Design of a Novel Modular Axial-Flux Double Rotor Switched Reluctance Drive
Abstract
:1. Introduction
2. Description of the Proposed Axial-Flux Switched Reluctance Machines (AFSRM) Machine
3. Output Torque Equation for AFSRM
- Bp, magnetic loading, maximum stator pole magnetic flux density, it should be lower than magnetic flux density of saturation of the magnetic material used
- A, electric loading or linear current density, depends on cooling conditions of the machine, it should be comprised between 75,000 and 200,000 A/m.
- kd, flux linkage duty cycle, usually is between 0.5 and 0.8.
- kL, inductance ratio, depends on the level of saturation of the machine
4. Design Guidelines for the Sizing of the Proposed AFSRM
4.1. Design of Stator Polar Pieces and Determination of the Number of Turns Per Pole
4.2. Design of Rotor Pole and Yoke
5. Methodology of Design
5.1. Specifications and Restrictions
5.2. First Approach to the Dimensions of the AFSRM
5.3. Definitive Design of the SMC Parts
5.4. 3D Finite Element Analysis
6. Experimental Assessment of the Designed AFSRM
6.1. Test Rig Description
6.2. AFSRM Drive Control
6.3. Experimental Results of the AFSRM Prototype
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Main dimensions of the AFSRM prototype
Dimension | Value | Final Value |
---|---|---|
Do | 260 mm | 260 mm |
0.5 | 0.45 | |
Di | 130 mm | 117.9 mm |
D | 75 mm | 75 mm |
α | 36° | 36° |
γ | 60° | 60° |
24° | 24° | |
24° | 20° | |
26° | 24.35° | |
ws | 27.03 mm | 20.47 mm |
g | 0.5 mm | 0.6 mm |
Nf | 108 turns | 108 turns |
x | 1 | 1/2 |
Np | 16 turns | 32 turns |
he | 25.83 mm | 28.9 mm |
sc | 10.91 mm2 | 4.78 mm2 |
hce | 12 mm | 12 mm |
kv | 0.5 | 0.57 |
hr | 8.61 mm | 10 mm |
hcr | 7.5 mm | 8 mm |
Lax | 96.88 mm | 108.8 mm |
References
- Gieras, J.F.; Wang, R.; Kamper, M.J. Axial Flux Permanent Magnet Brushless Machines, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Andrada, P.; Dougan, M.J.; Egea, A.; Márquez-Fernández, M.J.; Szabó, L. Are SRM drives a real alternative for EV powertrain? In Proceedings of the Workshop on SRM An Alternative for E-Traction, Vilanova i la Geltrú, Barcelona, Spain, 2 February 2018; pp. 7–9. [Google Scholar]
- Gao, Y.; McCulloch, M.D. A review of high-power density switched reluctance machines suitable for automotive applications. In Proceedings of the ICEM 2012, Marseille, France, 2–5 September 2012. [Google Scholar]
- Krishnan, R.; Abouzeid, M.; Mang, X. A design procedure for axial field switched reluctance motors. In Proceedings of the IEEE Transactions on Industry Applications Society Annual Meeting Conference, Seattle, WA, USA, 7–12 October 1990; pp. 241–246. [Google Scholar]
- Arihara, H.; Akatsu, K. Basic properties of an axial-type switched reluctance motor. IEEE Trans. Ind. Appl. 2013, 49, 59–65. [Google Scholar] [CrossRef]
- Labak, A.; Kar, N.C. Designing and prototyping a novel five-phase pancake-shaped axial flux SRM for electric vehicle application through dynamic FEA incorporating flux-tube modeling. IEEE Trans. Ind. Appl. 2013, 49, 3. [Google Scholar] [CrossRef]
- Madhavan, R.; Fernandes, B.G. Axial flux segmented SRM with a higher number of rotor segments for electrical vehicles. IEEE Trans. Energy Convers. 2013, 28, 201–213. [Google Scholar] [CrossRef]
- Madhavan, R.; Fernandes, B.G. A novel axial flux segmented SRM for electric vehicle application. In Proceedings of the ICEM 2010, Rome, Italy, 6–8 September 2010. [Google Scholar]
