Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues
Abstract
1. Introduction
2. GBMs
3. TiO2
3.1. Compact TiO2 Layer
3.2. Mesoporous TiO2 Layer
4. SnO2
5. ZnO
6. PCBM
7. Other ETL Materials
8. Summary and Outlook
- Enhanced electron transport from increased electrical conductivity and electron mobility of the ETL;
- Enhanced electron transport from improved ETL/perovskite effective interfacial apposition;
- Enhanced J-V characteristics and parameters of PSCs largely owing to more effective electron extraction and transport deriving from the ETLs;
- Enhanced J-V characteristics of PSCs through reduced hysteresis owing to leveraging of surface trap sites created by GBMs;
- Potential tuning of the Eg and the energy levels to optimise charge transfer to and from the ETL;
- Enhanced device stability (i.e., protection of the perovskite from water vapour—hydrophobicity) from passivation of the ETL at the ETL/perovskite interface;
- Enhanced device stability through prevention of alteration of perovskite by inhibition of diffusion and counter-diffusion of mobile ions across the ETL/perovskite interface;
- Enhanced device stability through increased crystallinity of perovskite from the action of GBMs as nucleating agents.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jean, J.; Brown, P.R.; Jaffe, R.L.; Buonassisi, T.; Bulović, V. Pathways for Solar Photovoltaics. Energy Environ. Sci. 2015, 8, 1200–1219. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Ho-Baillie, A.W.Y. Solar Cell Efficiency Tables (Version 55). Prog. Photovolt. Res. Appl. 2020, 28, 3–15. [Google Scholar] [CrossRef]
- Li, Z.; Klein, T.R.; Kim, D.H.; Yang, M.; Berry, J.J.; van Hest, M.F.A.M.; Zhu, K. Scalable Fabrication of Perovskite Solar Cells. Nat. Rev. Mater. 2018, 3, 18017. [Google Scholar] [CrossRef]
- NREL. Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200925.pdf (accessed on 21 October 2020).
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, M.; Ishihara, T.; Goto, T. Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4− Octahedra. J. Phys. Soc. Jpn. 1994, 63, 3870–3879. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative Study on the Excitons in Lead-Halide-Based Perovskite-Type Crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 2003, 127, 619–623. [Google Scholar] [CrossRef]
- Filip, M.R.; Eperon, G.E.; Snaith, H.J.; Giustino, F. Steric Engineering of Metal-Halide Perovskites with Tunable Optical Band Gaps. Nat. Commun. 2014, 5, 5757. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef]
- Steirer, K.X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J.J. Defect Tolerance in Methylammonium Lead Triiodide Perovskite. ACS Energy Lett. 2016, 1, 360–366. [Google Scholar] [CrossRef]
- Motta, C.; El-Mellouhi, F.; Sanvito, S. Charge Carrier Mobility in Hybrid Halide Perovskites. Sci. Rep. 2015, 5, 12746. [Google Scholar] [CrossRef] [PubMed]
- Ono, L.K.; Juarez-Perez, E.J.; Qi, Y. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9, 30197–30246. [Google Scholar] [CrossRef] [PubMed]
- Leijtens, T.; Lauber, B.; Eperon, G.E.; Stranks, S.D.; Snaith, H.J. The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Perez, E.J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 680–685. [Google Scholar] [CrossRef]
