# Study and Simulation of a Wind Hydro Isolated Microgrid

^{*}

## Abstract

**:**

## 1. Introduction

## 2. WHIM Modeling

#### 2.1. The HTG Model

^{2}, are the penstock length and area, respectively, and g is the gravitational acceleration. Equation (3) is valid for penstocks of short length, in which the pressure wave effects can be neglected.

#### 2.2. The WTG Model

#### 2.3. The DL Model

## 3. Simulation Schematics

## 4. Simulation Results

#### 4.1. Simulations in WO Mode

#### 4.2. WO to WH Mode Transition

#### 4.3. The WH Mode Simulation

#### 4.4. Hydraulic Variables

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A. System Configuration

#### Appendix A.1. Isolated Microgrid

#### Appendix A.2. Hydro Turbine Generator

#### Appendix A.3. Wind Turbine Generator

#### Appendix A.4. Dump Load

## References

- Lasseter, R. Microgrids. In Proceedings of the IEEE PES Winter Meeting; IEEE: New York, NY, USA, 2002; Volume 1, pp. 305–308. [Google Scholar]
- Basak, P.; Chowdhury, S.; Halder nee Dey, S.; Chowdhury, S.P. A Literature Review on Integration of Distributed Energy Resources in the Perspective of Control, Protection and Stability of Microgrid. Renew. Sustain. Energy
**2012**, 16, 5545–5556. [Google Scholar] [CrossRef] - Piagi, P.; Lasseter, R.H. Autonomous Control of Microgrids. In PES Meeting, Montreal; IEEE: New York, NY, USA, 2006. [Google Scholar]
- Sebastián, R.; García-Loro, F. Review on Wind Diesel Systems Dynamic Simulation. In IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society; IEEE: New York, NY, USA, 2019; pp. 2489–2494. [Google Scholar]
- Sebastián, R.; Peña-Alzola, R. Flywheel Energy Storage and Dump Load to Control the Active Power Excess in a Wind Diesel Power System. Energies
**2020**, 13, 2029. [Google Scholar] [CrossRef] [Green Version] - Sebastián, R. Battery Energy Storage for Increasing Stability and Reliability of an Isolated Wind Diesel Power System. IET Renew. Power Gener.
**2017**, 11, 296–303. [Google Scholar] [CrossRef] - Bø, T.I.; Johansen, T.A. Battery Power Smoothing Control in a Marine Electric Power Plant Using Nonlinear Model Predictive Control. IEEE Trans. Control. Syst. Technol.
**2016**, 25, 1449–1456. [Google Scholar] [CrossRef] [Green Version] - Taghizadeh, M.; Mardaneh, M.; Sha Sadeghi, M. Frequency Control of a New Topology in Proton Exchange Membrane Fuel Cell/Wind Turbine/Photovoltaic/Ultra-Capacitor/Battery Energy Storage System Based Isolated Networks by a Novel Intelligent Controller. J. Renew. Sustain. Energy
**2014**, 6, 053121. [Google Scholar] [CrossRef] - Hasmaini, M.; Hazlie, M.; Bakar, A.H.; Ping, H.W. A Review on Islanding Operation and Control for Distribution Network Connected with Small Hydro Power Plant. Renew. Sustain. Energy Rev.
**2011**, 15, 3952–3962. [Google Scholar] - Paish, O. Small Hydro Power: Technology and Current Status. Renew. Sustain. Energy Rev.
**2002**, 6, 537–556. [Google Scholar] [CrossRef] - Doolla, S.; Bhatti, T.; Bansal, R. Load Frequency Control of an Isolated Small Hydro Power Plant Using Multi-pipe Scheme. Electr. Power Components Syst.
**2011**, 39, 46–63. [Google Scholar] [CrossRef] - Sebastián, R.; Quesada, J. Modeling and Simulation of an Isolated Wind Hydro Power System. In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society; IEEE: New York, NY, USA, 2016; pp. 4169–4174. [Google Scholar]
- Sebastián, R. Application of a Battery Energy Storage for Frequency Regulation and Peak Shaving in a Wind Diesel Power System. IET Gener. Transm. Distrib.
**2016**, 10, 764–770. [Google Scholar] [CrossRef] - Lukasievicz, T.; Oliveira, R.; Torrico, C. A Control Approach and Supplementary Controllers for a Stand-Alone System with Predominance of Wind Generation. Energies
**2018**, 11, 411. [Google Scholar] [CrossRef] [Green Version] - Sebastián, R.; Peña-Alzola, R. Flywheel Energy Storage Systems: Review and Simulation for an Isolated Wind Power System. Renew. Sustain. Energy Rev.
**2012**, 16, 6803–6813. [Google Scholar] [CrossRef] - Mendis, N.; Muttaqi, K.M.; Perera, S. Management of Battery-Supercapacitor Hybrid Energy Storage and Synchronous Condenser for Isolated Operation of PMSG Based Variable-Speed Wind Turbine Generating Systems. IEEE Trans. Smart Grid
**2014**, 5, 944–953. [Google Scholar] [CrossRef] - Sarasúa, J.; Martínez-Lucas, G.; Platero, C.; Sánchez-Fernández, J. Dual Frequency Regulation in Pumping Mode in a Wind–Hydro Isolated System. Energies
**2018**, 11, 2865. [Google Scholar] [CrossRef] [Green Version] - Sarasúa, J.; Martínez-Lucas, G.; Lafof, M. Analysis of Alternative Frequency Control Schemes for Increasing Renewable Energy Penetration in El Hierro Island Power System. Int. J. Electr. Power Energy Syst.
**2019**, 113, 807–823. [Google Scholar] [CrossRef] - Briongos, F.; Platero, C.A.; Sánchez-Fernández, J.A.; Nicolet, C. Evaluation of the Operating Efficiency of a Hybrid Wind–Hydro Powerplant. Sustainability
**2020**, 12, 668. [Google Scholar] [CrossRef] [Green Version] - Mover, W.G.P.; Supply, E. Hydraulic Turbine and Turbine Control Models for System Dynamic Studies. IEEE Trans. Power Syst.
**1992**, 7, 167–179. [Google Scholar] - Kothari, D.P.; Nagrath, I.J. Modern Power System Analysis; Tata McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Rodríguez-Amenedo, J.L.; Burgos-Díaz, J.C.; Arnalte-Gómez, S. Sistemas Eólicos de Producción de Energía Eléctrica; Rueda: Madrid, Spain, 2003; ISBN 9788472071391. [Google Scholar]
- Gagnon, R.; Saulnier, B.; Sybille, G.; Giroux, P. Modeling of a Generic High-Penetration No-Storage Wind-Diesel System Using Matlab Power System Blockset. In Proceedings of the 2002 Global Windpower Conference, Paris, France, 2–5 April 2002. [Google Scholar]
- Knudsen, H.; Nielsen, J.N. Introduction to the Modeling of Wind Turbines. In Wind Power in Power Systems; Wiley: Chicester, UK, 2005; pp. 525–585. [Google Scholar]
- MathWorks, Model-Based Simulation and Design. Available online: https://mathworks.com/products/simulink.html (accessed on 27 September 2020).
- Platero, C.A.; Nicolet, C.; Sánchez, J.A.; Kawkabani, B. Increasing Wind Power Penetration in Autonomous Power Systems Through No-Flow Operation of Pelton Turbines. Renew. Energy
**2014**, 68, 515–523. [Google Scholar] [CrossRef] [Green Version] - Margaris, I.D.; Papathanassiou, S.A.; Hatziargyriou, N.D.; Hansen, A.D.; Sorensen, P. Frequency Control in Autonomous Power Systems with High Wind Power Penetration. IEEE Trans. Sustain. Energy
**2012**, 3, 189–199. [Google Scholar] [CrossRef]