- Ebrahimi, Y.; Feyzi, M.R. A high torque density axial flux SRM with modular stator. Iran. J. Electr. Electron. Eng. 2015, 11, 336–344. [Google Scholar]
- Birgin, B.; Jiang, J.W.; Emadi, A. Switched Reluctance Motor Drives; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Torkaman, H.; Ghaheri, A.; Keyhani, A. Axial flux switched reluctance Machines: A comprehensive review of design and topologies. IET Electr. Power Appl. 2019, 33, 310–321. [Google Scholar] [CrossRef]
- Andrada, P.; Martinez, E.; Blanqué, B.; Torrent, M.; Perat, J.I.; Sánchez, J.A. New axial-flux switched reluctance motor for E-scooter. In Proceedings of the ESARS ITEC, Toulouse, France, 2–4 November 2016. [Google Scholar]
- Andrada, P.; Martinez, E.; Torrent, M.; Blanqué, B. Electromagnetic evaluation of an in-wheel double rotor axial-flux switched reluctance motor for electric traction. In Proceedings of the ICREPQ 2017, Malaga, Spain, 4–6 April 2017. [Google Scholar]
- Andrada, P.; Blanqué, B.; Martinez, E.; Perat, J.I.; Sánchez, J.A.; Torrent, M. In wheel-axial-flux SRM drive for light electric vehicles. In Proceedings of the Workshop on SRM An Alternative for E-Traction, Vilanova i la Geltrú, Barcelona, Spain, 2 February 2018; pp. 39–46. [Google Scholar]
- Andrada, P.; Blanqué, B.; Martinez, E.; Perat, J.I.; Sánchez, J.A.; Torrent, M. Influence of manufacturing and assembly defects and the quality of materials on the performance of an axial-flux switched reluctance machine. Energies 2019, 12, 4807. [Google Scholar] [CrossRef] [Green Version]
- An Axial Flux Switched Reluctance Machine and An Electric Vehicle Comprising the Machine. WO2018077788, 5 March 2018.
- Krishnan, R.; Arumugan, R.; Lindsay, J.M. Design procedure for switched-reluctance motors. IEEE Trans. Ind. Appl. 1988, 24, 456–461. [Google Scholar] [CrossRef]
- Miller, T.J.E. Converter volt-ampere requirements of the switched reluctance motor drive. IEEE Trans. Ind. Appl. 1985, 21, 1136–1144. [Google Scholar] [CrossRef]
- Garcia Amorós, J.; Andrada, P.; Blanqué, B. Design procedure for a longitudinal flux flat linear switched reluctance motor. Electr. Power Compon. Syst. 2012, 40, 161–178. [Google Scholar] [CrossRef]
- Andrada, P.; Blanqué, B.; Capó, M.; Gross, G.; Montesinos, D. Switched Reluctance Motor Controller for Light Electric Vehicles. In Proceedings of the EPE’18 ECCE Europe, Riga, Latvia, 17–21 September 2018. [Google Scholar]
- Flux 12.1; Altair: Troy, MI, USA, 2019.
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrada, P.; Blanqué, B.; Martínez, E.; Perat, J.I.; Sánchez, J.A.; Torrent, M. Design of a Novel Modular Axial-Flux Double Rotor Switched Reluctance Drive. Energies 2020, 13, 1161. https://doi.org/10.3390/en13051161
Andrada P, Blanqué B, Martínez E, Perat JI, Sánchez JA, Torrent M. Design of a Novel Modular Axial-Flux Double Rotor Switched Reluctance Drive. Energies. 2020; 13(5):1161. https://doi.org/10.3390/en13051161
Chicago/Turabian StyleAndrada, Pere, Balduí Blanqué, Eusebi Martínez, José Ignacio Perat, José Antonio Sánchez, and Marcel Torrent. 2020. "Design of a Novel Modular Axial-Flux Double Rotor Switched Reluctance Drive" Energies 13, no. 5: 1161. https://doi.org/10.3390/en13051161
APA StyleAndrada, P., Blanqué, B., Martínez, E., Perat, J. I., Sánchez, J. A., & Torrent, M. (2020). Design of a Novel Modular Axial-Flux Double Rotor Switched Reluctance Drive. Energies, 13(5), 1161. https://doi.org/10.3390/en13051161