- Sidhik, S.; Panikar, S.S.; Pérez, C.R.; Luke, T.L.; Carriles, R.; Carrera, S.C.; De la Rosa, E. Interfacial Engineering of TiO2 by Graphene Nanoplatelets for High-Efficiency Hysteresis-Free Perovskite Solar Cells. ACS Sustain. Chem. Eng. 2018, 6, 15391–15401. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, J.W.; Yu, H.; Yun, J.; Lee, K.; Lee, J.; Hwang, D.; Kang, J.; Kim, S.K.; Jang, J. Size Effects of A Graphene Quantum Dot Modified-Blocking TiO2 Layer for Efficient Planar Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 16834–16842. [Google Scholar] [CrossRef]
- Pang, S.; Zhang, C.; Zhang, H.; Dong, H.; Chen, D.; Zhu, W.; Xi, H.; Chang, J.; Lin, Z.; Zhang, J.; et al. Boosting Performance Of Perovskite Solar Cells with Graphene Quantum Dots Decorated SnO2 Electron Transport Layers. Appl. Surf. Sci. 2020, 507, 145099. [Google Scholar] [CrossRef]
- Biccari, F.; Gabelloni, F.; Burzi, E.; Gurioli, M.; Pescetelli, S.; Agresti, A.; Del Rio Castillo, A.E.; Ansaldo, A.; Kymakis, E.; Bonaccorso, F.; et al. Graphene-based Electron Transport Layers in Perovskite Solar Cells: A Step-up for an Efficient Carrier Collection. Adv. Energy Mater. 2017, 7, 1701349. [Google Scholar] [CrossRef]
- Ball, J.M.; Lee, M.M.; Hey, A.; Snaith, H.J. Low-Temperature Processed Meso-superstructured to Thin-Film Perovskite Solar Cells. Energy Environ. Sci. 2013, 6, 1739–1743. [Google Scholar] [CrossRef]
- Salim, T.; Sun, S.; Abe, Y.; Krishna, A.; Grimsdale, A.C.; Lam, Y.M. Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance. J. Mater. Chem. A 2015, 3, 8943–8969. [Google Scholar] [CrossRef]
- Han, G.S.; Song, Y.H.; Jin, Y.U.; Lee, J.-W.; Park, N.-G.; Kang, B.K.; Lee, J.-K.; Cho, I.S.; Yoon, D.H.; Jung, H.S. Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 23521–23526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, S.; Yin, X.; Han, J.; Tai, M.; Zhao, X.; Chen, H.; Gu, Y.; Wang, N.; Lin, H. Enhancing Electron Transport via Graphene Quantum Dot/SnO2 Composites for Efficient and Durable Flexible Perovskite Photovoltaics. J. Mater. Chem. A 2019, 7, 1878–1888. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, W.; Ke, W.; Xie, L.; Dong, P.; Hao, F. Graphene-Modified Tin Dioxide for Efficient Planar Perovskite Solar Cells with Enhanced Electron Extraction and Reduced Hysteresis. ACS Appl. Mater. Interfaces 2019, 11, 666–673. [Google Scholar] [CrossRef]
- Hong, J.A.; Jung, E.D.; Yu, J.C.; Kim, D.W.; Nam, Y.S.; Oh, I.; Lee, E.; Yoo, J.-W.; Cho, S.; Song, M.H. Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer. ACS Appl. Mater. Interfaces 2019. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Cui, X.; Rager, M.; Zhang, S.; Wang, Z.; Yu, J.; Harn, Y.W.; Kang, Z.; Wagner, B.K.; Liu, Y.; et al. Cascade Charge Transfer Enabled by Incorporating Edge-Enriched Graphene Nanoribbons for Mesostructured Perovskite Solar Cells with Enhanced Performance. Nano Energy 2018, 52, 123–133. [Google Scholar] [CrossRef]
- Wang, J.; Qin, M.; Tao, H.; Ke, W.; Chen, Z.; Wan, J.; Qin, P.; Xiong, L.; Lei, H.; Yu, H.; et al. Performance Enhancement of Perovskite Solar Cells with Mg-Doped TiO2 Compact Film as the Hole-Blocking Layer. Appl. Phys. Lett. 2015, 106, 121104. [Google Scholar] [CrossRef]
- Xiong, L.; Qin, M.; Yang, G.; Guo, Y.; Lei, H.; Liu, Q.; Ke, W.; Tao, H.; Qin, P.; Li, S.; et al. Performance Enhancement of High Temperature SnO2-Based Planar Perovskite Solar Cells: Electrical characterization and understanding of the mechanism. J. Mater. Chem. A 2016, 4, 8374–8383. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability. Adv. Energy Mater. 2018, 8, 1800794. [Google Scholar] [CrossRef]
- Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Mahmood, K.; Yoo, J.S.; Park, N.-G.; Lee, J.H.; et al. Retarding Charge Recombination in Perovskite Solar Cells Using Ultrathin MgO-Coated TiO2 Nanoparticulate Films. J. Mater. Chem. A 2015, 3, 9160–9164. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Zhang, P.; Wang, Y.; Zhang, R.; Sarvari, H.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.D. Efficient Planar Heterojunction Perovskite Solar Cells with Li-Doped Compact TiO2 Layer. Nano Energy 2017, 31, 462–468. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.-Y.; Son, H.J.; Lee, C.-H.; Jang, S.S.; Ko, M.J. Low-Temperature Solution-Processed Li-Doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells. Nano Energy 2016, 26, 208–215. [Google Scholar] [CrossRef]
- Ke, W.; Zhao, D.; Xiao, C.; Wang, C.; Cimaroli, A.J.; Grice, C.R.; Yang, M.; Li, Z.; Jiang, C.-S.; Al-Jassim, M.; et al. Cooperative Tin Oxide Fullerene Electron Selective Layers for High-Performance Planar Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 14276–14283. [Google Scholar] [CrossRef]
- Dong, Q.; Ho, C.H.Y.; Yu, H.; Salehi, A.; So, F. Defect Passivation by Fullerene Derivative in Perovskite Solar Cells with Aluminum-Doped Zinc Oxide as Electron Transporting Layer. Chem. Mater. 2019, 31, 6833–6840. [Google Scholar] [CrossRef]
- Wang, J.; Datta, K.; Weijtens, C.H.L.; Wienk, M.M.; Janssen, R.A.J. Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905883. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, Q.-D.; Xiao, J.; Xue, Q.; Li, H.-W.; Guan, Z.; Yip, H.-L.; Tsang, S.-W. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 19986–19993. [Google Scholar] [CrossRef] [PubMed]
- Kegelmann, L.; Wolff, C.M.; Awino, C.; Lang, F.; Unger, E.L.; Korte, L.; Dittrich, T.; Neher, D.; Rech, B.; Albrecht, S. It Takes Two to Tango—Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Appl. Mater. Interfaces 2017, 9, 17245–17255. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Zhang, W.; Xie, F.; Li, Y.; Abate, A.; Wei, M. Graphene Quantum Dots Decorated TiO2 Mesoporous Film as an Efficient Electron Transport Layer for High-Performance Perovskite Solar Cells. J. Power Sources 2018, 402, 320–326. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Shi, L.; Liu, Z.; Huang, J.; Yun, J.S.; Zeng, Y.; Pu, A.; Sun, K.; Hameiri, Z.; et al. Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Low-Temperature-Processed Planar-Structure Hybrid Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1800138. [Google Scholar] [CrossRef]
- Ryu, S.; Seo, J.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Seok, S.I. Fabrication of Metal-Oxide-Free CH3NH3PbI3 Perovskite Solar Cells Processed at Low Temperature. J. Mater. Chem. A 2015, 3, 3271–3275. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Tavakoli, R.; Yadav, P.; Kong, J. A Graphene/ZnO Electron Transfer Layer Together with Perovskite Passivation Enables Highly Efficient and Stable Perovskite Solar Cells. J. Mater. Chem. A 2019, 7, 679–686. [Google Scholar] [CrossRef]
- Petridis, C.; Kakavelakis, G.; Kymakis, E. Renaissance of Graphene-Related Materials in Photovoltaics due to the Emergence of Metal Halide Perovskite Solar Cells. Energy Environ. Sci. 2018, 11, 1030–1061. [Google Scholar] [CrossRef]
- Acik, M.; Darling, S.B. Graphene in Perovskite Solar Cells: Device Design, Characterization and Implementation. J. Mater. Chem. A 2016, 4, 6185–6235. [Google Scholar] [CrossRef]
