Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology
Abstract
:1. Introduction
2. Materials and Methods
- GT—geothermal gradient [°C/100 m]
- Ts—temperature at the top geothermal aquifer [°C]
- Tp—average annual surface temperature (mainly 0.5 m above sea level) [°C]
- Z—the depth of retaining the ceiling of the tested hydro-geothermal level [m b.g.s.]
- Ts—temperature at the top geothermal aquifer [°C]
- Tp—average annual surface temperature (mainly 0.5 m above sea level) [°C]
- GT—geothermal gradient of the tested level [°C/100 m]
- Zp—ordinate of the land surface [m a.s.l.]
- Zs—ordinate of the top geothermal aquifer [m a.s.l.]
- gross power [W]
- —heat flux supplied to the superheater, evaporator and preheater [W]
- —thermal efficiency [-]
- —mass flow of the working fluid [kg/s]
- hwf1, hwf4—specific enthalpy [kJ/kg]
- —thermal efficiency [-]
- hwf1, hwf2, hwf3, hwf4—specific enthalpy [kJ/kg]
- gross power [W]
- —heat flux supplied to the evaporator [W]
- —thermal efficiency [-]
- —mass flow of the working fluid [kg/s]
- hwf1, hwf8—specific enthalpy [kJ/kg]
- —thermal efficiency [-]
- hwf4, hwf5, hwf8, hwf9—specific enthalpy [kJ/kg]
3. Characteristic of Research Area
4. Results
4.1. Geothermal Conditions in Research Area
4.2. Thermodynamic Calculations for Selected Perspective Wells
5. Discussion
6. Conclusions
- In the context of the growing demand for electricity in the world, it is necessary to search for solutions that would allow the use of unused energy resources.
- Geothermal energy as a stable source, under certain thermal and hydrological conditions, complement the energy mix in the context of electricity generation.
- Research presented in this article has shown that the Kalina Cycle allows obtaining greater gross power than ORC, up to 40%.
- The efficiency of thermal energy conversion into electricity is similar for the Kalina Cycle and ORC.
- The analysis and calculations show that in the area of Małopolskie Voivodeship existing geothermal wells and reservoirs that demonstrate the potential for electricity generation can be identified.
- Among the analyzed locations, the most favorable conditions were found in the Podhale geothermal system (especially the geothermal wells: Bańska PGP-1 and Bańska PGP-3).
- The potential gross power of a geothermal power plant, calculated for selected geothermal wells (assuming the use of the full geothermal water flow rate), will not exceed 900 kW for the Organic Rankine Cycle and 1600 kW for the Kalina Cycle.
Author Contributions
Funding
Conflicts of Interest
References
- European Parliament. A Policy Framework for Climate and Energy in the Period from 2020 to 2030; European Parliament: Brussels, Belgium, 2014. [Google Scholar]
- REN21. Renewables 2019 Global Status Report; REN21: Paris, France, 2019. [Google Scholar]
- Operacz, A.; Tomaszewska, B. The review of Polish formal and legal aspects related to hydropower plants. Environ. Sci. Pollut. Res. 2016, 23, 18953–18959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomberg New Energy Finance. New Energy Outlook 2019, Executive Summary; Bloomberg: New York, NY, USA, 2019. [Google Scholar]
- Kaczmarczyk, M. Methodology and impact categories of environmental life cycle assessment in geothermal energy sector. E3S Web Conf. 2019, 100, 32. [Google Scholar] [CrossRef]
