Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System
Abstract
:1. Introduction
2. Proposed Methodology and Materials
2.1. Pressure Leakage Relationship
2.2. Pressure-Driven Analysis
2.3. Pressure-Reducing Valve (PRV) Localization
2.4. Drawback
Algorithm 1: Function for counting the number of nodes connected at the downstream node end of the pipeline |
function fcnt=count_node(q,M) t_vect=M(q,:); fcnt=0; fcnt=fcnt+sum(t_vect); % fcnt if sum(t_vect)>=1 locs=find(t_vect==1); for i=1:length(locs) fcnt=fcnt+count_node(locs(i),M); end end end |
2.5. Multi-Objective Genetic Algorithm for PRV Optimization
3. Results and Discussion
Campos Do Conde II Network
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EPANET | Environmental Protection Agency Network |
GA | Genetic algorithm |
IWA | International Water Association |
LP | Linear programming |
LPS | Liters per second |
MATLAB | Matrix laboratory |
MINLP | Mixed-integrated nonlinear program |
NSGA-II | Nondominated sorting genetic algorithm-II |
PDA | Pressure-driven analysis |
PRV | Pressure-reducing valve |
RAM | Random access memory |
WDS | Water distribution system |
Appendix A. Network Details
Link ID | Start Node | End Node | Length m | Diameter mm |
115 | 115 | 121 | 230.79 | 50 |
114 | 114 | 115 | 24.25 | 100 |
113 | 113 | 114 | 58.74 | 100 |
112 | 112 | 113 | 20.56 | 100 |
111 | 91 | 112 | 36.26 | 100 |
110 | 90 | 91 | 19.98 | 150 |
108 | 47 | 89 | 33.23 | 150 |
107 | 40 | 38 | 145.99 | 50 |
106 | 37 | 41 | 163.09 | 50 |
105 | 42 | 36 | 213.63 | 50 |
104 | 43 | 42 | 12.25 | 100 |
103 | 41 | 42 | 57.38 | 50 |
102 | 40 | 41 | 20.39 | 50 |
101 | 39 | 40 | 75.82 | 50 |
100 | 38 | 39 | 101.1 | 50 |
99 | 37 | 38 | 18.3 | 50 |
98 | 36 | 37 | 55.4 | 50 |
97 | 35 | 36 | 16.84 | 50 |
96 | 43 | 33 | 141.31 | 100 |
95 | 35 | 43 | 220.72 | 50 |
94 | 34 | 35 | 53.31 | 50 |
93 | 33 | 34 | 135.9 | 50 |
92 | 27 | 33 | 12.25 | 100 |
91 | 29 | 30 | 11.24 | 50 |
90 | 32 | 29 | 132.51 | 50 |
89 | 30 | 32 | 134.67 | 50 |
88 | 31 | 30 | 98.04 | 50 |
87 | 29 | 31 | 120.57 | 50 |
86 | 28 | 29 | 48.74 | 50 |
85 | 27 | 28 | 148.73 | 100 |
84 | 26 | 27 | 104.82 | 100 |
83 | 68 | 73 | 200.65 | 50 |
82 | 72 | 73 | 40.89 | 50 |
81 | 69 | 72 | 186.62 | 50 |
80 | 70 | 71 | 12.22 | 50 |
79 | 70 | 69 | 12 | |
Link ID | Start Node | End Node | Length m | Diameter mm |
78 | 66 | 70 | 99.22 | 50 |
77 | 65 | 66 | 12.25 | 50 |
76 | 67 | 69 | 30.99 | 50 |
75 | 68 | 67 | 47.49 | 50 |
74 | 63 | 68 | 53.08 | 100 |
73 | 65 | 67 | 85.4 | 50 |
72 | 64 | 65 | 6.89 | 50 |
71 | 63 | 64 | 102.91 | 50 |
70 | 62 | 63 | 14.67 | 100 |
69 | 57 | 62 | 51.55 | 100 |
68 | 61 | 62 | 122.4 | 50 |
67 | 60 | 61 | 45.82 | 50 |
66 | 59 | 60 | 13.2 | 50 |
65 | 58 | 60 | 105.01 | 50 |
64 | 57 | 58 | 6.8 | 50 |
63 | 52 | 57 | 64.75 | 100 |
62 | 59 | 58 | 117.66 | 50 |
61 | 53 | 59 | 115.34 | 50 |
60 | 54 | 56 | 7.93 | 50 |