- Lim, E.L.; Yap, C.C.; Jumali, M.H.H.; Teridi, M.A.M.; Teh, C.H. A Mini Review: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications? Nano Micro Lett. 2017, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnol. Rev. 2018, 7, 157. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The Chemistry Of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Sorrell, C.C.; Taib, H.; Palmer, T.C.; Peng, F.; Xia, Z.M.; Wei, M. Hydroxyapatite and Other Biomedical Coatings by Electrophoretic Deposition. In Biological and Biomedical Coatings Handbook: Processing and Characterization; Zhang, S., Ed.; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 81–135. [Google Scholar]
- Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X.; Wang, Z.; Wang, J.; Xu, J.; et al. High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small 2015, 11, 2269–2274. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Kim, S.; Jang, M.H.; Lee, M.H.; Seo, S.W.; Choi, S.-H.; Im, S.H. Highly Efficient CH3NH3PbI3 Perovskite Solar Cells Prepared by AuCl3-Doped Graphene Transparent Conducting Electrodes. Chem. Eng. J. 2017, 323, 153–159. [Google Scholar] [CrossRef]
- Hadadian, M.; Correa-Baena, J.-P.; Goharshadi, E.K.; Ummadisingu, A.; Seo, J.-Y.; Luo, J.; Gholipour, S.; Zakeeruddin, S.M.; Saliba, M.; Abate, A.; et al. Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation. Adv. Mater. 2016, 28, 8681–8686. [Google Scholar] [CrossRef]
- Fang, X.; Ding, J.; Yuan, N.; Sun, P.; Lv, M.; Ding, G.; Zhu, C. Graphene Quantum Dot Incorporated Perovskite Films: Passivating Grain Boundaries and Facilitating Electron Extraction. Phys. Chem. Chem. Phys. 2017, 19, 6057–6063. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, T.; Wang, Y.; Hahn, Y.-B. SrTiO3/Al2O3-Graphene Electron Transport Layer for Highly Stable and Efficient Composites-Based Perovskite Solar Cells with 20.6% Efficiency. Adv. Energy Mater. 2020, 10, 1903369. [Google Scholar] [CrossRef]
- Xie, J.; Huang, K.; Yu, X.; Yang, Z.; Xiao, K.; Qiang, Y.; Zhu, X.; Xu, L.; Wang, P.; Cui, C.; et al. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells. ACS Nano 2017, 11, 9176–9182. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, Y.; Liu, C.; Li, J.; Wang, N.; Lin, H. Iodide-Reduced Graphene Oxide with Dopant-Free Spiro-OMeTAD for Ambient Stable and High-Efficiency Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 15996–16004. [Google Scholar] [CrossRef]
- Wen, X.; Wu, J.; Gao, D.; Lin, C. Interfacial Engineering with Amino-Functionalized Graphene for Efficient Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 13482–13487. [Google Scholar] [CrossRef]
- Yang‡, Q.-D.; Li, J.; Cheng, Y.; Li, H.-W.; Guan, Z.; Yu, B.; Tsang, S.-W. Graphene Oxide as an Efficient Hole-Transporting Material for High-Performance Perovskite Solar Cells with Enhanced Stability. J. Mater. Chem. A 2017, 5, 9852–9858. [Google Scholar] [CrossRef]
- Zhao, X.; Tao, L.; Li, H.; Huang, W.; Sun, P.; Liu, J.; Liu, S.; Sun, Q.; Cui, Z.; Sun, L.; et al. Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Lett. 2018, 18, 2442–2449. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Palma, A.L.; Del Rio Castillo, A.E.; Konios, D.; Kakavelakis, G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F.; et al. Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy Lett. 2017, 2, 279–287. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, H.; Li, J.; Ma, J.; Yang, D.; Liu, Z.; Gao, F.; Liu, S. Air and Thermally Stable Perovskite Solar Cells with CVD-Graphene as the Blocking Layer. Nanoscale 2017, 9, 8274–8280. [Google Scholar] [CrossRef]