- Kaczmarczyk, M. Potential of existing and newly designed geothermal heating plants in limiting of low emissions in Poland. E3S Web Conf. 2018, 44, 62. [Google Scholar] [CrossRef] [Green Version]
- DiPippo, R. Geothermal Power Plants: Designs and selection guidelines. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. [Google Scholar]
- Bertani, R. Geothermal Power Generation in the World 2010–2014 Update Report. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Barbacki, A. Classification of geothermal resources in Poland by exergy analysis—Comparative study. Renew. Sustain. Energy Rev. 2012, 16, 123–128. [Google Scholar] [CrossRef]
- DiPippo, R. Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact; Library of Congress Cataloging-in-Publication Data; Elsevier Ltd.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Kalina, A.I.; Lebowitz, H.M. System Design and Experimental Development of the Kalina Cycle Technology. In Proceedings of the Ninth Annual Industrial Energy Technology Conference, Houston, TX, USA, 16–18 September 1987. [Google Scholar]
- Mirolli, M.; Hjartarson, H.; Mlcak, H.A.; Ralph, M. Testing and Operating Experience of the 2 MW Kalina Cycle Geothermal Power Plant in Húsavík, Iceland. Power Plant: Operation, Maintenance and Materials. Issue OMMI Internet J. 2002, 1, 2. [Google Scholar]
- Bujakowski, W.; Tomaszewska, B. (Eds.) Atlas Wykorzystania Wód Termalnych do Skojarzonej Produkcji Energii Elektrycznej i Cieplnej Przy Zastosowaniu Układów Binarnych w Polsce; Instytut Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk: Kraków, Poland, 2014. [Google Scholar]
- Nowak, W.; Borsukiewicz-Gozdur, A.; Klonowicz, P.; Stachel, A.; Hanausek, P.; Klonowicz, W. Wstępne wyniki badań prototypowego układu minisiłowni z ORC zasilanej wodą o temperaturze 100 °C. Przegląd Geol. 2010, 7, 622–625. [Google Scholar]
- Barbacki, A.; Pająk, L. Assessment of possibilities of electricity production in flash geothermal system in Poland. Geomat. Environ. Eng. 2017, 11, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Brasz, L.J.; Bilbow, W.M. Ranking of Working Fluids for Organic Rankine Cycle Applications. In Proceedings of the International Refrigeration and Air Conditioning Conference, Purdue University, West Lafayette, IN, USA, 12–15 July 2004. [Google Scholar]
- Borsukiewicz-Gozdur, A.; Nowak, W. Desirable Thermophysical Properties of Working Fluids in Organic Rankine Cycle. In Proceedings of the European Geothermal Congress 2007, Unterhaching, Germany, 30 May–1 June 2007. [Google Scholar]
- Boruskiewicz-Gozdur, A.; Nowak, W.; Wiśniewski, S. Zastosowanie nowych technologii do skojarzonego wytwarzania energii z wykorzystaniem energii geotermalnej dla potrzeb energetyki rozproszonej. In Atlas Geotermalny Karpat Wschodnich; Górecki, W., Ed.; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2013. [Google Scholar]
- Akbari, M.; Mahmoudi, S.; Yari, M.; Rosen, A. Energy and Exergy Analyses of a New Combined Cycle for Producing Electricity and Desalinated Water Using Geothermal Energy. Sustainability 2014, 6, 1796–1820. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarczyk, M. Impact of rock mass temperature on potential power and electricity generation in the ORC installation. E3S Web Conf. 2017, 24, 02007. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.W. Chena Hot Springs—Low Temperature Power Plant Dedication; IGA NEWS Newsletter of the International Geothermal Association; International Geothermal Association: Reykjavik, Iceland, 2006. [Google Scholar]