59 | 54 | 55 | 8.4 | 50 |
58 | 53 | 54 | 11.32 | 50 |
57 | 52 | 53 | 28.06 | 50 |
56 | 87 | 88 | 63.44 | 50 |
55 | 85 | 87 | 23.1 | 50 |
54 | 86 | 87 | 103.76 | 50 |
53 | 85 | 86 | 104.66 | 50 |
52 | 84 | 85 | 58.8 | 50 |
51 | 82 | 84 | 23.29 | 50 |
50 | 83 | 84 | 155 | 50 |
49 | 82 | 83 | 162.76 | 50 |
48 | 81 | 82 | 5.58 | 100 |
47 | 80 | 81 | 51.87 | 100 |
46 | 78 | 80 | 18.22 | 100 |
45 | 79 | 80 | 193.53 | 50 |
44 | 78 | 79 | 194.76 | 50 |
43 | 77 | 78 | 5.37 | 100 |
42 | 75 | 77 | 47.33 | 100 |
Link ID | Start Node | End Node | Length m | Diameter mm |
41 | 74 | 75 | 14.13 | 100 |
40 | 76 | 75 | 222.78 | 50 |
39 | 74 | 76 | 221.69 | 50 |
38 | 51 | 74 | 55.58 | 100 |
37 | 51 | 52 | 11 | 100 |
36 | 48 | 51 | 8.12 | 150 |
35 | 50 | 49 | 197.48 | 50 |
34 | 49 | 50 | 178.2 | 50 |
33 | 48 | 49 | 6.54 | 50 |
32 | 47 | 48 | 41.54 | 150 |
31 | 45 | 47 | 24.55 | 150 |
30 | 44 | 45 | 13.06 | 150 |
29 | 46 | 45 | 144.92 | 50 |
28 | 44 | 46 | 141.26 | 50 |
27 | 25 | 44 | 164.85 | 150 |
26 | 26 | 25 | 17.64 | 150 |
25 | 24 | 25 | 13.73 | 50 |
24 | 21 | 24 | 53.25 | 50 |
23 | 124 | 23 | 6.08 | 50 |
22 | 124 | 22 | 5.76 | 50 |
21 | 21 | 124 | 10.69 | 50 |
20 | 20 | 21 | 97.21 | 50 |
19 | 15 | 20 | 17.62 | 50 |
18 | 10 | 26 | 172.76 | 200 |
17 | 18 | 17 | 51.4 | 50 |
16 | 16 | 18 | 16.77 | 50 |
15 | 16 | 19 | 45.19 | 50 |
14 | 15 | 16 | 84.9 | 50 |
13 | 11 | 15 | 97.97 | 50 |
12 | 12 | 13 | 5.91 | 50 |
11 | 12 | 14 | 5.54 | 50 |
10 | 11 | 12 | 12.09 | 50 |
9 | 9 | 11 | 120.11 | 50 |
8 | 9 | 10 | 16.41 | 200 |
7 | 10 | 7 | 210.5 | 50 |
6 | 8 | 9 | 5.94 | 200 |
5 | 4 | 8 | 186.24 | 200 |
4 | 6 | 7 | 95.47 | 50 |
Link ID | Start Node | End Node | Length m | Diameter mm |
3 | 5 | 6 | 103.2 | 50 |
2 | 4 | 5 | 17.72 | 50 |
153 | 117 | 115 | 218.09 | 50 |
152 | 114 | 116 | 229.97 | 50 |
151 | 111 | 113 | 269.14 | 50 |
150 | 112 | 110 | 278.96 | 50 |
149 | 92 | 108 | 12.59 | 100 |
148 | 107 | 108 | 266.52 | 50 |
147 | 106 | 108 | 278.4 | 50 |
146 | 105 | 93 | 238.55 | 50 |
145 | 94 | 104 | 228.07 | 50 |
144 | 95 | 102 | 204.81 | 50 |
143 | 96 | 101 | 200.57 | 50 |
142 | 94 | 95 | 50.58 | 100 |
141 | 93 | 94 | 19.73 | 100 |
140 | 92 | 93 | 80.46 | 100 |
139 | 91 | 92 | 23.79 | 100 |
138 | 96 | 95 | 14.74 | 50 |
137 | 97 | 96 | 57.47 | 50 |
136 | 98 | 100 | 12.95 | 50 |
135 | 98 | 99 | 15.12 | 50 |
134 | 97 | 98 | 11.43 | 50 |
133 | 101 | 97 | 210.89 | 50 |
132 | 102 | 101 | 13.29 | 50 |
131 | 103 | 102 | 48.53 | 50 |
130 | 104 | 103 | 4.31 | 50 |
129 | 105 | 104 | 14.11 | 50 |
128 | 106 | 105 | 51.81 | 50 |
127 | 107 | 106 | 15.62 | 50 |
126 | 109 | 107 | 45.73 | 50 |
125 | 110 | 109 | 6.78 | 50 |
124 | 111 | 110 | 14.52 | 50 |
123 | 116 | 111 | 50.86 | 50 |
122 | 117 | 116 | 17.26 | 50 |
121 | 118 | 117 | 10.56 | 50 |
120 | 119 | 120 | 85.28 | 50 |
119 | 122 | 123 | 151.41 | 50 |
118 | 119 | 122 | 9.91 | 50 |