- Wang, J.T.-W.; Ball, J.M.; Barea, E.M.; Abate, A.; Alexander-Webber, J.A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H.J.; et al. Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2014, 14, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Hu, Z.; Zhao, X.; Chen, D.; Lin, H.; Lai, X.; Yang, L. Cesium-Containing Perovskite Solar Cell Based on Graphene/TiO2 Electron Transport Layer. ChemistrySelect 2017, 2, 9433–9437. [Google Scholar] [CrossRef]
- Cho, K.T.; Grancini, G.; Lee, Y.; Konios, D.; Paek, S.; Kymakis, E.; Nazeeruddin, M.K. Beneficial Role of Reduced Graphene Oxide for Electron Extraction in Highly Efficient Perovskite Solar Cells. ChemSusChem 2016, 9, 3040–3044. [Google Scholar] [CrossRef] [PubMed]
- Agresti, A.; Pescetelli, S.; Taheri, B.; Del Rio Castillo, A.E.; Cinà, L.; Bonaccorso, F.; Di Carlo, A. Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem 2016, 9, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Nouri, E.; Mohammadi, M.R.; Xu, Z.-X.; Dracopoulos, V.; Lianos, P. Improvement of The Photovoltaic Parameters of Perovskite Solar Cells Using a Reduced-Graphene-Oxide-Modified Titania Layer and Soluble Copper Phthalocyanine as a Hole Transporter. Phys. Chem. Chem. Phys. 2018, 20, 2388–2395. [Google Scholar] [CrossRef] [PubMed]
- Patil, J.V.; Mali, S.S.; Patil, A.P.; Patil, P.S.; Hong, C.K. Highly Efficient Mixed-Halide Mixed-Cation Perovskite Solar Cells Based on rGO-TiO2 Composite Nanofibers. Energy 2019, 189, 116396. [Google Scholar] [CrossRef]
- Xia, H.; Ma, Z.; Xiao, Z.; Zhou, W.; Zhang, H.; Du, C.; Zhuang, J.; Cheng, X.; Liu, X.; Huang, Y. Interfacial Modification Using Ultrasonic Atomized Graphene Quantum Dots for Efficient Perovskite Solar Cells. Org. Electron. 2019, 75, 105415. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, J.; Arivazhagan, V.; Xiao, K.; Qiang, Y.; Huang, K.; Hu, M.; Cui, C.; Yu, X.; Yang, D. Efficient and Highly Light Stable Planar Perovskite Solar Cells with Graphene Quantum Dots Doped PCBM Electron Transport Layer. Nano Energy 2017, 40, 345–351. [Google Scholar] [CrossRef]
- Bi, E.; Chen, H.; Xie, F.; Wu, Y.; Chen, W.; Su, Y.; Islam, A.; Grätzel, M.; Yang, X.; Han, L. Diffusion Engineering of Ions and Charge Carriers for Stable Efficient Perovskite Solar Cells. Nat. Commun. 2017, 8, 15330. [Google Scholar] [CrossRef]
- Kakavelakis, G.; Maksudov, T.; Konios, D.; Paradisanos, I.; Kioseoglou, G.; Stratakis, E.; Kymakis, E. Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer. Adv. Energy Mater. 2017, 7, 1602120. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, J.M.; Shin, S.H.; Choi, S.-H. Highly-Flexible Graphene Transparent Conductive Electrode/Perovskite Solar Cells with Graphene Quantum Dots-Doped PCBM Electron Transport Layer. Dye. Pigment. 2019, 170, 107630. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Dubey, A.; Qiao, Q. High Efficiency Perovskite Solar Cells Using Nitrogen-Doped Graphene/ZnO Nanorod Composite as an Electron Transport Layer. Sol. Energy 2020, 197, 78–83. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Hussain, Z.; Mujahid, M.; Khan, A.N.; Javaid, S.S.; Habib, A. Low Resistivity ZnO-GO Electron Transport Layer Based CH3NH3PbI3 Solar Cells. AIP Adv. 2016, 6, 065303. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Komarala, V.K. Graphene/ZnO Nanocomposite as an Electron Transport Layer for Perovskite Solar Cells; the Effect of Graphene Concentration on Photovoltaic Performance. RSC Adv. 2017, 7, 28610–28615. [Google Scholar] [CrossRef]