- Mink, L.; Karl, B.; Karl, C. An Example of Small Scale Geothermal Energy Sustainability: Chena Hot Springs, Alaska. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Weber, J.; Ganz, B.; Schellschmidt, R.; Sanner, B.; Schulz, R. Geothemal Energy Use in Germany. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Barbacki, A.P.; Bujakowski, W.; Pająk, L. Atlas Zbiorników Wód Geotermalnych Małopolski; Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN: Kraków, Poland, 2006. [Google Scholar]
- Górecki, W. (Ed.) Atlas Zasobów Geotermalnych Formacji Mezozoicznej Na Niżu Polskim; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2006. [Google Scholar]
- Szczepański, A.; Haładus, A.; Hajto, M. Metodyka analizy podstawowych parametrów hydrogeologicznych zbiorników wód geotermalnych na Niżu Polskim. In Atlas Zasobów Geotermalnych Formacji Mezozoicznej Na Niżu Polskim; Górecki, W., Ed.; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2006. [Google Scholar]
- Szewczyk, J.; Gientka, D. Terrestrial heat flow density in Poland–A new approach. Geol. Q. 2009, 53, 123–140. [Google Scholar]
- Górecki, W. (Ed.) Atlas Zasobów Geotermalnych Polskich Karpat Zachodnich; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2011. [Google Scholar]
- Górecki, W. (Ed.) Atlas Geotermalny Zapadliska Przedkarpackiego; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2012. [Google Scholar]
- Galon, Z. SURFER Podręcznik Użytkownika; Gambit: Kraków, Poland, 2009. [Google Scholar]
- Borsukiewicz-Gozdur, A.; Nowak, W. Maximising the working fluid flow as a way of increasing power output of geothermal power plant. Appl. Therm. Eng. 2007, 27, 2074–2078. [Google Scholar] [CrossRef]
- Borsukiewicz-Gozdur, A.; Nowak, W.; Stachel, A. Systemy do generacji prądu elektrycznego przy wykorzystaniu wód geotermalnych–perspektywy rozwoju w Polsce. In Proceedings of the Materiały Ogólnopolskiego Kongresu Geotermalnego ”Geotermia w Polsce–doświadczenia, stan aktualny, perspektywy rozwoju”, Radziejowice, Poland, 17–19 października 2007. [Google Scholar]
- Guzović, Z.; Majcen, B.; Cvetkowić, S. Possibilities of electricity generation in the Republic of Croatia from medium-temperature geothermal sources. Appl. Energy 2012, 98, 404–414. [Google Scholar] [CrossRef]
- Znosko, J. (Ed.) Atlas Tektoniczny Polski; Państwowy Instytut Geologiczny: Warszawa, Poland, 1998.
- Plewa, S. Rozkład Parametrów Geotermalnych Na Obszarze Polski; Wydawnictwo CPPGSMiE, PAN: Kraków, Poland, 1994. [Google Scholar]
- Różkowski, A. Zapadlisko górnośląskie. In Hydrogeologia Regionalna Polski tom II. Wody Mineralne, Lecznicze I Termalne Oraz Kopalniane; Paczyński, B., Sadurski, A., Eds.; Państwowy Instytut Geologiczny: Warszawa, Poland, 2007. [Google Scholar]
- Małolepszy, Z. Low-enthalpy geothermal waters in coal-mines, Upper Silesia coal basin, Poland. In Proceedings of the World Geothermal Congress 2000, Kyushu-Tohoku, Japan, 28 May–10 June 2000. [Google Scholar]
- Burzewski, S.W. Strukturalne warunki jury olkusko-wolbromskiej jako brzegowe dla hydrodynamiki złóż naftowych niecki nidziańskiej. Kom. Nauk. Geol. PAN Pr. Geol. 1969, 61, 1–85. [Google Scholar]