117 | 118 | 119 | 12.25 | 50 |
Link ID | Start Node | End Node | Length m | Diameter mm |
116 | 121 | 118 | 13.31 | 50 |
P-1 | 1 | 336-A | 14.17 | 200 |
P-2 | 336-B | 4 | 6.70649 | 200 |
1 | 72 | 2 | 50 | 100 |
109 | 89 | 3 | 12.98 | 150 |
160 | 336-A | 336-B | #N/A | Pump |
Node ID | Elevation (m) | Node ID | Elevation (m) | Node ID | Elevation (m) |
---|---|---|---|---|---|
Junc 124 | 615.3 | Junc 44 | 603.3 | Junc 57 | 603.3 |
Junc 123 | 584.5 | Junc 43 | 602.9 | Junc 56 | 601.8 |
Junc 122 | 575.205 | Junc 42 | 602.3 | Junc 55 | 603 |
Junc 121 | 575.6 | Junc 41 | 599.9 | Junc 54 | 602.4 |
Junc 120 | 577.2 | Junc 40 | 599.3 | Junc 53 | 602.4 |
Junc 119 | 574.5 | Junc 39 | 598.113 | Junc 52 | 604.3 |
Junc 118 | 575.9 | Junc 38 | 599.3 | Junc 51 | 604.8 |
Junc 117 | 576 | Junc 37 | 600 | Junc 45 | 603.2 |
Junc 116 | 576.8 | Junc 36 | 603.218 | Junc 69 | 598.6 |
Junc 115 | 593.5 | Junc 35 | 603.8 | Junc 68 | 604.3 |
Junc 114 | 595.6 | Junc 34 | 605.9 | Junc 67 | 599.3 |
Junc 113 | 599.9 | Junc 33 | 608.3 | Junc 50 | 616.2 |
Junc 112 | 601.2 | Junc 32 | 612 | Junc 49 | 605.2 |
Junc 111 | 578.4 | Junc 31 | 616.83 | Junc 48 | 605 |
Junc 110 | 578.8 | Junc 30 | 610.1 | Junc 47 | 605.3 |
Junc 109 | 579 | Junc 29 | 609.4 | Junc 46 | 614.2 |
Junc 108 | 601.6 | Junc 28 | 606.6 | Junc 74 | 604.5 |
Junc 107 | 580.1 | Junc 27 | 608.069 | Junc 73 | 610 |
Junc 106 | 580.2 | Junc 26 | 612.9 | Junc 72 | 603.321 |
Junc 105 | 580.6 | Junc 25 | 612.9 | Junc 71 | 598 |
Junc 104 | 581 | Junc 24 | 613.8 | Junc 70 | 597.4 |
Junc 103 | 581 | Junc 23 | 615.1 | Junc 62 | 603 |
Junc 102 | 581 | Junc 22 | 615.5 | Junc 61 | 591.2 |
Junc 101 | 581 | Junc 21 | 615.9 | Junc 60 | 593.3 |
Junc 100 | 593.7 | Junc 20 | 619.3 | Junc 59 | 595.1 |
Junc 99 | 595.8 | Junc 19 | 624 | Junc 58 | 602.8 |
Junc 98 | 594.7 | Junc 18 | 620.3 | Junc 79 | 618.7 |
Junc 97 | 595.012 | Junc 17 | 623.5 | Junc 78 | 604.3 |
Junc 96 | 597.4 | Junc 16 | 620.6 | Junc 77 | 604.2 |
Junc 95 | 597.8 | Junc 15 | 620.2 | Junc 76 | 618.655 |
Junc 94 | 598.646 | Junc 14 | 621.9 | Junc 75 | 604.3 |
Junc 93 | 600 | Junc 13 | 621.8 | Tank 2 | 605 |
Junc 92 | 602.2 | Junc 12 | 621.8 | Junc 66 | 591.3 |
Junc 91 | 602.3 | Junc 11 | 622.4 | Junc 65 | 592.9 |
Junc 90 | 603.4 | Junc 10 | 620 | Junc 64 | 592.324 |
Junc 89 | 604.2 | Junc 9 | 620.4 | Junc 63 | 603 |
Junc 88 | 612.1 | Junc 8 | 620.4 | Junc 82 | 606.1 |
Junc 87 | 609.568 | Junc 7 | 614.7 | Junc 81 | 605.8 |
Junc 86 | 618.5 | Junc 6 | 617.3 | Junc 80 | 604.5 |
Junc 85 | 609.6 | Junc 5 | 626.69 | Junc 336-B | 627.7544222 |
Junc 84 | 607 | Junc 4 | 626.69 | Junc 3 | 603.4 |
Junc 83 | 619 | Junc 336-A | 614 | Resvr 1 | 625 |
References
- Gleick, P.H. Global water resources: The coming crises. In Human Impact on the Environment; Routledge: London, UK, 2019; pp. 161–170. [Google Scholar]