Variable\Case | WO | WO2WH KS | WO2WH no-KS | WH |
---|---|---|---|---|

$\mathsf{\Delta}$f | [0.9988, 1] | [0.9683, 1] | [0.9577, 1] | [1, 1.0177] |

$\mathsf{\Delta}$f [%] | −0.12 | −3.17 | −4.23 | +1.77 |

$\mathsf{\Delta}$V | [0.9908, 1.0018] | [0.9817, 1.0146] | [0.9758, 1.0195] | [0.9898, 1.0235] |

$\mathsf{\Delta}$V [%] | 1.1 | 3.29 | 4.37 | 3.37 |

${t}_{s}$ [s] | 0.975 | 26.487 | 32.8440 | 30.892 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sebastián, R.; Nevado, A.
Study and Simulation of a Wind Hydro Isolated Microgrid. *Energies* **2020**, *13*, 5937.
https://doi.org/10.3390/en13225937

**AMA Style**

Sebastián R, Nevado A.
Study and Simulation of a Wind Hydro Isolated Microgrid. *Energies*. 2020; 13(22):5937.
https://doi.org/10.3390/en13225937

**Chicago/Turabian Style**

Sebastián, Rafael, and Antonio Nevado.
2020. "Study and Simulation of a Wind Hydro Isolated Microgrid" *Energies* 13, no. 22: 5937.
https://doi.org/10.3390/en13225937