- Chen, H.; Luo, Q.; Liu, T.; Tai, M.; Lin, J.; Murugadoss, V.; Lin, H.; Wang, J.; Guo, Z.; Wang, N. Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. Acs Appl. Mater. Interfaces 2020, 12, 13941–13949. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-H.; Jang, H.; Yoon, Y.J.; Jeong, J.; Park, S.Y.; Walker, B.; Jeon, I.-Y.; Jo, Y.; Yoon, H.; Kim, M.; et al. Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Lett. 2017, 17, 6385–6390. [Google Scholar] [CrossRef] [PubMed]
- Lamanna, E.; Matteocci, F.; Calabrò, E.; Serenelli, L.; Salza, E.; Martini, L.; Menchini, F.; Izzi, M.; Agresti, A.; Pescetelli, S.; et al. Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule 2020, 4, 865–881. [Google Scholar] [CrossRef]
- Taheri-Ledari, R.; Valadi, K.; Maleki, A. High-performance HTL-Free Perovskite Solar Cell: An Efficient Composition of ZnO NRs, RGO, and CuInS2 QDs, as electron-transporting layer matrix. Prog. Photovolt. Res. Appl. 2020. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Tavakoli, R.; Nourbakhsh, Z.; Waleed, A.; Virk, U.S.; Fan, Z. High Efficiency and Stable Perovskite Solar Cell Using ZnO/rGO QDs as an Electron Transfer Layer. Adv. Mater. Interfaces 2016, 3, 1500790. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, J.-W.; Yantara, N.; Boix, P.P.; Kulkarni, S.A.; Mhaisalkar, S.; Grätzel, M.; Park, N.-G. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Lett. 2013, 13, 2412–2417. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Sheng, X.; Li, Y.; Feng, X.; Xu, T. Rutile TiO2 Nanowire-Based Perovskite Solar Cells. Chem. Commun. 2014, 50, 14720–14723. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Lee, T.-Y.; Yoo, P.J.; Grätzel, M.; Mhaisalkar, S.; Park, N.-G. Rutile TiO2-Based Perovskite Solar Cells. J. Mater. Chem. A 2014, 2, 9251–9259. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Geng, D.; Wang, J.; Zhang, L.; Andrew, T.L.; Arnold, M.S.; Wang, X. Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures. ACS Nano 2015, 9, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Noh, M.F.; Teh, C.H.; Daik, R.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ahmad Ludin, N.; Mohd Yusoff, A.R.b.; Jang, J.; Mat Teridi, M.A. The Architecture of the Electron Transport Layer for a Perovskite Solar Cell. J. Mater. Chem. C 2018, 6, 682–712. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, N.-G. Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. J. Phys. Chem. Lett. 2014, 5, 2927–2934. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-superstructured Organometal Tri-halide Perovskite Solar Cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Y.; Xu, H.; Zheng, H.; Zhang, T.; Zhang, P.; Wang, F.; Wu, J.; Wang, Z.; Chen, Z.; et al. SnO2-Based Perovskite Solar Cells: Configuration Design and Performance Improvement. Sol. RRL 2019, 3, 1800292. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J.; et al. Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef] [PubMed]
- Jarzebski, Z.M.; Morton, J.P. Physical Properties of SnO2 Materials: III. Optical Properties. J. Electrochem. Soc. 2019, 123, 333C–346C. [Google Scholar] [CrossRef]
- Jarzebski, Z.M.; Marton, J.P. Physical Properties of SnO2 Materials: II. Semiconducting properties. J. Electrochem. Soc. 2019, 123, 299C–310C. [Google Scholar] [CrossRef]
- Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.; Liu, S. High Efficiency Planar-Type Perovskite Solar Cells with Negligible Hysteresis Using EDTA-Complexed SnO2. Nat. Commun. 2018, 9, 3239. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef] [PubMed]
- Barbé, J.; Tietze, M.L.; Neophytou, M.; Murali, B.; Alarousu, E.; Labban, A.E.; Abulikemu, M.; Yue, W.; Mohammed, O.F.; McCulloch, I.; et al. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 11828–11836. [Google Scholar] [CrossRef]
