Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements
Abstract
:1. Introduction
2. Modeling Grid-Connected Inverter
2.1. Impedance-Based Stability Analysis and System Sensitivity
2.2. Small-Signal Modeling of Three-Phase Inverter with PLL
2.3. PLL Design Based on System Sensitivity Function
3. Real-Time Impedance Measurements for Adaptive PLL
3.1. Maximum-Length Binary Sequence
3.2. Grid-Reactance Estimation
3.3. Adaptive PLL
4. Implementation of Adaptive PLL Design
5. Simulations
5.1. Adaptive PLL in Varying Grid Conditions
5.2. Performance in Weak Grid
6. Experiments
6.1. Experimental Set-Up
6.2. Adaptive Control during Grid Transients
6.3. Performance Comparison in Weak Grids
6.4. PLL Performance during Phase Jump
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Li, C. Unstable Operation of Photovoltaic Inverter from Field Experiences. IEEE Trans. Power Deliv. 2018, 33, 1013–1015. [Google Scholar] [CrossRef]
- Liang, X. Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Trans. Ind. Appl. 2012, 53, 855–866. [Google Scholar] [CrossRef]
- Sun, J. Impedance-Based Stability Criterion for Grid-Connected Inverters. IEEE Trans. Power Electron. 2011, 26, 3075–3078. [Google Scholar] [CrossRef]
- Suntio, T.; Messo, T.; Berg, M.; Alenius, H.; Reinikka, T.; Luhtala, R.; Zenger, K. Impedance-Based Interactions in Grid-Tied Three-Phase Inverters in Renewable Energy Applications. Energies 2019, 12, 464. [Google Scholar] [CrossRef] [Green Version]
- Belkhayat, M. Stability Criteria For AC Power Systems with Regulated Loads. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, 1997. [Google Scholar]
- Jessen, L.; Fuchs, F. Modeling of Inverter Output Impedance for Stability Analysis in Combination with Measured Grid Impedances. In Proceedings of the 2015 IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aachen, Germany, 22–25 June 2015. [Google Scholar] [CrossRef]
- Jessen, L.; Fuchs, F. Investigation of Renewable Energy Generation and Load Impact on the Grid Impedance at Different Points of Connection in Public Low-Voltage Grids to Support Grid Integration of Renewable Energies. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016. [Google Scholar] [CrossRef]
- Hallak, G.; Bumiller, G. Impedance Measurement of Electrical Equipment Loads on the Power Line Network. In Proceedings of the 2017 IEEE International Symposium on Power Line Communications and its Applications (ISPLC), Madrid, Spain, 3–5 April 2017. [Google Scholar] [CrossRef]
- Alenius, H.; Reinikka, T.; Messo, T.; Roinila, T. Modeling, Sensitivity Analysis, and Power Hardware-in-the-Loop Emulation of Grid Impedance. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 3–7 September 2018; pp. 4179–4186. [Google Scholar] [CrossRef]
- Jia, K.; Bi, T.; Li, W.; Yang, Q. Ground Fault Distance Protection for Paralleled Transmission Lines. IEEE Trans. Ind. Appl. 2015, 51, 5228–5236. [Google Scholar] [CrossRef]
- Milioudis, A.; Andreou, G.; Labridis, D. Enhanced Protection Scheme for Smart Grids Using Power Line Communications Techniques—Part I: Detection of High Impedance Fault Occurrence. IEEE Trans. Smart Grid 2012, 3, 1621–1630. [Google Scholar] [CrossRef]
- Izykowski, J.; Rosolowski, E.; Saha, M. Locating Faults in Parallel Transmission Lines under Availability of Complete Measurements at one End. IEE Proc. Gener. Transm. Distrib. 2004, 151, 268–273. [Google Scholar] [CrossRef]
- Funabashi, T.; Otoguro, H.; Mizuma, Y.; Dube, L.; Ametani, A. Digital Fault Location for Parallel Double-Circuit Multi-Terminal Transmission Lines. IEEE Trans. Power Deliv. 2000, 2, 531–537. [Google Scholar] [CrossRef]