- Gao, J.; Li, C.; Zhao, P.; Zhang, H.; Mao, G.; Wang, Y. Insights into water-energy cobenefits and trade-offs in water resource management. J. Clean. Prod. 2019, 213, 1188–1203. [Google Scholar] [CrossRef]
- Lambert, A. What do we know about pressure-leakage relationships in distribution systems. In Proceedings of the IWA System Approach to Leakage Control and Water Distribution Systems Management, Brno, Czech Republic, 16–18 May 2001. [Google Scholar]
- Gupta, A.; Mishra, S.; Bokde, N.; Kulat, K. Need of smart water systems in India. Int. J. Appl. Eng. Res. 2016, 11, 2216–2223. [Google Scholar]
- Grace, S.R.P.; Stephen, P.; Paul, J.J.; Thusnavis, B.M.I. A Review on the Monitoring and localization of leakage in water distribution system. In Proceedings of the 2019 2nd International Conference on Signal Processing and Communication (ICSPC), Coimbatore, India, 29–30 March 2019; pp. 83–88. [Google Scholar]
- Hatam, F.; Blokker, M.; Besner, M.-C.; Ebacher, G.; Prévost, M. Using Nodal Infection Risks to Guide Interventions Following Accidental Intrusion due to Sustained Low Pressure Events in a Drinking Water Distribution System. Water 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Vicente, D.J.; Garrote, L.; Sánchez, R.; Santillán, D. Pressure Management in Water Distribution Systems: Current Status, Proposals, and Future Trends. J. Water Resour. Plan. Manag. 2016, 142, 4015061. [Google Scholar] [CrossRef]
- Araujo, L.S.; Ramos, H.; Coelho, S.T. Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Dai, P.D.; Li, P. Optimal Localization of Pressure Reducing Valves in Water Distribution Systems by a Reformulation Approach. Water Resour. Manag. 2014, 28, 3057–3074. [Google Scholar] [CrossRef]
- Gupta, A.D.; Bokde, N.; Marathe, D.; Kulat, K. Optimization techniques for leakage management in urban water distribution networks. Water Sci. Technol. Water Supply 2017, 17, 1638–1652. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, S.K.; Welde, W.; Tesfaye, O.; Tung, T.M.; Al-Ansari, N.; Salih, S.Q.; Yaseen, Z.M. Evaluating physical and fiscal water leakage in water distribution system. Water 2019, 11, 2091. [Google Scholar] [CrossRef] [Green Version]
- García, J.M.; Salcedo, C.; Saldarriaga, J. Minimization of Water Losses in WDS through the Optimal Location of Valves and Turbines: A Comparison between Methodologies. In World Environmental and Water Resources Congress 2019: Hydraulics, Waterways, and Water Distribution Systems Analysis; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 437–445. [Google Scholar]
- Güngör, M.; Yarar, U.; Cantürk, Ü.; Fırat, M. Increasing Performance of Water Distribution Network by Using Pressure Management and Database Integration. J. Pipeline Syst. Eng. Pract. 2019, 10, 4019003. [Google Scholar] [CrossRef]
- Jowitt, P.W.; Xu, C. Optimal Valve Control in Water-Distribution Networks. J. Water Resour. Plan. Manag. 1990, 116, 455–472. [Google Scholar] [CrossRef]