- Anaraki, E.H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A.; et al. Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide. Energy Environ. Sci. 2016, 9, 3128–3134. [Google Scholar] [CrossRef]
- Roose, B.; Baena, J.-P.C.; Gödel, K.C.; Graetzel, M.; Hagfeldt, A.; Steiner, U.; Abate, A. Mesoporous SnO2 Electron Selective Contact Enables UV-Stable Perovskite Solar Cells. Nano Energy 2016, 30, 517–522. [Google Scholar] [CrossRef]
- Deng, K.; Chen, Q.; Li, L. Modification Engineering in SnO2 Electron Transport Layer toward Perovskite Solar Cells: Efficiency and Stability. Adv. Funct. Mater. 2020, 30, 2004209. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Haase, M.; Weller, H.; Henglein, A. Photochemistry and Radiation Chemistry of Colloidal Semiconductors. 23. Electron Storage on Zinc Oxide Particles and Size Quantization. J. Phys. Chem. 1988, 92, 482–487. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nat. Photonics 2014, 8, 133–138. [Google Scholar] [CrossRef]
- Yang, J.; Siempelkamp, B.D.; Mosconi, E.; De Angelis, F.; Kelly, T.L. Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. Chem. Mater. 2015, 27, 4229–4236. [Google Scholar] [CrossRef]
- Said, A.A.; Xie, J.; Zhang, Q. Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small 2019, 15, 1900854. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nat. Commun. 2014, 5, 5784. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite–Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Tavakoli, R.; Hasanzadeh, S.; Mirfasih, M.H. Interface Engineering of Perovskite Solar Cell Using a Reduced-Graphene Scaffold. J. Phys. Chem. C 2016, 120, 19531–19536. [Google Scholar] [CrossRef]
ETL Material | Device Structure | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | ΔPCE (Relative to Pristine ETL) (%) | Ref. |
---|---|---|---|---|---|---|---|
SnO2 + GQDs | ITO/SnO2-GQDs/MAPbCl3−xIx/Spiro-OMeTAD/Ag | 21.10 | 1.11 | 24.40 | 0.78 | +13 | [19] |
m-TiO2 + RGO | FTO/c-TiO2/m-TiO2-RGO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 19.54 | 1.11 | 21.98 | 0.80 | + 3 | [65] |
c-TiO2 + GQDs | FTO/c-TiO2-GQDs/MAPbI3/Spiro-OMeTAD/Au | 19.11 | 1.12 | 22.47 | 0.76 | +11 | [18] |
PCBM + GQDs | ITO/PCBM-GQDs/MAPbI3/Spiro-OMeTAD/Au | 17.56 | 1.09 | 22.03 | 0.73 | +20 | [70] |
ZnO + GR | FTO/ZnO-GR/Perovskite/Spiro-OMeTAD/Au | 19.81 | 1.12 | 22.71 | 0.77 | +43 | [43] |
STO + (m-Al2O3 + GR) | FTO/Sr0.05Ti0.95O3/m-Al2O3-GR/MAPbI3−xClx + Ag-RGO/Spiro-OMeTAD/Au | 20.58 | 1.06 | 25.75 | 0.76 | +29 | [55] |
α-Fe2O3 + GQDs | FTO/α-Fe2O3-GQDs/MAPbI3 + GQDs/GQDs/Spiro-OMeTAD/Au | 19.2 | 1.03 | 23.50 | 0.79 | +37 | [77] |
GBM | Dosage | Synthesis | Device Structure | PCE (%) | VOC (V) | JSC (mA/cm2) | FF | Ref. |
---|---|---|---|---|---|---|---|---|
GR | 2 wt % | SC | FTO/c-TiO2/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Au | 19.23 | 1.00 | 23.67 | 0.80 | [17] |
GR | 1 vol % | SC | FTO/c-TiO2/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Au | 14.60 | 1.03 | 22.95 | 0.69 | [66] |
GR | 1 vol % | SC | FTO/c-TiO2/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Au | 16.00 | 1.04 | 20.99 | 0.73 | [20] |
GR | 0.15 & 1.3 wt % | SC | FTO/c-TiO2-GR/m-TiO2-GR/MAPbI3/Spiro-OMeTAD/Ag | 17.69 | 1.05 | 22.98 | 0.73 | [27] |
GR | 0.6 wt % | SC | FTO/c-TiO2-GR/Al2O3/MAPbI3−xClx/Spiro-OMeTAD/Ag | 15.60 | 1.04 | 21.90 | 0.73 | [63] |
GR | Single layer | EPD | FTO/c-TiO2/porous GR/MAPbI3/Spiro-OMeTAD/Au | 17.20 | 1.05 | 22.80 | 0.72 | [109] |