- Kotlicki, S. Chemizm wód podziemnych południowo-zachodniej części niecki miechowskiej. Biul. Inst. Geol. 1971, 249, 65–133. [Google Scholar]
- Barbacki, A.P. Zbiorniki Wód Geotermalnych Niecki Miechowskiej i Środkowej Części Zapadliska Przedkarpackiego; Studia, Rozprawy, Monografie; Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN: Kraków, Poland, 2004. [Google Scholar]
- Moryc, W. Katalog Wierceń Górnictwa Naftowego. Geonafta 1970, I, 3–4. [Google Scholar]
- Moryc, W. Katalog Wierceń Górnictwa Naftowego. Geonafta 1976, I, 5. [Google Scholar]
- Pich, J. Chemizm wód podziemnych w środkowej części zapadliska Przedkarpackiego. Biuletyn Instytutu Geologicznego 1978, 312, 129–190. [Google Scholar]
- Hajto, M.; Szewczyk, J. Analiza termiczna obszaru zapadlisko Przedkarpackiego. In Atlas Geotermalny Zapadliska Przedkarpackiego; Górecki, W., Ed.; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2012. [Google Scholar]
- Kępińska, B. Warunki Termiczne i Hydrotermalne Podhalańskiego Systemu Geotermalnego; Studia, Rozprawy, Monografie, Zeszyt 135; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2006. [Google Scholar]
- Kępińska, B. Historia badań i wykorzystania wód geotermalnych. In Atlas Zasobów Geotermalnych Polskich Karpat Zachodnich; Górecki, W., Ed.; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2011. [Google Scholar]
- Chowaniec, J.; Zuber, A.; Ciężkowski, W. Prowincja karpacka. In Hydrogeologia Regionalna Polski Tom II. Wody Mineralne, Lecznicze I Termalne Oraz Kopalniane; Paczyński, B., Sadurski, A., Eds.; Państwowy Instytut Geologiczny: Warszawa, Poland, 2007. [Google Scholar]
- Tomaszewska, B.; Bielec, B.; Miecznik, M. Ocena uwarunkowań hydrogeotermalnych dla uzdatniania części schłodzonych wód termalnych. Model koncepcyjny systemu geotermalnego Podhala. Przegląd Geol. 2015, 63, 1115–1121. [Google Scholar]
- Bujakowski, W.; Tomaszewska, B.; Miecznik, M. The Podhale geothermal reservoir simulation for long-term sustainable production. Renew. Energy 2016, 99, 420–430. [Google Scholar] [CrossRef]
- Oszczypko, N. Charakterystyka tektoniczna i geologiczna polskich Karpat Zachodnich. In Atlas Zasobów Geotermalnych Polskich Karpat Zachodnich; Górecki, W., Ed.; Akademia Górniczo-Hutnicza im. S. Staszica: Kraków, Poland, 2011. [Google Scholar]
- Bujakowski, W.; Barbacki, A.; Bielec, B.; Hołojuch, G.; Kasztelewicz, A.; Kępińska, B.; Miecznik, M.; Pająk, L.; Skrzypczak, R.; Tomaszewska, B. Obszary badawcze w masywach krystalicznych. In Ocena Potencjału, Bilansu Cieplnego i Perspektywicznych Struktur Geologicznych Dla Potrzeb Zamkniętych Systemów Geotermicznych (Hot Dry Rocks) w Polsce; Wójcicki, A., Sowiżdżał, A., Bujakowski, W., Eds.; Ministerstwo Środowiska: Warszawa/Kraków, Poland, 2013. [Google Scholar]
- Sowiżdżał, A.; Hajto, M.; Stefaniuk, M.; Targosz, P.; Kępińska, B.; Kiersnowski, H.; Jureczka, J.; Karwasiecka, M.; Wilk, S.; Rolka, M.; et al. Lokalizacja potencjalnych obszarów badawczych dla niekonwencjonalnych systemów geotermicznych (HDR/EGS) na obszarze Polski. In Ocena Potencjału, Bilansu Cieplnego i Perspektywicznych Struktur Geologicznych dla Potrzeb Zamkniętych Systemów Geotermicznych (Hot Dry Rocks) w Polsce; Wójcicki, A., Sowiżdżał, A., Bujakowski, W., Eds.; Ministerstwo Środowiska: Warszawa/Kraków, Poland, 2013. [Google Scholar]
