrosc. Radiat. Transf. 2000, 66, 17–33. [Google Scholar] [CrossRef]
- Hottel, H.C.; Sarofim, A.F. Radiative Transfer, 1st ed.; McGraw-Hill, Inc.: New York, NY, USA, 1967. [Google Scholar]
- Johansson, R.; Leckner, B.; Andersson, K.; Johnsson, F. Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combust. Flame 2011, 158, 893–901. [Google Scholar] [CrossRef]
- Foster, P.J.; Howarth, C.R. Optical Constants of Carbons and Coals in the Infrared. Carbon 1968, 6, 719–729. [Google Scholar] [CrossRef]
- Lohi, A.; Wynnyckyj, J.R.; Rhodes, E. Spectral measurement of the complex refractive index of fly ashes of canadian lignite and sub-bituminous coals. Can. J. Chem. Eng. 1992, 70, 751–758. [Google Scholar] [CrossRef]
- Gupta, R.P.; Wall, T.F. The optical properties of fly ash in coal fired furnaces. Combust. Flame 1985, 61, 145–151. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Mitchner, M. Flyash Radiative Properties and Effects on Radiative Heat-Transfer in Coal-fired Systems. Int. J. Heat Mass Transf. 1989, 32, 627–638. [Google Scholar] [CrossRef]
- Chang, H.; Charalampopoulos, T.T. Determination of the Wavelength Dependence of Refractive Indices of Flame Soot. Proc. R. Soc. A Math. Phys. Eng. Sci. 1990, 430, 577–591. [Google Scholar] [CrossRef]
- Gronarz, T.; Schulze, J.; Laemmerhold, M.; Graeser, P.; Gorewoda, J.; Kez, V.; Habermehl, M.; Schiemann, M.; Ströhle, J.; Epple, B.; et al. Quantification of the influence of parameters determining radiative heat transfer in an oxy-fuel operated boiler. Fuel Process. Technol. 2017, 157, 76–89. [Google Scholar] [CrossRef]
- Yu, M.J.; Baek, S.W.; Kang, S.J.A.E. Modeling of Pulverized Coal Combustion with Non- Gray Gas Radiation Effects. Combust. Sci. Technol. 2001, 166, 151–174. [Google Scholar] [CrossRef]
- Modest, M.F. The Method of Discrete Ordinates (SN-Approximation). In Radiative Heat Transfer, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 541–584. [Google Scholar]
- Churchill, S.W.; Chu, H.H.S. Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder. Int. J. Heat Mass Transf. 1975, 18, 1049–1053. [Google Scholar] [CrossRef]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Free Convection. In Principles of Heat and Mass Trasnfer; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 594–652. [Google Scholar]
- Weber, R. Scaling characteristics of aerodynamics, heat transfer, and pollutant emissions in industrial flames. Symp. Combust. 1996, 26, 3343–3354. [Google Scholar] [CrossRef]
- Edland, R.; Normann, F.; Fredriksson, C.; Andersson, K. Implications of Fuel Choice and Burner Settings for Combustion Efficiency and NO x Formation in PF-Fired Iron Ore Rotary Kilns. Energy Fuels 2017, 31, 3253–3261. [Google Scholar] [CrossRef]
- Im, K.H.; Ahluwalia, R.K. Radiation properties of coal combustion products. Int. J. Heat Mass Transf. 1993, 36, 293–302. [Google Scholar] [CrossRef]
0.1422555 | 0.1422555 | 0.9795543 | 0.1712359 |
0.1422555 | 0.5773503 | 0.8040087 | 0.0992284 |
0.1422555 | 0.8040087 | 0.5773503 | 0.0992284 |
0.1422555 | 0.9795543 | 0.1422555 | 0.1712359 |
0.5773503 | 0.1422555 | 0.8040087 | 0.0992284 |
0.5773503 | 0.5773503 | 0.5773503 | 0.4617179 |
0.5773503 | 0.8040087 | 0.1422555 | 0.0992284 |
0.8040087 | 0.1422555 | 0.5773503 | 0.0992284 |
0.8040087 | 0.5773503 | 0.1422555 | 0.0992284 |
0.9795543 | 0.1422555 | 0.1422555 | 0.1712359 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunnarsson, A.; Andersson, K.; Adams, B.R.; Fredriksson, C. Discrete-Ordinates Modelling of the Radiative Heat Transfer in a Pilot-Scale Rotary Kiln. Energies 2020, 13, 2192. https://doi.org/10.3390/en13092192
Gunnarsson A, Andersson K, Adams BR, Fredriksson C. Discrete-Ordinates Modelling of the Radiative Heat Transfer in a Pilot-Scale Rotary Kiln. Energies. 2020; 13(9):2192. https://doi.org/10.3390/en13092192
Chicago/Turabian StyleGunnarsson, Adrian, Klas Andersson, Bradley R. Adams, and Christian Fredriksson. 2020. "Discrete-Ordinates Modelling of the Radiative Heat Transfer in a Pilot-Scale Rotary Kiln" Energies 13, no. 9: 2192. https://doi.org/10.3390/en13092192
APA StyleGunnarsson, A., Andersson, K., Adams, B. R., & Fredriksson, C. (2020). Discrete-Ordinates Modelling of the Radiative Heat Transfer in a Pilot-Scale Rotary Kiln. Energies, 13(9), 2192. https://doi.org/10.3390/en13092192