- Roinila, T.; Messo, T.; Luhtala, R.; Scharrenberg, R.; de Jong, E.; Fabian, A.; Sun, Y. Hardware-in-the-Loop Methods for Real-Time Frequency-Response Measurements of on-Board Power Distribution Systems. IEEE Trans. Ind. Electron. 2019, 66, 5769–5777. [Google Scholar] [CrossRef]
- Luhtala, R.; Roinila, T.; Messo, T. Implementation of Real-Time Impedance-Based Stability Assessment of Grid-Connected Systems Using MIMO-Identification Techniques. IEEE Trans. Ind. Appl. 2018, 54, 5054–5063. [Google Scholar] [CrossRef]
- Messo, T.; Luhtala, R.; Roinila, T.; Yang, D.; Wang, X.; Blaabjerg, F. Real-time Impedance-Based Stability Assessment of Grid Converter Interactions. In Proceedings of the 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, 9–12 July 2017. [Google Scholar] [CrossRef]
- Cespedes, M.; Sun, J. Online grid impedance identification for Adaptive Control of Grid-Connected Inverters. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 914–921. [Google Scholar] [CrossRef]
- Kamala, S.; Kanakesh, V.K.; Panda, S.K.; Amaratunga, G. D-Q Frame Impedance Measurement and Small Signal Stability Improvement in a 3-phase System with Constant Power Loads by an Active Control Method. In Proceedings of the 2018 IEEE International Telecommunications Energy Conference (INTELEC), Torino, Italy, 7–11 October 2018. [Google Scholar] [CrossRef]
- Roinila, T.; Messo, T.; Santi, E. MIMO-Identification Techniques for Rapid Impedance-based Stability Assessment of Three Phase Systems in DQ Domain. IEEE Trans. Power Electron. 2017, 3. [Google Scholar] [CrossRef]
- Roinila, T.; Vilkko, M.; Sun, J. Broadband Methods for Online Grid Impedance Measurement. IEEE Energy Convers. Congr. Expo. 2013, 3003–3010. [Google Scholar] [CrossRef]
- Messo, T.; Jokipii, J.; Mäkinen, A.; Suntio, T. Modeling the Grid Synchronization Induced Negative-Resistor-Like Behavior in the Output Impedance of a Three-Phase Photovoltaic Inverter. In Proceedings of the 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Rogers, AR, USA, 8–11 July 2013. [Google Scholar] [CrossRef]
- Harnefors, L.; Wang, X.; Yepes, A.G.; Blaabjerg, F. Passivity-Based Stability Assessment of Grid-Connected VSCs—An Overview. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Dong, D.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Impedance-Based Analysis of Grid-Synchronization Stability for Three-Phase Paralleled Converters. IEEE Trans. Power Electron. 2016, 31, 26–38. [Google Scholar] [CrossRef]
- Messo, T.; Sihvo, J.; Yang, D.; Wang, X.; Blaabjerg, F. Improved Delayed Signal Cancellation-Based SRF-PLL for Unbalanced Grid. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 3103–3110. [Google Scholar] [CrossRef]
- Davari, M.; Mohamed, Y. Robust Vector Control of a Very Weak-Grid-Connected Voltage-Source Converter Considering the Phase-Locked Loop Dynamics. J. IEEE Trans. Power Electron. 2017, 32, 977–994. [Google Scholar] [CrossRef]
- Zhou, J. Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter. IEEE Trans. Power Deliv. 2014, 29, 2287–2296. [Google Scholar] [CrossRef]
- Cespedes, M.; Sun, J. Adaptive Control of Grid-Connected Inverters Based on Online Grid Impedance Measurements. IEEE Trans. Sustain. Energy 2014, 516–523. [Google Scholar] [CrossRef]
- Luhtala, R.; Messo, T.; Reinikka, T.; Sihvo, J.; Roinila, T.; Vilkko, M. Adaptive Control of Grid-Connected Inverters Based on Real-Time Measurements of Grid Impedance: DQ-Domain Approach. IEEE Energy Convers. Congr. Expo. 2017, 69–75. [Google Scholar] [CrossRef]