- Nemati, A.; Nami, H.; Ranjbar, F.; Yari, M. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system. Case Stud. Therm. Eng. 2017, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yari, M.; Mahmoudi, S.M. Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles. Appl. Therm. Eng. 2010, 30, 366–375. [Google Scholar] [CrossRef]
- Yari, M.; Mahmoudi, S.M. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles. Heat Mass Transf. 2011, 47, 181–196. [Google Scholar] [CrossRef]
- Walraven, D.; Laenen, B.; D’haeseleer, W. Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources. Energy Convers. Manag. 2013, 66, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Yari, M.; Mehr, A.S.; Zare, V.; Mahmoudi, S.M.; Rosen, M.A. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source. Energy 2015, 83, 712–722. [Google Scholar] [CrossRef]
- Rodríguez, C.E.C.; Palacio, J.C.E.; Venturini, O.J.; Lora, E.E.S.; Cobas, V.M.; dos Santos, D.M.; Dotto, F.R.L.; Giallucad, V. Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil. Appl. Therm. Eng. 2013, 52, 109–119. [Google Scholar] [CrossRef]
- Fiaschi, D.; Manfrida, G.; Rogai, E.; Talluri, L. Exergoeconomic analysis and comparison between ORC and Kalina cycles to exploit low and medium-high temperature heat from two different geothermal sites. Energy Convers. Manag. 2017, 154, 503–516. [Google Scholar] [CrossRef]
- Knapek, E.; Kittl, G. Unterhaching Power Plant and Overall System. In Proceedings of the European Geothermal Congress 2007, Unterhaching, Germany, 30 May–1 June 2007. [Google Scholar]
- Kang, Z.; Zhu, J.; Lu, X.; Li, T.; Wu, X. Parametric optimization and performance analysis of zeotropic mixtures for an organic Rankine cycle driven by low-medium temperature geothermal fluids. Appl. Therm. Eng. 2015, 89, 323–331. [Google Scholar] [CrossRef]
- Liu, B.; Chien, K.; Wang, C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217. [Google Scholar] [CrossRef]
- Yue, C.; Han, D.; Pu, W.; He, W. Thermal matching performance of a geothermal ORC system using zeotropic working fluids. Renew. Energy 2015, 80, 746–754. [Google Scholar] [CrossRef]
- Beardsmore, G.R.; Rybach, L.; Blackwell, D.; Baron, C. A protocol for estimating and mapping global EGS potential. Geotherm. Resour. Counc. Trans. 2010, 34, 301–312. [Google Scholar]
- Chamorro, C.; García-Cuesta, J.L.; Mondejar, M.E.; Pérez-Madrazo, A. Enhanced geothermal systems in Europe: An estimation and comparison of the technical and sustainable potentials. Energy 2014, 65, 250–263. [Google Scholar] [CrossRef]
- Hurter, S.; Haenel, R. Atlas of Geothermal Resources in Europe; Office for the Official Publications of the European Communities: Luxembourg, 2002.
- Hurter, S.; Schellschmidt, R. Atlas of geothermal resources in Europe. Geothermics 2003, 32, 779–787. [Google Scholar] [CrossRef]
- Toohey, B.; Diebert, L.; Thompson, A.; Yang, D.; Hjartarson, A. The Canadian Geothermal Code for Public Reporting; Canadian Geothermal Energy Association: Calgary, AB, Canada, 2010. [Google Scholar]
- Lawless, J. The Geothermal Reporting Code: Australian Code for Reporting of Exploration Results, Geothermal Resources and Geothermal Reserves, 2nd ed.; Australian Geothermal Energy Group (AGEG) and the Australian Geothermal Energy Association (AGEA): Adelaide, Australia, 2010. [Google Scholar]