- Gupta, A.; Bokde, N.; Kulat, K.D. Hybrid Leakage Management for Water Network Using PSF Algorithm and Soft Computing Techniques. Water Resour. Manag. 2017, 32, 1133–1151. [Google Scholar] [CrossRef]
- Reis, L.F.R.; Porto, R.M.; Chaudhry, F.H. Optimal Location of Control Valves in Pipe Networks by Genetic Algorithm. J. Water Resour. Plan. Manag. 1997, 123, 317–326. [Google Scholar] [CrossRef]
- Creaco, E.; Pezzinga, G. Multiobjective Optimization of Pipe Replacements and Control Valve Installations for Leakage Attenuation in Water Distribution Networks. J. Water Resour. Plan. Manag. 2015, 141, 4014059. [Google Scholar] [CrossRef]
- Nicolini, M.; Zovatto, L. Optimal Location and Control of Pressure Reducing Valves in Water Networks. J. Water Resour. Plan. Manag. 2009, 135, 178–187. [Google Scholar] [CrossRef]
- Dai, P.D.; Li, P. Optimal Pressure Regulation in Water Distribution Systems Based on an Extended Model for Pressure Reducing Valves. Water Resour. Manag. 2016, 30, 1239–1254. [Google Scholar] [CrossRef]
- Liberatore, S.; Sechi, G.M. Location and Calibration of Valves in Water Distribution Networks Using a Scatter-Search Meta-heuristic Approach. Water Resour. Manag. 2008, 23, 1479–1495. [Google Scholar] [CrossRef]
- Eliades, D.G.; Kyriakou, M.; Vrachimis, S.; Polycarpou, M.M. EPANET-MATLAB toolkit: An open-source software for interfacing EPANET with MATLAB. In Proceedings of the 14th International Conference on Computing and Control for the Water Industry (CCWI), Amsterdam, The Netherlands, 7–9 November 2016. [Google Scholar]
- Shang, F.; Uber, J.G.; Rossman, L.A.; Janke, R. EPANET Multi-Species Extension User’s Manual; Risk Reduction Engineering Laboratory, US Environmental Protection Agency: Cincinnati, OH, USA, 2008.
- Brentan, B.M.; Luvizotto, E.; Montalvo, I.; Izquierdo, J.; Pérez-García, R. Near Real Time Pump Optimization and Pressure Management. Procedia Eng. 2017, 186, 666–675. [Google Scholar] [CrossRef]
- Giustolisi, O.; Savic, D.; Kapelan, Z. Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J. Hydraul. Eng. 2008, 134, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Adedeji, K.B.; Hamam, Y.; Abu-Mahfouz, A.M. Impact of Pressure-Driven Demand on Background Leakage Estimation in Water Supply Networks. Water 2019, 11, 1600. [Google Scholar] [CrossRef] [Green Version]
- Creaco, E.; Walski, T. Economic Analysis of Pressure Control for Leakage and Pipe Burst Reduction. J. Water Resour. Plan. Manag. 2017, 143, 4017074. [Google Scholar] [CrossRef]
S.R NO. | Node No. | LPS | S.R NO. | Node No. | LPS |
---|---|---|---|---|---|
1 | Junc 123 | 7.5 | 10 | Junc 58 | 18.8 |
2 | Junc 120 | 7.5 | 11 | Junc 50 | 11.3 |
3 | Junc 107 | 3.8 | 12 | Junc 38 | 11.3 |
4 | Junc 103 | 18.8 | 13 | Junc 36 | 11.3 |
5 | Junc 88 | 11.3 | 14 | Junc 31 | 11.3 |
6 | Junc 79 | 7.5 | 15 | Junc 19 | 3.85 |