- Xu, J.; Qian, Q.; Xie, S. Adaptive control Method for Enhancing the Stability of Grid-Connected Inverters under Very Weak Grid Condition. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 1141–1146. [Google Scholar] [CrossRef]
- Luhtala, R.; Reinikka, T.; Alenius, H.; Roinila, T.; Messo, T. Adaptive Method for Control Tuning of Grid-Connected Inverter Based on Grid Measurements During Start-Up. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp. 417–422. [Google Scholar] [CrossRef]
- Wen, B.; Boroyevich, D.; Burgos, R.; Mattavelli, P.; Shen, Z. Small-Signal Stability Analysis of Three-Phase AC Systems in the Presence of Constant Power Loads Based on Measured d-q Frame Impedances. IEEE Trans. Power Electron. 2015, 30, 5952–5963. [Google Scholar] [CrossRef]
- Vesti, S.; Suntio, T.; Oliver, J.A.; Prieto, R.; Cobos, J.A. Impedance-Based Stability and Transient-Performance Assessment Applying Maximum Peak Criteria. IEEE Trans. Power Electron. 2013, 28, 2099–2104. [Google Scholar] [CrossRef] [Green Version]
- Luhtala, R.; Reinikka, T.; Roinila, T.; Messo, T.; Sihvo, J. Improved Real-Time Stability Assessment of Grid-Connected Converters Using MIMO-Identification Methods. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 5322–5329. [Google Scholar] [CrossRef]
- Reinikka, T.; Roinila, T.; Luhtala, R.; Messo, T. Impedance-Based Sensitivity-Criterion for Grid-Connected Three-Phase Inverters. IEEE Energy Convers. Congr. Expo. 2018, 4173–4178. [Google Scholar] [CrossRef]
- Messo, T.; Aapro, A.; Suntio, T. Generalized Multivariable Small-Signal Model of Three-Phase Grid-Connected Inverter in DQ-Domain. In Proceedings of the IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), Vancouver, BC, Canada, 12–15 July 2015. [Google Scholar] [CrossRef]
- Godfrey, K. Perturbation Signals for System Identification; Prentice Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Luhtala, R.; Messo, T.; Lenius, H.A.; Roinila, T.; de Jong, E.; Burstein, A.; Fabian, A. Identification of Three-Phase Grid Impedance in the Presence of Parallel Converters. Energies 2019, 12, 2674. [Google Scholar] [CrossRef] [Green Version]
- Luhtala, R.; Alenius, H.; Messo, T.; Roinila, T. Online Frequency-Response Measurements of Grid-Connected Systems in Presence of Grid Harmonics and Unbalance. IEEE Trans. Power Electron. 2020, 35, 3343–3347. [Google Scholar] [CrossRef]
120 V | 60 Hz | 8 kHz | |||
414 V | 6.52 A | 0.412 | |||
120 V | 0 V | 0.0213 | |||
10.6 A | 0.1 | 2.2 mH | |||
1.5 mF |
AC-current controller | = 0.0149 | = 23.4423 |
DC-voltage controller | = 0.0962 | = 1.2092 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luhtala, R.; Alenius, H.; Roinila, T. Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements. Energies 2020, 13, 1173. https://doi.org/10.3390/en13051173
Luhtala R, Alenius H, Roinila T. Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements. Energies. 2020; 13(5):1173. https://doi.org/10.3390/en13051173
Chicago/Turabian StyleLuhtala, Roni, Henrik Alenius, and Tomi Roinila. 2020. "Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements" Energies 13, no. 5: 1173. https://doi.org/10.3390/en13051173
APA StyleLuhtala, R., Alenius, H., & Roinila, T. (2020). Practical Implementation of Adaptive SRF-PLL for Three-Phase Inverters Based on Sensitivity Function and Real-Time Grid-Impedance Measurements. Energies, 13(5), 1173. https://doi.org/10.3390/en13051173