GR | 5 vol % | SC | ITO/SnO2-NDI-GR/FA0.75MA0.15Cs0.1PbI2.65Br0.35/Spiro-OMeTAD/Ag | 20.16 | 1.08 | 22.66 | 0.82 | [60] |
GR | 1 vol % | SC | FTO/SnO2-GR/MAPbI3/Spiro-OMeTAD/Au | 18.11 | 1.09 | 23.06 | 0.72 | [25] |
GR | Single layer | LPCVD | FTO/ZnO-GR/FAMAPbI3/Spiro-OMeTAD/Au | 19.81 | 1.12 | 22.71 | 0.77 | [43] |
GR | 0.8 wt % | Hydrothermal | FTO/ZnO-NGR/MAPbI3/Spiro-OMeTAD/Ag | 16.82 | 1.01 | 21.98 | 0.77 | [74] |
GR | 0.75 wt % | Spray coating | FTO/ZnO-GR/MAPbI3/Spiro-OMeTAD/Ag | 10.34 | 0.93 | 19.97 | 0.56 | [76] |
GR | 2 wt % | SC | FTO/NiMgLiO/MAPbI3/NGR-PCBM/CQDs/Ag | 15.80 | 1.07 | 19.69 | 0.75 | [71] |
GR | Single layer | SC | ITO/PEDOT:PSS/MAPbI3/PCBM/EFGR-F/Al | 14.30 | 0.98 | 18.50 | 0.78 | [78] |
GR | No info. | SC | FTO/Sr0.05Ti0.95O3/m-Al2O3-GR/MAPbI3−xClx + Ag-RGO/Spiro-OMeTAD/Au | 20.58 | 1.06 | 25.75 | 0.76 | [55] |
GO | Single layer | SC | FTO/c-TiO2/m-TiO2/GO-Li/MAPbI3/Spiro-OMeTAD/Au | 15.20 | 1.02 | 22.51 | 0.65 | [20] |
GO | 5 vol% | SC | ITO/SnO2-NGO/RbCsFAMAI3/Spiro-OMeTAD/Ag | 16.54 | 1.17 | 19.28 | 0.71 | [26] |
RGO | No info. | SC | FTO/c-TiO2/m-TiO2-RGO/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 19.54 | 1.11 | 21.98 | 0.80 | [65] |
RGO | No info. | Electrospinning | FTO/c-TiO2/TiO2-RGO NF/(FAPbI3)0.85(MAPbBr3)0.15/Spiro-OMeTAD/Au | 17.66 | 1.07 | 22.16 | 0.75 | [68] |
RGO | 0.4 vol % | SC | FTO/c-TiO2/m-TiO2-RGO/MAPbI3/Spiro-OMeTAD/Ag | 14.50 | 0.93 | 22.00 | 0.71 | [23] |
RGO | Core-shell | Sol-gel | FTO/ZnO-RGO/MAPbI3/Spiro-OMeTAD/Ag | 15.20 | 1.03 | 21.70 | 0.68 | [81] |
RGO | 5 wt % | SC | FTO/ZnO-RGO/MAPbI3/Spiro-OMeTAD/Au | 11.97 | 1.00 | 19.95 | 0.61 | [80] |
RGO | 5 vol % | SC | ITO/PEDOT:PSS/MAPbI3−xClx/PCBM-RGO/PFN/Ag | 14.51 | 0.94 | 23.52 | 0.65 | [72] |
GQDs | 1 mg/mL | SC | FTO/c-TiO2/m-TiO2-GQDs/(FAPbI3)1−x(MAPbBr3)/Spiro-OMeTAD/Au | 20.45 | 1.08 | 24.92 | 0.76 | [39] |
GQDs | 3 mg/mL | SC | FTO/c-TiO2-GQDs/MAPbI3/Spiro-OMeTAD/Au | 19.11 | 1.12 | 22.47 | 0.76 | [18] |
GQDs | No info. | SC | ITO/SnO2-GQD/MAPbI3−xClx/Spiro-OMeTAD/Ag | 21.10 | 1.11 | 24.40 | 0.78 | [19] |
GQDs | 1 wt % | SC | ITO/SnO2-GQD/MAPbI3/Spiro-OMeTAD/Au | 20.31 | 1.13 | 23.05 | 0.78 | [56] |
GQDs | 0.5 wt % | SC | ITO/SnO2-GQD/CsFAMAI3/Spiro-OMeTAD/Au | 19.60 | 1.08 | 23.50 | 0.77 | [24] |
GQDs | 0.5 wt % | SC | ITO/PCBM-GQD/MAPbI3/Spiro-OMeTAD/Au | 17.56 | 1.09 | 22.03 | 0.73 | [70] |
GQDs | 2.5 mg/L | SC | PET/APTES/GR/PCBM-GQD/MAPbI3/PTAA/Au | 16.41 | 1.07 | 20.75 | 0.74 | [73] |
GQDs | 0.5 mg/mL | SC | FTO/α-Fe2O3-NSGQDs/MAPbI3 + NSGQDs/NSGQDs/Spiro-OMeTAD/Au | 19.2 | 1.03 | 23.50 | 0.79 | [77] |
Mixed | N/A | SC | FTO/c-TiO2/m-TiO2-GR/GO-Li/MAPbI3/Spiro-OMeTAD/Au | 16.20 | 1.03 | 22.85 | 0.69 | [20] |
Mixed | N/A | SC | FTO/c-TiO2/m-TiO2-GR/GO-Li/MAPbI3/Spiro-OMeTAD/Au | 12.6 (50 cm2 module) | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, X.; Koshy, P.; Sorrell, C.C.; Lim, J.; Yun, J.S. Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies 2020, 13, 6335. https://doi.org/10.3390/en13236335
Dai X, Koshy P, Sorrell CC, Lim J, Yun JS. Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies. 2020; 13(23):6335. https://doi.org/10.3390/en13236335
Chicago/Turabian StyleDai, Xinchen, Pramod Koshy, Charles Christopher Sorrell, Jongchul Lim, and Jae Sung Yun. 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues" Energies 13, no. 23: 6335. https://doi.org/10.3390/en13236335
APA StyleDai, X., Koshy, P., Sorrell, C. C., Lim, J., & Yun, J. S. (2020). Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues. Energies, 13(23), 6335. https://doi.org/10.3390/en13236335