7 | Junc 76 | 7.5 | 16 | Resvr 1 | 164.44 |
8 | Junc 72 | 18.8 | 17 | Tank 2 | 10.04 |
9 | Junc 61 | 3.85 |
Sr. No. | Pipe Number | Downstream Node Number | Number of Nodal Connections | Total Pipeline Length at Downstream End (m) |
---|---|---|---|---|
1 | 3 | 6 | 117 | 11,516.63 |
2 | 5 | 8 | 108 | 10,395.38 |
3 | 27 | 44 | 70 | 8235.9 |
4 | 97 | 82 | 15 | 1431.43 |
5 | 47 | 81 | 14 | 752.26 |
7 | 150 | 110 | 14 | 706.54 |
8 | 71 | 64 | 7 | 546.16 |
9 | 114 | 115 | 6 | 350.12 |
10 | 152 | 116 | 6 | 335.34 |
11 | 61 | 59 | 2 | 233.6 |
12 | 143 | 101 | 2 | 215.20 |
13 | 75 | 67 | 2 | 101.2 |
14 | 58 | 54 | 2 | 16.2 |
Time | v-154 | v-27 | v97 | V-3 | V-5 | Leakage Reduction (%) |
---|---|---|---|---|---|---|
0:00 | 10 | 31 | 26.4 | 17.62 | 14.56 | 27.447 |
1:00 | 10 | 26.05 | 26.54 | 17.61 | 14.52 | 30.32 |
2:00 | 10 | 26 | 27.01 | 17.57 | 14.3 | 30.61 |
3:00 | 10 | 26 | 27.31 | 17.52 | 14.33 | 30.72 |
4:00 | 10 | 26 | 27.31 | 17.51 | 14.32 | 30.739 |
5:00 | 10 | 26.03 | 27.31 | 17.69 | 14.39 | 19.9 |
6:00 | 10 | 26.33 | 24.04 | 17.92 | 14.81 | 18.85 |
7:00 | 10 | 26.5 | 21.55 | 18.29 | 15.18 | 18.11 |
8:00 | 10 | 26.83 | 18.92 | 18.66 | 15.58 | 17.27 |
9:00 | 10 | 26.96 | 17.42 | 18.84 | 15.77 | 16.85 |
10:00 | 10 | 27.34 | 13.8 | 18.86 | 16.35 | 15.59 |
11:00 | 10 | 27.17 | 16.96 | 19.42 | 16.03 | 16.29 |
12:00 | 10 | 27.1 | 16.52 | 19.13 | 15.92 | 16.56 |
13:00 | 10 | 27 | 17.14 | 18.92 | 15.84 | 16.75 |
14:00 | 10 | 27 | 17.14 | 18.93 | 15.83 | 16.77 |
15:00 | 10 | 26.93 | 18.366 | 18.92 | 15.68 | 17.143 |
16:00 | 10 | 26.92 | 18.06 | 18.78 | 15.69 | 17.099 |
17:00 | 10 | 26.82 | 18.98 | 18.77 | 15.57 | 17.388 |
18:00 | 10 | 26.9 | 18.28 | 18.74 | 15.67 | 17.19 |
19:00 | 10 | 26.93 | 17.97 | 18.79 | 15.72 | 17.09 |
20:00 | 10 | 26.72 | 19.97 | 18.8 | 15.42 | 17.75 |
21:00 | 10 | 26.56 | 21.59 | 18.34 | 15.18 | 18.29 |
22:00 | 10 | 26.4 | 23.33 | 18.05 | 14.95 | 18.81 |
23:00 | 10 | 26.35 | 23.9 | 17.98 | 14.87 | 18.97 |
0:00 | 10 | 26.18 | 25.96 | 17.78 | 14.65 | 19.5 |
Average leakage reduction | 20.080% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Bokde, N.; Kulat, K.; Yaseen, Z.M. Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System. Energies 2020, 13, 1878. https://doi.org/10.3390/en13081878
Gupta A, Bokde N, Kulat K, Yaseen ZM. Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System. Energies. 2020; 13(8):1878. https://doi.org/10.3390/en13081878
Chicago/Turabian StyleGupta, Aditya, Neeraj Bokde, Kishore Kulat, and Zaher Mundher Yaseen. 2020. "Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System" Energies 13, no. 8: 1878. https://doi.org/10.3390/en13081878
APA StyleGupta, A., Bokde, N., Kulat, K., & Yaseen, Z. M. (2020). Nodal Matrix Analysis for Optimal Pressure-Reducing Valve Localization in a Water Distribution System. Energies, 13(8), 1878. https://doi.org/10.3390/en13081878