- Kępińska, B. Current geothermal activities and prospects in Poland—An overview. Geothermics 2003, 32, 397–407. [Google Scholar] [CrossRef]
- Kępińska, B. Current state and prospects of geothermal energy implementation in Poland. Appl. Energy 2003, 74, 43–51. [Google Scholar] [CrossRef]
- Igliński, B.; Buczkowski, R.; Kujawski, W.; Cichosz, M.; Piechota, G. Geoenergy in Poland. Renew. Sustain. Energy Rev. 2012, 16, 2245–2557. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Sowiżdżał, A.; Tomaszewska, B. Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland. Energies 2020, 13, 454. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Bańska PGP-1 | Bańska IG-1 | Bańska PGP-3 | Chochołów PIG-1 |
---|---|---|---|---|---|
Geothermal water temperature | °C | 86 | 82 | 86 | 82 |
Flow rate of geothermal water | m3/h | 550 | 120 | 290 | 190 |
Mineralization | g/L | 3.122 | 2.693 | 2.499 | 1.244 |
Geothermal water density | kg/m3 | 990.81 | 970.52 | 986.25 | 970.50 |
Geothermal water specific heat | kJ/kgK | 4.183 | 4.182 | 4.187 | 4.190 |
Borehole Name | Geothermal Water Temperature Before/After Evaporator | Flow Rate | Working Fluid | Gross Power | Efficiency | Gross Electricity |
---|---|---|---|---|---|---|
– | °C | m3/h|kg/s | – | kW | % | MWh |
Bańska PGP-1 | 86/60 | 550|151.37 | R227ea | 648 | 6.05 | 2700 |
R600a | 795 | 6.17 | 3180 | |||
R236fa | 762 | 6.16 | 3049 | |||
R245fa | 817 | 6.20 | 3270 | |||
R1234yf | 655 | 7.86 | 2622 | |||
R134a | 823 | 7.91 | 3293 | |||
Kalina 0.85 | 1422 | 6.14 | 5689 | |||
Kalina 0.87 | 1568 | 6.96 | 6273 | |||
Kalina 0.89 | 1451 | 6.82 | 5804 | |||
Bańska IG-1 | 82/60 | 120|32.35 | R227ea | 120 | 5.84 | 481 |
R600a | 140 | 5.94 | 560 | |||
R236fa | 134 | 5.92 | 538 | |||
R245fa | 143 | 5.91 | 571 | |||
R1234yf | 122 | 7.54 | 489 | |||
R134a | 148 | 7.50 | 590 | |||
Kalina 0.85 | 241 | 5.70 | 962 | |||
Kalina 0.87 | 272 | 6.61 | 1090 | |||
Kalina 0.89 | 252 | 6.49 | 1010 | |||
Bańska PGP-3 | 86/60 | 290|79.45 | R227ea | 354 | 6.05 | 1418 |
R600a | 418 | 6.17 | 1670 | |||
R236fa | 400 | 6.16 | 1602 | |||
R245fa | 429 | 6.20 | 1717 | |||
R1234yf | 344 | 7.86 | 1377 | |||
R134a | 432 | 7.91 | 1730 | |||
Kalina 0.85 | 747 | 6.14 | 2988 | |||
Kalina 0.87 | 824 | 6.96 | 3295 | |||
Kalina 0.89 | 762 | 6.82 | 3049 | |||
Chochołów PIG-1 | 82/60 | 190|51.22 | R227ea | 190 | 5.79 | 761 |
R600a | 222 | 5.94 | 888 | |||
R236fa | 213 | 5.92 | 853 | |||
R245fa | 226 | 5.91 | 906 | |||
R1234yf | 193 | 7.54 | 775 | |||
R134a | 234 | 7.50 | 936 | |||
Kalina 0.85 | 382 | 5.70 | 1526 | |||
Kalina 0.87 | 432 | 6.61 | 1728 | |||
Kalina 0.89 | 400 | 6.49 | 1601 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarczyk, M.; Tomaszewska, B.; Pająk, L. Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology. Energies 2020, 13, 1335. https://doi.org/10.3390/en13061335
Kaczmarczyk M, Tomaszewska B, Pająk L. Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology. Energies. 2020; 13(6):1335. https://doi.org/10.3390/en13061335
Chicago/Turabian StyleKaczmarczyk, Michał, Barbara Tomaszewska, and Leszek Pająk. 2020. "Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology" Energies 13, no. 6: 1335. https://doi.org/10.3390/en13061335
APA StyleKaczmarczyk, M., Tomaszewska, B., & Pająk, L. (2020). Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology. Energies, 13(6), 1335. https://doi.org/10.3390/en13061335